mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
197 lines
11 KiB
C
197 lines
11 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2010-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include "soc/soc.h"
|
|
#include "heap_memory_layout.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY
|
|
#define MALLOC_IRAM_CAP MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_IRAM_8BIT
|
|
#else
|
|
#define MALLOC_IRAM_CAP MALLOC_CAP_EXEC|MALLOC_CAP_32BIT
|
|
#endif
|
|
|
|
/* Memory layout for ESP32 SoC */
|
|
|
|
/*
|
|
Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory
|
|
map consist of one or more regions in the address space.
|
|
|
|
Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier
|
|
ones can't fulfill the memory request.
|
|
|
|
The prioritised capabilities work roughly like this:
|
|
- For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
|
|
finally eat into the application memory.
|
|
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
|
|
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
|
|
- Most other malloc caps only fit in one region anyway.
|
|
*/
|
|
|
|
enum {
|
|
SOC_MEMORY_TYPE_DRAM = 0,
|
|
SOC_MEMORY_TYPE_DIRAM = 1,
|
|
SOC_MEMORY_TYPE_IRAM = 2,
|
|
SOC_MEMORY_TYPE_SPIRAM = 3,
|
|
SOC_MEMORY_TYPE_RTCRAM = 4,
|
|
SOC_MEMORY_TYPE_NUM,
|
|
};
|
|
|
|
const soc_memory_type_desc_t soc_memory_types[] = {
|
|
//Type 0: Plain ole D-port RAM
|
|
[SOC_MEMORY_TYPE_DRAM] = { "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }},
|
|
//Type 1: Plain ole D-port RAM which has an alias on the I-port
|
|
//(This DRAM is also the region used by ROM during startup, and decrease the allocation priority to avoid MALLOC_CAP_EXEC memory running out too soon)
|
|
[SOC_MEMORY_TYPE_DIRAM] = { "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }},
|
|
//Type 2: IRAM
|
|
[SOC_MEMORY_TYPE_IRAM] = { "IRAM", { MALLOC_CAP_INTERNAL|MALLOC_IRAM_CAP, 0, 0 }},
|
|
//Type 3: SPI SRAM data
|
|
[SOC_MEMORY_TYPE_SPIRAM] = { "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}},
|
|
//Type 4: RTC Fast RAM
|
|
[SOC_MEMORY_TYPE_RTCRAM] = { "RTCRAM", { MALLOC_CAP_RTCRAM, MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }},
|
|
};
|
|
|
|
const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t);
|
|
|
|
/*
|
|
Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
|
|
|
|
Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted
|
|
from low to high start address.
|
|
*/
|
|
const soc_memory_region_t soc_memory_regions[] = {
|
|
#ifdef CONFIG_SPIRAM
|
|
{ SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_SIZE, SOC_MEMORY_TYPE_SPIRAM, 0, false}, //SPI SRAM, if available
|
|
#endif
|
|
{ 0x3FFAE000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 16 <- used for rom code
|
|
{ 0x3FFB0000, 0x8000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 15 <- if BT is enabled, used as BT HW shared memory
|
|
{ 0x3FFB8000, 0x8000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
|
|
{ 0x3FFC0000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 0
|
|
{ 0x3FFC2000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 1
|
|
{ 0x3FFC4000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 2
|
|
{ 0x3FFC6000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 3
|
|
{ 0x3FFC8000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 4
|
|
{ 0x3FFCA000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 5
|
|
{ 0x3FFCC000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 6
|
|
{ 0x3FFCE000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 7
|
|
{ 0x3FFD0000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 8
|
|
{ 0x3FFD2000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 9
|
|
{ 0x3FFD4000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 10
|
|
{ 0x3FFD6000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 11
|
|
{ 0x3FFD8000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 12
|
|
{ 0x3FFDA000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 13
|
|
{ 0x3FFDC000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 14
|
|
{ 0x3FFDE000, 0x2000, SOC_MEMORY_TYPE_DRAM, 0, false}, //pool 10-13, mmu page 15
|
|
{ 0x3FFE0000, 0x4000, SOC_MEMORY_TYPE_DIRAM, 0x400BC000,true}, //pool 9 blk 1
|
|
{ 0x3FFE4000, 0x4000, SOC_MEMORY_TYPE_DIRAM, 0x400B8000,true}, //pool 9 blk 0
|
|
{ 0x3FFE8000, 0x8000, SOC_MEMORY_TYPE_DIRAM, 0x400B0000,true}, //pool 8 <- can be remapped to ROM, used for MAC dump
|
|
{ 0x3FFF0000, 0x8000, SOC_MEMORY_TYPE_DIRAM, 0x400A8000,true}, //pool 7 <- can be used for MAC dump
|
|
{ 0x3FFF8000, 0x4000, SOC_MEMORY_TYPE_DIRAM, 0x400A4000,true}, //pool 6 blk 1 <- can be used as trace memory
|
|
{ 0x3FFFC000, 0x4000, SOC_MEMORY_TYPE_DIRAM, 0x400A0000,true}, //pool 6 blk 0 <- can be used as trace memory
|
|
{ 0x40070000, 0x8000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 0
|
|
{ 0x40078000, 0x8000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 1
|
|
{ 0x40080000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 0
|
|
{ 0x40082000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 1
|
|
{ 0x40084000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 2
|
|
{ 0x40086000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 3
|
|
{ 0x40088000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 4
|
|
{ 0x4008A000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 5
|
|
{ 0x4008C000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 6
|
|
{ 0x4008E000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 7
|
|
{ 0x40090000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 8
|
|
{ 0x40092000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 9
|
|
{ 0x40094000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 10
|
|
{ 0x40096000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 11
|
|
{ 0x40098000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 12
|
|
{ 0x4009A000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 13
|
|
{ 0x4009C000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 14
|
|
{ 0x4009E000, 0x2000, SOC_MEMORY_TYPE_IRAM, 0, false}, //pool 2-5, mmu page 15
|
|
#ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
|
|
{ SOC_RTC_DRAM_LOW, 0x2000, SOC_MEMORY_TYPE_RTCRAM, 0, false}, //RTC Fast Memory
|
|
#endif
|
|
};
|
|
|
|
const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t);
|
|
|
|
|
|
/* Reserved memory regions
|
|
|
|
These are removed from the soc_memory_regions array when heaps are created.
|
|
*/
|
|
SOC_RESERVE_MEMORY_REGION(SOC_CACHE_PRO_LOW, SOC_CACHE_PRO_HIGH, cpu0_cache);
|
|
#ifndef CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
SOC_RESERVE_MEMORY_REGION(SOC_CACHE_APP_LOW, SOC_CACHE_APP_HIGH, cpu1_cache);
|
|
#endif
|
|
|
|
/* Warning: The ROM stack is located in the 0x3ffe0000 area. We do not specifically disable that area here because
|
|
after the scheduler has started, the ROM stack is not used anymore by anything. We handle it instead by not allowing
|
|
any mallocs memory regions with the startup_stack flag set (these are the IRAM/DRAM region) until the
|
|
scheduler has started.
|
|
|
|
The 0x3ffe0000 region also contains static RAM for various ROM functions. The following lines
|
|
reserve the regions for UART and ETSC, so these functions are usable. Libraries like xtos, which are
|
|
not usable in FreeRTOS anyway, are commented out in the linker script so they cannot be used; we
|
|
do not disable their memory regions here and they will be used as general purpose heap memory.
|
|
|
|
Enabling the heap allocator for this region but disabling allocation here until FreeRTOS is started up
|
|
is a somewhat risky action in theory, because on initializing the allocator, the multi_heap implementation
|
|
will go and write metadata at the start and end of all regions. For the ESP32, these linked
|
|
list entries happen to end up in a region that is not touched by the stack; they can be placed safely there.
|
|
*/
|
|
|
|
SOC_RESERVE_MEMORY_REGION(0x3ffe0000, 0x3ffe0440, rom_pro_data); //Reserve ROM PRO data region
|
|
#ifndef CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
SOC_RESERVE_MEMORY_REGION(0x3ffe3f20, 0x3ffe4350, rom_app_data); //Reserve ROM APP data region
|
|
#endif
|
|
|
|
SOC_RESERVE_MEMORY_REGION(0x3ffae000, 0x3ffae6e0, rom_data);
|
|
|
|
#if CONFIG_ESP32_MEMMAP_TRACEMEM
|
|
#if CONFIG_ESP32_MEMMAP_TRACEMEM_TWOBANKS
|
|
SOC_RESERVE_MEMORY_REGION(0x3fff8000, 0x40000000, trace_mem); //Reserve trace mem region, 32K for both cpu
|
|
#else
|
|
SOC_RESERVE_MEMORY_REGION(0x3fffc000, 0x40000000, trace_mem); //Reserve trace mem region, 16K (upper-half) for pro cpu
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPIRAM
|
|
/* Reserve the whole possible SPIRAM region here, spiram.c will add some or all of this
|
|
* memory to heap depending on the actual SPIRAM chip size. */
|
|
SOC_RESERVE_MEMORY_REGION(SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH, spi_ram);
|
|
#endif
|
|
|
|
extern int _data_start, _heap_start, _heap_end, _iram_start, _iram_end, _rtc_force_fast_end, _rtc_noinit_end;
|
|
extern int _rtc_fast_reserved_start, _rtc_fast_reserved_end;
|
|
extern int _rtc_slow_reserved_start, _rtc_slow_reserved_end;
|
|
|
|
// Static data region. DRAM used by data+bss and possibly rodata
|
|
SOC_RESERVE_MEMORY_REGION((intptr_t)&_data_start, (intptr_t)&_heap_start, dram_data);
|
|
|
|
// IRAM code region
|
|
// ESP32 has an IRAM-only region 0x4008_0000 - 0x4009_FFFF, reserve the used part
|
|
SOC_RESERVE_MEMORY_REGION((intptr_t)&_iram_start, (intptr_t)&_iram_end, iram_code);
|
|
|
|
// If IRAM spans into SRAM1 due to CONFIG_ESP_SYSTEM_ESP32_SRAM1_REGION_AS_IRAM, reserve the corresponding part of DRAM
|
|
#ifdef CONFIG_ESP_SYSTEM_ESP32_SRAM1_REGION_AS_IRAM
|
|
SOC_RESERVE_MEMORY_REGION((intptr_t) &_heap_end, 0x40000000, sram1_iram);
|
|
#endif
|
|
|
|
// RTC Fast RAM region
|
|
#ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
|
|
#ifdef CONFIG_ESP32_RTCDATA_IN_FAST_MEM
|
|
SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_noinit_end, rtcram_data);
|
|
#else
|
|
SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_force_fast_end, rtcram_data);
|
|
#endif
|
|
#endif
|
|
|
|
SOC_RESERVE_MEMORY_REGION((intptr_t)&_rtc_fast_reserved_start, (intptr_t)&_rtc_fast_reserved_end, rtc_fast_reserved_data);
|
|
SOC_RESERVE_MEMORY_REGION((intptr_t)&_rtc_slow_reserved_start, (intptr_t)&_rtc_slow_reserved_end, rtc_reserved_data);
|