mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
781d06af73
This function removes the following legacy atomic CAS functions: From compare_set.h (file removed): - compare_and_set_native() - compare_and_set_extram() From portmacro.h - uxPortCompareSet() - uxPortCompareSetExtram() Users should call esp_cpu_compare_and_set() instead as this function hides the details of atomic CAS on internal and external RAM addresses. Due to the removal of compare_set.h, some missing header includes are also fixed in this commit.
1152 lines
43 KiB
C
1152 lines
43 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/queue.h"
|
|
#include "freertos/task.h"
|
|
|
|
#include "sdkconfig.h"
|
|
|
|
#if CONFIG_I2S_ENABLE_DEBUG_LOG
|
|
// The local log level must be defined before including esp_log.h
|
|
// Set the maximum log level for this source file
|
|
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
|
|
#endif
|
|
#include "esp_log.h"
|
|
|
|
#include "soc/i2s_periph.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/gpio_hal.h"
|
|
#include "hal/i2s_hal.h"
|
|
|
|
#if SOC_I2S_SUPPORTS_ADC_DAC
|
|
#include "hal/adc_ll.h"
|
|
#include "driver/adc_i2s_legacy.h"
|
|
#endif
|
|
#if SOC_I2S_SUPPORTS_APLL
|
|
#include "clk_ctrl_os.h"
|
|
#endif
|
|
|
|
#include "esp_private/i2s_platform.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
|
|
#include "driver/gpio.h"
|
|
#include "driver/i2s_common.h"
|
|
#include "i2s_private.h"
|
|
|
|
#include "clk_ctrl_os.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_check.h"
|
|
#include "esp_attr.h"
|
|
|
|
#include "esp_rom_gpio.h"
|
|
#include "esp_memory_utils.h"
|
|
|
|
/* The actual max size of DMA buffer is 4095
|
|
* Set 4092 here to align with 4-byte, so that the position of the slot data in the buffer will be relatively fixed */
|
|
#define I2S_DMA_BUFFER_MAX_SIZE (4092)
|
|
|
|
// If ISR handler is allowed to run whilst cache is disabled,
|
|
// Make sure all the code and related variables used by the handler are in the SRAM
|
|
#if CONFIG_I2S_ISR_IRAM_SAFE
|
|
#define I2S_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_SHARED)
|
|
#define I2S_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
|
|
#else
|
|
#define I2S_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_SHARED)
|
|
#define I2S_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT
|
|
#endif //CONFIG_I2S_ISR_IRAM_SAFE
|
|
#define I2S_DMA_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA)
|
|
|
|
/**
|
|
* @brief Global i2s platform object
|
|
* @note For saving all the I2S related information
|
|
*/
|
|
i2s_platform_t g_i2s = {
|
|
.spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED,
|
|
.controller[0 ... (SOC_I2S_NUM - 1)] = NULL, // groups will be lazy installed
|
|
.comp_name[0 ... (SOC_I2S_NUM - 1)] = NULL,
|
|
};
|
|
|
|
static const char *TAG = "i2s_common";
|
|
|
|
/*---------------------------------------------------------------------------
|
|
I2S Static APIs
|
|
----------------------------------------------------------------------------
|
|
Scope: This file only
|
|
----------------------------------------------------------------------------*/
|
|
|
|
static void i2s_tx_channel_start(i2s_chan_handle_t handle)
|
|
{
|
|
i2s_hal_tx_reset(&(handle->controller->hal));
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_reset((handle->dma.dma_chan));
|
|
#else
|
|
i2s_hal_tx_reset_dma(&(handle->controller->hal));
|
|
#endif
|
|
i2s_hal_tx_reset_fifo(&(handle->controller->hal));
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_start((handle->dma.dma_chan), (uint32_t) handle->dma.desc[0]);
|
|
#else
|
|
esp_intr_enable(handle->dma.dma_chan);
|
|
i2s_hal_tx_enable_intr(&(handle->controller->hal));
|
|
i2s_hal_tx_enable_dma(&(handle->controller->hal));
|
|
i2s_hal_tx_start_link(&(handle->controller->hal), (uint32_t) handle->dma.desc[0]);
|
|
#endif
|
|
i2s_hal_tx_start(&(handle->controller->hal));
|
|
}
|
|
|
|
static void i2s_rx_channel_start(i2s_chan_handle_t handle)
|
|
{
|
|
i2s_hal_rx_reset(&(handle->controller->hal));
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_reset(handle->dma.dma_chan);
|
|
#else
|
|
i2s_hal_rx_reset_dma(&(handle->controller->hal));
|
|
#endif
|
|
i2s_hal_rx_reset_fifo(&(handle->controller->hal));
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_start(handle->dma.dma_chan, (uint32_t) handle->dma.desc[0]);
|
|
#else
|
|
esp_intr_enable(handle->dma.dma_chan);
|
|
i2s_hal_rx_enable_intr(&(handle->controller->hal));
|
|
i2s_hal_rx_enable_dma(&(handle->controller->hal));
|
|
i2s_hal_rx_start_link(&(handle->controller->hal), (uint32_t) handle->dma.desc[0]);
|
|
#endif
|
|
i2s_hal_rx_start(&(handle->controller->hal));
|
|
}
|
|
|
|
static void i2s_tx_channel_stop(i2s_chan_handle_t handle)
|
|
{
|
|
i2s_hal_tx_stop(&(handle->controller->hal));
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_stop(handle->dma.dma_chan);
|
|
#else
|
|
i2s_hal_tx_stop_link(&(handle->controller->hal));
|
|
i2s_hal_tx_disable_intr(&(handle->controller->hal));
|
|
i2s_hal_tx_disable_dma(&(handle->controller->hal));
|
|
esp_intr_disable(handle->dma.dma_chan);
|
|
#endif
|
|
}
|
|
|
|
static void i2s_rx_channel_stop(i2s_chan_handle_t handle)
|
|
{
|
|
i2s_hal_rx_stop(&(handle->controller->hal));
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_stop(handle->dma.dma_chan);
|
|
#else
|
|
i2s_hal_rx_stop_link(&(handle->controller->hal));
|
|
i2s_hal_rx_disable_intr(&(handle->controller->hal));
|
|
i2s_hal_rx_disable_dma(&(handle->controller->hal));
|
|
esp_intr_disable(handle->dma.dma_chan);
|
|
#endif
|
|
}
|
|
|
|
static esp_err_t i2s_destroy_controller_obj(i2s_controller_t **i2s_obj)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, i2s_obj);
|
|
I2S_NULL_POINTER_CHECK(TAG, *i2s_obj);
|
|
ESP_RETURN_ON_FALSE(!(*i2s_obj)->rx_chan && !(*i2s_obj)->tx_chan,
|
|
ESP_ERR_INVALID_STATE, TAG,
|
|
"there still have channels under this i2s controller");
|
|
int id = (*i2s_obj)->id;
|
|
#if SOC_I2S_HW_VERSION_1
|
|
i2s_ll_enable_dma((*i2s_obj)->hal.dev, false);
|
|
#endif
|
|
free(*i2s_obj);
|
|
*i2s_obj = NULL;
|
|
return i2s_platform_release_occupation(id);
|
|
}
|
|
|
|
/**
|
|
* @brief Acquire i2s controller object
|
|
*
|
|
* @param id i2s port id
|
|
* @param search_reverse reverse the sequence of port acquirement
|
|
* set false to acquire from I2S_NUM_0 first
|
|
* set true to acquire from SOC_I2S_NUM - 1 first
|
|
* @return
|
|
* - pointer of acquired i2s controller object
|
|
*/
|
|
static i2s_controller_t *i2s_acquire_controller_obj(int id)
|
|
{
|
|
if (id < 0 || id >= SOC_I2S_NUM) {
|
|
return NULL;
|
|
}
|
|
/* pre-alloc controller object */
|
|
i2s_controller_t *pre_alloc = (i2s_controller_t *)heap_caps_calloc(1, sizeof(i2s_controller_t), I2S_MEM_ALLOC_CAPS);
|
|
if (pre_alloc == NULL) {
|
|
return NULL;
|
|
}
|
|
pre_alloc->id = id;
|
|
i2s_hal_init(&pre_alloc->hal, id);
|
|
pre_alloc->full_duplex = false;
|
|
pre_alloc->tx_chan = NULL;
|
|
pre_alloc->rx_chan = NULL;
|
|
pre_alloc->mclk = I2S_GPIO_UNUSED;
|
|
|
|
i2s_controller_t *i2s_obj = NULL;
|
|
/* Try to occupy this i2s controller */
|
|
if (i2s_platform_acquire_occupation(id, "i2s_driver") == ESP_OK) {
|
|
portENTER_CRITICAL(&g_i2s.spinlock);
|
|
i2s_obj = pre_alloc;
|
|
g_i2s.controller[id] = i2s_obj;
|
|
portEXIT_CRITICAL(&g_i2s.spinlock);
|
|
#if SOC_I2S_SUPPORTS_ADC_DAC
|
|
if (id == I2S_NUM_0) {
|
|
adc_ll_digi_set_data_source(ADC_I2S_DATA_SRC_IO_SIG);
|
|
}
|
|
#endif
|
|
} else {
|
|
free(pre_alloc);
|
|
portENTER_CRITICAL(&g_i2s.spinlock);
|
|
if (g_i2s.controller[id]) {
|
|
i2s_obj = g_i2s.controller[id];
|
|
}
|
|
portEXIT_CRITICAL(&g_i2s.spinlock);
|
|
if (i2s_obj == NULL) {
|
|
ESP_LOGE(TAG, "i2s%d might be occupied by other component", id);
|
|
}
|
|
}
|
|
|
|
return i2s_obj;
|
|
}
|
|
|
|
static inline bool i2s_take_available_channel(i2s_controller_t *i2s_obj, uint8_t chan_search_mask)
|
|
{
|
|
bool is_available = false;
|
|
|
|
#if SOC_I2S_HW_VERSION_1
|
|
/* In ESP32 and ESP32-S2, tx channel and rx channel are not totally separated
|
|
* Take both two channels in case one channel can affect another
|
|
*/
|
|
chan_search_mask = I2S_DIR_RX | I2S_DIR_TX;
|
|
#endif
|
|
portENTER_CRITICAL(&g_i2s.spinlock);
|
|
if (!(chan_search_mask & i2s_obj->chan_occupancy)) {
|
|
i2s_obj->chan_occupancy |= chan_search_mask;
|
|
is_available = true;
|
|
}
|
|
portEXIT_CRITICAL(&g_i2s.spinlock);
|
|
return is_available;
|
|
}
|
|
|
|
static esp_err_t i2s_register_channel(i2s_controller_t *i2s_obj, i2s_dir_t dir, uint32_t desc_num)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, i2s_obj);
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
i2s_chan_handle_t new_chan = (i2s_chan_handle_t)heap_caps_calloc(1, sizeof(struct i2s_channel_t), I2S_MEM_ALLOC_CAPS);
|
|
ESP_RETURN_ON_FALSE(new_chan, ESP_ERR_NO_MEM, TAG, "No memory for new channel");
|
|
new_chan->mode = I2S_COMM_MODE_NONE;
|
|
new_chan->role = I2S_ROLE_MASTER; // Set default role to master
|
|
new_chan->dir = dir;
|
|
new_chan->state = I2S_CHAN_STATE_REGISTER;
|
|
#if SOC_I2S_SUPPORTS_APLL
|
|
new_chan->apll_en = false;
|
|
#endif
|
|
new_chan->mode_info = NULL;
|
|
new_chan->controller = i2s_obj;
|
|
#if CONFIG_PM_ENABLE
|
|
new_chan->pm_lock = NULL; // Init in i2s_set_clock according to clock source
|
|
#endif
|
|
#if CONFIG_I2S_ISR_IRAM_SAFE
|
|
new_chan->msg_que_storage = (uint8_t *)heap_caps_calloc(desc_num - 1, sizeof(uint8_t *), I2S_MEM_ALLOC_CAPS);
|
|
ESP_GOTO_ON_FALSE(new_chan->msg_que_storage, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue storage");
|
|
new_chan->msg_que_struct = (StaticQueue_t *)heap_caps_calloc(1, sizeof(StaticQueue_t), I2S_MEM_ALLOC_CAPS);
|
|
ESP_GOTO_ON_FALSE(new_chan->msg_que_struct, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue struct");
|
|
new_chan->msg_queue = xQueueCreateStatic(desc_num - 1, sizeof(uint8_t *), new_chan->msg_que_storage, new_chan->msg_que_struct);
|
|
ESP_GOTO_ON_FALSE(new_chan->msg_queue, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue");
|
|
new_chan->mutex_struct = (StaticSemaphore_t *)heap_caps_calloc(1, sizeof(StaticSemaphore_t), I2S_MEM_ALLOC_CAPS);
|
|
ESP_GOTO_ON_FALSE(new_chan->mutex_struct, ESP_ERR_NO_MEM, err, TAG, "No memory for mutex struct");
|
|
new_chan->mutex = xSemaphoreCreateMutexStatic(new_chan->mutex_struct);
|
|
ESP_GOTO_ON_FALSE(new_chan->mutex, ESP_ERR_NO_MEM, err, TAG, "No memory for mutex");
|
|
new_chan->binary_struct = (StaticSemaphore_t *)heap_caps_calloc(1, sizeof(StaticSemaphore_t), I2S_MEM_ALLOC_CAPS);
|
|
ESP_GOTO_ON_FALSE(new_chan->binary_struct, ESP_ERR_NO_MEM, err, TAG, "No memory for binary struct");
|
|
new_chan->binary = xSemaphoreCreateBinaryStatic(new_chan->binary_struct);
|
|
ESP_GOTO_ON_FALSE(new_chan->binary, ESP_ERR_NO_MEM, err, TAG, "No memory for binary");
|
|
#else
|
|
new_chan->msg_queue = xQueueCreate(desc_num - 1, sizeof(uint8_t *));
|
|
ESP_GOTO_ON_FALSE(new_chan->msg_queue, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue");
|
|
new_chan->mutex = xSemaphoreCreateMutex();
|
|
ESP_GOTO_ON_FALSE(new_chan->mutex, ESP_ERR_NO_MEM, err, TAG, "No memory for mutex semaphore");
|
|
new_chan->binary = xSemaphoreCreateBinary();
|
|
ESP_GOTO_ON_FALSE(new_chan->binary, ESP_ERR_NO_MEM, err, TAG, "No memory for binary semaphore");
|
|
#endif
|
|
|
|
new_chan->callbacks.on_recv = NULL;
|
|
new_chan->callbacks.on_recv_q_ovf = NULL;
|
|
new_chan->callbacks.on_sent = NULL;
|
|
new_chan->callbacks.on_send_q_ovf = NULL;
|
|
new_chan->start = NULL;
|
|
new_chan->stop = NULL;
|
|
|
|
if (dir == I2S_DIR_TX) {
|
|
if (i2s_obj->tx_chan) {
|
|
i2s_del_channel(i2s_obj->tx_chan);
|
|
}
|
|
i2s_obj->tx_chan = new_chan;
|
|
|
|
} else {
|
|
if (i2s_obj->rx_chan) {
|
|
i2s_del_channel(i2s_obj->rx_chan);
|
|
}
|
|
i2s_obj->rx_chan = new_chan;
|
|
}
|
|
return ret;
|
|
err:
|
|
#if CONFIG_I2S_ISR_IRAM_SAFE
|
|
if (new_chan->msg_que_storage) {
|
|
free(new_chan->msg_que_storage);
|
|
}
|
|
if (new_chan->msg_que_struct) {
|
|
free(new_chan->msg_que_struct);
|
|
}
|
|
if (new_chan->mutex_struct) {
|
|
free(new_chan->mutex_struct);
|
|
}
|
|
if (new_chan->binary_struct) {
|
|
free(new_chan->binary_struct);
|
|
}
|
|
#endif
|
|
if (new_chan->msg_queue) {
|
|
vQueueDelete(new_chan->msg_queue);
|
|
}
|
|
if (new_chan->mutex) {
|
|
vSemaphoreDelete(new_chan->mutex);
|
|
}
|
|
if (new_chan->binary) {
|
|
vSemaphoreDelete(new_chan->binary);
|
|
}
|
|
free(new_chan);
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t i2s_channel_register_event_callback(i2s_chan_handle_t handle, const i2s_event_callbacks_t *callbacks, void *user_data)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
I2S_NULL_POINTER_CHECK(TAG, callbacks);
|
|
esp_err_t ret = ESP_OK;
|
|
#if CONFIG_I2S_ISR_IRAM_SAFE
|
|
if (callbacks->on_recv) {
|
|
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_recv), ESP_ERR_INVALID_ARG, TAG, "on_recv callback not in IRAM");
|
|
}
|
|
if (callbacks->on_recv_q_ovf) {
|
|
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_recv_q_ovf), ESP_ERR_INVALID_ARG, TAG, "on_recv_q_ovf callback not in IRAM");
|
|
}
|
|
if (callbacks->on_sent) {
|
|
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_sent), ESP_ERR_INVALID_ARG, TAG, "on_sent callback not in IRAM");
|
|
}
|
|
if (callbacks->on_send_q_ovf) {
|
|
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_send_q_ovf), ESP_ERR_INVALID_ARG, TAG, "on_send_q_ovf callback not in IRAM");
|
|
}
|
|
if (user_data) {
|
|
ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
|
|
}
|
|
#endif
|
|
|
|
xSemaphoreTake(handle->mutex, portMAX_DELAY);
|
|
ESP_GOTO_ON_FALSE(handle->state < I2S_CHAN_STATE_RUNNING, ESP_ERR_INVALID_STATE, err, TAG, "invalid state, I2S has enabled");
|
|
memcpy(&(handle->callbacks), callbacks, sizeof(i2s_event_callbacks_t));
|
|
handle->user_data = user_data;
|
|
err:
|
|
xSemaphoreGive(handle->mutex);
|
|
return ret;
|
|
}
|
|
|
|
uint32_t i2s_get_buf_size(i2s_chan_handle_t handle, uint32_t data_bit_width, uint32_t dma_frame_num)
|
|
{
|
|
uint32_t active_chan = handle->active_slot;
|
|
uint32_t bytes_per_sample = ((data_bit_width + 15) / 16) * 2;
|
|
uint32_t bytes_per_frame = bytes_per_sample * active_chan;
|
|
uint32_t bufsize = dma_frame_num * bytes_per_frame;
|
|
/* Limit DMA buffer size if it is out of range (DMA buffer limitation is 4092 bytes) */
|
|
if (bufsize > I2S_DMA_BUFFER_MAX_SIZE) {
|
|
uint32_t frame_num = I2S_DMA_BUFFER_MAX_SIZE / bytes_per_frame;
|
|
bufsize = frame_num * bytes_per_frame;
|
|
ESP_LOGW(TAG, "dma frame num is out of dma buffer size, limited to %d", frame_num);
|
|
}
|
|
return bufsize;
|
|
}
|
|
|
|
esp_err_t i2s_free_dma_desc(i2s_chan_handle_t handle)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
if (!handle->dma.desc) {
|
|
return ESP_OK;
|
|
}
|
|
for (int i = 0; i < handle->dma.desc_num; i++) {
|
|
if (handle->dma.bufs[i]) {
|
|
free(handle->dma.bufs[i]);
|
|
}
|
|
if (handle->dma.desc[i]) {
|
|
free(handle->dma.desc[i]);
|
|
}
|
|
}
|
|
if (handle->dma.bufs) {
|
|
free(handle->dma.bufs);
|
|
}
|
|
if (handle->dma.desc) {
|
|
free(handle->dma.desc);
|
|
}
|
|
handle->dma.desc = NULL;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t i2s_alloc_dma_desc(i2s_chan_handle_t handle, uint32_t num, uint32_t bufsize)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_RETURN_ON_FALSE(bufsize <= I2S_DMA_BUFFER_MAX_SIZE, ESP_ERR_INVALID_ARG, TAG, "dma buffer can't be bigger than %d", I2S_DMA_BUFFER_MAX_SIZE);
|
|
handle->dma.desc_num = num;
|
|
handle->dma.buf_size = bufsize;
|
|
|
|
/* Descriptors must be in the internal RAM */
|
|
handle->dma.desc = (lldesc_t **)heap_caps_calloc(num, sizeof(lldesc_t *), I2S_MEM_ALLOC_CAPS);
|
|
ESP_GOTO_ON_FALSE(handle->dma.desc, ESP_ERR_NO_MEM, err, TAG, "create I2S DMA decriptor array failed");
|
|
handle->dma.bufs = (uint8_t **)heap_caps_calloc(num, sizeof(uint8_t *), I2S_MEM_ALLOC_CAPS);
|
|
for (int i = 0; i < num; i++) {
|
|
/* Allocate DMA descriptor */
|
|
handle->dma.desc[i] = (lldesc_t *) heap_caps_calloc(1, sizeof(lldesc_t), I2S_DMA_ALLOC_CAPS);
|
|
ESP_GOTO_ON_FALSE(handle->dma.desc[i], ESP_ERR_NO_MEM, err, TAG, "allocate DMA description failed");
|
|
handle->dma.desc[i]->owner = 1;
|
|
handle->dma.desc[i]->eof = 1;
|
|
handle->dma.desc[i]->sosf = 0;
|
|
handle->dma.desc[i]->length = bufsize;
|
|
handle->dma.desc[i]->size = bufsize;
|
|
handle->dma.desc[i]->offset = 0;
|
|
handle->dma.bufs[i] = (uint8_t *) heap_caps_calloc(1, bufsize * sizeof(uint8_t), I2S_DMA_ALLOC_CAPS);
|
|
handle->dma.desc[i]->buf = handle->dma.bufs[i];
|
|
ESP_GOTO_ON_FALSE(handle->dma.desc[i]->buf, ESP_ERR_NO_MEM, err, TAG, "allocate DMA buffer failed");
|
|
ESP_LOGV(TAG, "desc addr: %8p\tbuffer addr:%8p", handle->dma.desc[i], handle->dma.bufs[i]);
|
|
}
|
|
/* Connect DMA descriptor as a circle */
|
|
for (int i = 0; i < num; i++) {
|
|
/* Link to the next descriptor */
|
|
handle->dma.desc[i]->empty = (uint32_t)((i < (num - 1)) ? (handle->dma.desc[i + 1]) : handle->dma.desc[0]);
|
|
}
|
|
if (handle->dir == I2S_DIR_RX) {
|
|
i2s_ll_rx_set_eof_num(handle->controller->hal.dev, bufsize);
|
|
}
|
|
ESP_LOGD(TAG, "DMA malloc info: dma_desc_num = %d, dma_desc_buf_size = dma_frame_num * slot_num * data_bit_width = %d", num, bufsize);
|
|
return ESP_OK;
|
|
err:
|
|
i2s_free_dma_desc(handle);
|
|
return ret;
|
|
}
|
|
|
|
#if SOC_I2S_SUPPORTS_APLL
|
|
uint32_t i2s_set_get_apll_freq(uint32_t mclk_freq_hz)
|
|
{
|
|
/* Calculate the expected APLL */
|
|
int mclk_div = (int)((SOC_APLL_MIN_HZ / mclk_freq_hz) + 1);
|
|
/* apll_freq = mclk * div
|
|
* when div = 1, hardware will still divide 2
|
|
* when div = 0, the final mclk will be unpredictable
|
|
* So the div here should be at least 2 */
|
|
mclk_div = mclk_div < 2 ? 2 : mclk_div;
|
|
uint32_t expt_freq = mclk_freq_hz * mclk_div;
|
|
if (expt_freq > SOC_APLL_MAX_HZ) {
|
|
ESP_LOGE(TAG, "The required APLL frequecy exceed its maximum value");
|
|
return 0;
|
|
}
|
|
uint32_t real_freq = 0;
|
|
esp_err_t ret = periph_rtc_apll_freq_set(expt_freq, &real_freq);
|
|
if (ret == ESP_ERR_INVALID_ARG) {
|
|
ESP_LOGE(TAG, "set APLL freq failed due to invalid argument");
|
|
return 0;
|
|
}
|
|
if (ret == ESP_ERR_INVALID_STATE) {
|
|
ESP_LOGW(TAG, "APLL is occupied already, it is working at %d Hz while the expected frequency is %d Hz", real_freq, expt_freq);
|
|
ESP_LOGW(TAG, "Trying to work at %d Hz...", real_freq);
|
|
}
|
|
ESP_LOGD(TAG, "APLL expected frequency is %d Hz, real frequency is %d Hz", expt_freq, real_freq);
|
|
return real_freq;
|
|
}
|
|
#endif
|
|
|
|
#if SOC_GDMA_SUPPORTED
|
|
static bool IRAM_ATTR i2s_dma_rx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
|
|
{
|
|
i2s_chan_handle_t handle = (i2s_chan_handle_t)user_data;
|
|
portBASE_TYPE need_yield1 = 0;
|
|
portBASE_TYPE need_yield2 = 0;
|
|
portBASE_TYPE user_need_yield = 0;
|
|
lldesc_t *finish_desc;
|
|
uint32_t dummy;
|
|
|
|
finish_desc = (lldesc_t *)event_data->rx_eof_desc_addr;
|
|
i2s_event_data_t evt = {
|
|
.data = &(finish_desc->buf),
|
|
.size = handle->dma.buf_size,
|
|
};
|
|
if (handle->callbacks.on_recv) {
|
|
user_need_yield |= handle->callbacks.on_recv(handle, &evt, handle->user_data);
|
|
}
|
|
if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
|
|
xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
|
|
if (handle->callbacks.on_recv_q_ovf) {
|
|
evt.data = NULL;
|
|
user_need_yield |= handle->callbacks.on_recv_q_ovf(handle, &evt, handle->user_data);
|
|
}
|
|
}
|
|
xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);
|
|
|
|
return need_yield1 | need_yield2 | user_need_yield;
|
|
}
|
|
|
|
static bool IRAM_ATTR i2s_dma_tx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
|
|
{
|
|
i2s_chan_handle_t handle = (i2s_chan_handle_t)user_data;
|
|
portBASE_TYPE need_yield1 = 0;
|
|
portBASE_TYPE need_yield2 = 0;
|
|
portBASE_TYPE user_need_yield = 0;
|
|
lldesc_t *finish_desc;
|
|
uint32_t dummy;
|
|
|
|
finish_desc = (lldesc_t *)(event_data->tx_eof_desc_addr);
|
|
i2s_event_data_t evt = {
|
|
.data = &(finish_desc->buf),
|
|
.size = handle->dma.buf_size,
|
|
};
|
|
if (handle->callbacks.on_sent) {
|
|
user_need_yield |= handle->callbacks.on_sent(handle, &evt, handle->user_data);
|
|
}
|
|
if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
|
|
xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
|
|
if (handle->callbacks.on_send_q_ovf) {
|
|
evt.data = NULL;
|
|
user_need_yield |= handle->callbacks.on_send_q_ovf(handle, &evt, handle->user_data);
|
|
}
|
|
}
|
|
xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);
|
|
|
|
if (handle->dma.auto_clear) {
|
|
uint8_t *sent_buf = (uint8_t *)finish_desc->buf;
|
|
memset(sent_buf, 0, handle->dma.buf_size);
|
|
}
|
|
|
|
return need_yield1 | need_yield2 | user_need_yield;
|
|
}
|
|
|
|
#else
|
|
|
|
static void IRAM_ATTR i2s_dma_rx_callback(void *arg)
|
|
{
|
|
portBASE_TYPE need_yield1 = 0;
|
|
portBASE_TYPE need_yield2 = 0;
|
|
portBASE_TYPE user_need_yield = 0;
|
|
lldesc_t *finish_desc = NULL;
|
|
i2s_event_data_t evt;
|
|
i2s_chan_handle_t handle = (i2s_chan_handle_t)arg;
|
|
uint32_t dummy;
|
|
|
|
uint32_t status = i2s_hal_get_intr_status(&(handle->controller->hal));
|
|
i2s_hal_clear_intr_status(&(handle->controller->hal), status);
|
|
if (!status) {
|
|
return;
|
|
}
|
|
|
|
if (handle && (status & I2S_LL_EVENT_RX_EOF)) {
|
|
i2s_hal_get_in_eof_des_addr(&(handle->controller->hal), (uint32_t *)&finish_desc);
|
|
evt.data = &(finish_desc->buf);
|
|
evt.size = handle->dma.buf_size;
|
|
if (handle->callbacks.on_recv) {
|
|
user_need_yield |= handle->callbacks.on_recv(handle, &evt, handle->user_data);
|
|
}
|
|
if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
|
|
xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
|
|
if (handle->callbacks.on_recv_q_ovf) {
|
|
evt.data = NULL;
|
|
user_need_yield |= handle->callbacks.on_recv_q_ovf(handle, &evt, handle->user_data);
|
|
}
|
|
}
|
|
xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);
|
|
}
|
|
|
|
if (need_yield1 || need_yield2 || user_need_yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
static void IRAM_ATTR i2s_dma_tx_callback(void *arg)
|
|
{
|
|
portBASE_TYPE need_yield1 = 0;
|
|
portBASE_TYPE need_yield2 = 0;
|
|
portBASE_TYPE user_need_yield = 0;
|
|
lldesc_t *finish_desc = NULL;
|
|
i2s_event_data_t evt;
|
|
i2s_chan_handle_t handle = (i2s_chan_handle_t)arg;
|
|
uint32_t dummy;
|
|
|
|
uint32_t status = i2s_hal_get_intr_status(&(handle->controller->hal));
|
|
i2s_hal_clear_intr_status(&(handle->controller->hal), status);
|
|
if (!status) {
|
|
return;
|
|
}
|
|
|
|
if (handle && (status & I2S_LL_EVENT_TX_EOF)) {
|
|
i2s_hal_get_out_eof_des_addr(&(handle->controller->hal), (uint32_t *)&finish_desc);
|
|
evt.data = &(finish_desc->buf);
|
|
evt.size = handle->dma.buf_size;
|
|
if (handle->callbacks.on_sent) {
|
|
user_need_yield |= handle->callbacks.on_sent(handle, &evt, handle->user_data);
|
|
}
|
|
if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
|
|
xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
|
|
if (handle->callbacks.on_send_q_ovf) {
|
|
evt.data = NULL;
|
|
user_need_yield |= handle->callbacks.on_send_q_ovf(handle, &evt, handle->user_data);
|
|
}
|
|
}
|
|
xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);
|
|
// Auto clear the dma buffer after data sent
|
|
if (handle->dma.auto_clear) {
|
|
uint8_t *buff = (uint8_t *)finish_desc->buf;
|
|
memset(buff, 0, handle->dma.buf_size);
|
|
}
|
|
}
|
|
|
|
if (need_yield1 || need_yield2 || user_need_yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief I2S DMA interrupt initialization
|
|
* @note I2S will use GDMA if chip supports, and the interrupt is triggered by GDMA.
|
|
*
|
|
* @param handle I2S channel handle
|
|
* @param intr_flag Interrupt allocation flag
|
|
* @return
|
|
* - ESP_OK I2S DMA interrupt initialize success
|
|
* - ESP_ERR_NOT_FOUND GDMA channel not found
|
|
* - ESP_ERR_INVALID_ARG Invalid arguments
|
|
* - ESP_ERR_INVALID_STATE GDMA state error
|
|
*/
|
|
esp_err_t i2s_init_dma_intr(i2s_chan_handle_t handle, int intr_flag)
|
|
{
|
|
i2s_port_t port_id = handle->controller->id;
|
|
ESP_RETURN_ON_FALSE((port_id >= 0) && (port_id < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "invalid handle");
|
|
#if SOC_GDMA_SUPPORTED
|
|
/* Set GDMA trigger module */
|
|
gdma_trigger_t trig = {.periph = GDMA_TRIG_PERIPH_I2S};
|
|
|
|
switch (port_id) {
|
|
#if SOC_I2S_NUM > 1
|
|
case I2S_NUM_1:
|
|
trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S1;
|
|
break;
|
|
#endif
|
|
default:
|
|
trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S0;
|
|
break;
|
|
}
|
|
|
|
/* Set GDMA config */
|
|
gdma_channel_alloc_config_t dma_cfg = {};
|
|
if (handle->dir == I2S_DIR_TX) {
|
|
dma_cfg.direction = GDMA_CHANNEL_DIRECTION_TX;
|
|
/* Register a new GDMA tx channel */
|
|
ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &handle->dma.dma_chan), TAG, "Register tx dma channel error");
|
|
ESP_RETURN_ON_ERROR(gdma_connect(handle->dma.dma_chan, trig), TAG, "Connect tx dma channel error");
|
|
gdma_tx_event_callbacks_t cb = {.on_trans_eof = i2s_dma_tx_callback};
|
|
/* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the callback function */
|
|
gdma_register_tx_event_callbacks(handle->dma.dma_chan, &cb, handle);
|
|
} else {
|
|
dma_cfg.direction = GDMA_CHANNEL_DIRECTION_RX;
|
|
/* Register a new GDMA rx channel */
|
|
ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &handle->dma.dma_chan), TAG, "Register rx dma channel error");
|
|
ESP_RETURN_ON_ERROR(gdma_connect(handle->dma.dma_chan, trig), TAG, "Connect rx dma channel error");
|
|
gdma_rx_event_callbacks_t cb = {.on_recv_eof = i2s_dma_rx_callback};
|
|
/* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the callback function */
|
|
gdma_register_rx_event_callbacks(handle->dma.dma_chan, &cb, handle);
|
|
}
|
|
#else
|
|
intr_flag |= ESP_INTR_FLAG_SHARED;
|
|
/* Initialize I2S module interrupt */
|
|
if (handle->dir == I2S_DIR_TX) {
|
|
esp_intr_alloc_intrstatus(i2s_periph_signal[port_id].irq, intr_flag,
|
|
(uint32_t)i2s_ll_get_interrupt_status_reg(handle->controller->hal.dev), I2S_LL_TX_EVENT_MASK,
|
|
i2s_dma_tx_callback, handle, &handle->dma.dma_chan);
|
|
} else {
|
|
esp_intr_alloc_intrstatus(i2s_periph_signal[port_id].irq, intr_flag,
|
|
(uint32_t)i2s_ll_get_interrupt_status_reg(handle->controller->hal.dev), I2S_LL_RX_EVENT_MASK,
|
|
i2s_dma_rx_callback, handle, &handle->dma.dma_chan);
|
|
}
|
|
/* Start DMA */
|
|
i2s_ll_enable_dma(handle->controller->hal.dev, true);
|
|
#endif // SOC_GDMA_SUPPORTED
|
|
return ESP_OK;
|
|
}
|
|
|
|
void i2s_gpio_check_and_set(gpio_num_t gpio, uint32_t signal_idx, bool is_input, bool is_invert)
|
|
{
|
|
/* Ignore the pin if pin = I2S_GPIO_UNUSED */
|
|
if (gpio != I2S_GPIO_UNUSED) {
|
|
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
|
|
if (is_input) {
|
|
/* Set direction, for some GPIOs, the input function are not enabled as default */
|
|
gpio_set_direction(gpio, GPIO_MODE_INPUT);
|
|
esp_rom_gpio_connect_in_signal(gpio, signal_idx, is_invert);
|
|
} else {
|
|
gpio_set_direction(gpio, GPIO_MODE_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(gpio, signal_idx, is_invert, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void i2s_gpio_loopback_set(gpio_num_t gpio, uint32_t out_sig_idx, uint32_t in_sig_idx)
|
|
{
|
|
if (gpio != I2S_GPIO_UNUSED) {
|
|
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
|
|
gpio_set_direction(gpio, GPIO_MODE_INPUT_OUTPUT);
|
|
esp_rom_gpio_connect_out_signal(gpio, out_sig_idx, 0, 0);
|
|
esp_rom_gpio_connect_in_signal(gpio, in_sig_idx, 0);
|
|
}
|
|
}
|
|
|
|
esp_err_t i2s_check_set_mclk(i2s_port_t id, gpio_num_t gpio_num, bool is_apll, bool is_invert)
|
|
{
|
|
if (gpio_num == I2S_GPIO_UNUSED) {
|
|
return ESP_OK;
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
ESP_RETURN_ON_FALSE((gpio_num == GPIO_NUM_0 || gpio_num == GPIO_NUM_1 || gpio_num == GPIO_NUM_3),
|
|
ESP_ERR_INVALID_ARG, TAG,
|
|
"ESP32 only support to set GPIO0/GPIO1/GPIO3 as mclk signal, error GPIO number:%d", gpio_num);
|
|
bool is_i2s0 = id == I2S_NUM_0;
|
|
if (gpio_num == GPIO_NUM_0) {
|
|
gpio_hal_iomux_func_sel(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
|
|
gpio_ll_iomux_pin_ctrl(is_apll ? 0xFFF6 : (is_i2s0 ? 0xFFF0 : 0xFFFF));
|
|
} else if (gpio_num == GPIO_NUM_1) {
|
|
gpio_hal_iomux_func_sel(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_CLK_OUT3);
|
|
gpio_ll_iomux_pin_ctrl(is_apll ? 0xF6F6 : (is_i2s0 ? 0xF0F0 : 0xF0FF));
|
|
} else {
|
|
gpio_hal_iomux_func_sel(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_CLK_OUT2);
|
|
gpio_ll_iomux_pin_ctrl(is_apll ? 0xFF66 : (is_i2s0 ? 0xFF00 : 0xFF0F));
|
|
}
|
|
#else
|
|
ESP_RETURN_ON_FALSE(GPIO_IS_VALID_GPIO(gpio_num), ESP_ERR_INVALID_ARG, TAG, "mck_io_num invalid");
|
|
i2s_gpio_check_and_set(gpio_num, i2s_periph_signal[id].mck_out_sig, false, is_invert);
|
|
#endif
|
|
ESP_LOGD(TAG, "MCLK is pinned to GPIO%d on I2S%d", id, gpio_num);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
I2S bus Public APIs
|
|
----------------------------------------------------------------------------
|
|
Scope: Public
|
|
----------------------------------------------------------------------------*/
|
|
esp_err_t i2s_new_channel(const i2s_chan_config_t *chan_cfg, i2s_chan_handle_t *tx_handle, i2s_chan_handle_t *rx_handle)
|
|
{
|
|
#if CONFIG_I2S_ENABLE_DEBUG_LOG
|
|
esp_log_level_set(TAG, ESP_LOG_DEBUG);
|
|
#endif
|
|
/* Parameter validity check */
|
|
I2S_NULL_POINTER_CHECK(TAG, chan_cfg);
|
|
I2S_NULL_POINTER_CHECK(TAG, tx_handle || rx_handle);
|
|
ESP_RETURN_ON_FALSE(chan_cfg->id < SOC_I2S_NUM || chan_cfg->id == I2S_NUM_AUTO, ESP_ERR_INVALID_ARG, TAG, "invalid I2S port id");
|
|
ESP_RETURN_ON_FALSE(chan_cfg->dma_desc_num >= 2, ESP_ERR_INVALID_ARG, TAG, "there should be at least 2 DMA buffers");
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
i2s_controller_t *i2s_obj = NULL;
|
|
i2s_port_t id = chan_cfg->id;
|
|
bool channel_found = false;
|
|
uint8_t chan_search_mask = 0;
|
|
chan_search_mask |= tx_handle ? I2S_DIR_TX : 0;
|
|
chan_search_mask |= rx_handle ? I2S_DIR_RX : 0;
|
|
|
|
/* Channel will be registered to one i2s port automatically if id is I2S_NUM_AUTO
|
|
* Otherwise, the channel will be registered to the specific port. */
|
|
if (id == I2S_NUM_AUTO) {
|
|
for (int i = 0; i < SOC_I2S_NUM && !channel_found; i++) {
|
|
i2s_obj = i2s_acquire_controller_obj(i);
|
|
if (!i2s_obj) {
|
|
continue;
|
|
}
|
|
channel_found = i2s_take_available_channel(i2s_obj, chan_search_mask);
|
|
}
|
|
ESP_RETURN_ON_FALSE(i2s_obj, ESP_ERR_NOT_FOUND, TAG, "get i2s object failed");
|
|
} else {
|
|
i2s_obj = i2s_acquire_controller_obj(id);
|
|
ESP_RETURN_ON_FALSE(i2s_obj, ESP_ERR_NOT_FOUND, TAG, "get i2s object failed");
|
|
channel_found = i2s_take_available_channel(i2s_obj, chan_search_mask);
|
|
}
|
|
ESP_GOTO_ON_FALSE(channel_found, ESP_ERR_NOT_FOUND, err, TAG, "no available channel found");
|
|
/* Register and specify the tx handle */
|
|
if (tx_handle) {
|
|
ESP_GOTO_ON_ERROR(i2s_register_channel(i2s_obj, I2S_DIR_TX, chan_cfg->dma_desc_num),
|
|
err, TAG, "register I2S tx channel failed");
|
|
i2s_obj->tx_chan->role = chan_cfg->role;
|
|
i2s_obj->tx_chan->dma.auto_clear = chan_cfg->auto_clear;
|
|
i2s_obj->tx_chan->dma.desc_num = chan_cfg->dma_desc_num;
|
|
i2s_obj->tx_chan->dma.frame_num = chan_cfg->dma_frame_num;
|
|
i2s_obj->tx_chan->start = i2s_tx_channel_start;
|
|
i2s_obj->tx_chan->stop = i2s_tx_channel_stop;
|
|
*tx_handle = i2s_obj->tx_chan;
|
|
ESP_LOGD(TAG, "tx channel is registered on I2S%d successfully", i2s_obj->id);
|
|
}
|
|
/* Register and specify the rx handle */
|
|
if (rx_handle) {
|
|
ESP_GOTO_ON_ERROR(i2s_register_channel(i2s_obj, I2S_DIR_RX, chan_cfg->dma_desc_num),
|
|
err, TAG, "register I2S rx channel failed");
|
|
i2s_obj->rx_chan->role = chan_cfg->role;
|
|
i2s_obj->rx_chan->dma.desc_num = chan_cfg->dma_desc_num;
|
|
i2s_obj->rx_chan->dma.frame_num = chan_cfg->dma_frame_num;
|
|
i2s_obj->rx_chan->start = i2s_rx_channel_start;
|
|
i2s_obj->rx_chan->stop = i2s_rx_channel_stop;
|
|
*rx_handle = i2s_obj->rx_chan;
|
|
ESP_LOGD(TAG, "rx channel is registered on I2S%d successfully", i2s_obj->id);
|
|
}
|
|
|
|
if ((tx_handle != NULL) && (rx_handle != NULL)) {
|
|
i2s_obj->full_duplex = true;
|
|
}
|
|
|
|
return ESP_OK;
|
|
/* i2s_obj allocated but register channel failed */
|
|
err:
|
|
/* if the controller object has no channel, find the corresponding global object and destroy it */
|
|
if (i2s_obj != NULL && i2s_obj->rx_chan == NULL && i2s_obj->tx_chan == NULL) {
|
|
for (int i = 0; i < SOC_I2S_NUM; i++) {
|
|
if (i2s_obj == g_i2s.controller[i]) {
|
|
i2s_destroy_controller_obj(&g_i2s.controller[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t i2s_del_channel(i2s_chan_handle_t handle)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
ESP_RETURN_ON_FALSE(handle->state < I2S_CHAN_STATE_RUNNING, ESP_ERR_INVALID_STATE, TAG, "the channel can't be deleted unless it is disabled");
|
|
i2s_controller_t *i2s_obj = handle->controller;
|
|
int __attribute__((unused)) id = i2s_obj->id;
|
|
i2s_dir_t __attribute__((unused)) dir = handle->dir;
|
|
bool is_bound = true;
|
|
|
|
#if SOC_I2S_HW_VERSION_2
|
|
if (dir == I2S_DIR_TX) {
|
|
i2s_ll_tx_disable_clock(handle->controller->hal.dev);
|
|
} else {
|
|
i2s_ll_rx_disable_clock(handle->controller->hal.dev);
|
|
}
|
|
#endif
|
|
#if SOC_I2S_SUPPORTS_APLL
|
|
if (handle->apll_en) {
|
|
/* Must switch back to D2CLK on ESP32-S2,
|
|
* because the clock of some registers are bound to APLL,
|
|
* otherwise, once APLL is disabled, the registers can't be updated anymore */
|
|
if (handle->dir == I2S_DIR_TX) {
|
|
i2s_ll_tx_clk_set_src(handle->controller->hal.dev, I2S_CLK_SRC_DEFAULT);
|
|
} else {
|
|
i2s_ll_rx_clk_set_src(handle->controller->hal.dev, I2S_CLK_SRC_DEFAULT);
|
|
}
|
|
periph_rtc_apll_release();
|
|
}
|
|
#endif
|
|
#if CONFIG_PM_ENABLE
|
|
if (handle->pm_lock) {
|
|
esp_pm_lock_delete(handle->pm_lock);
|
|
}
|
|
#endif
|
|
if (handle->mode_info) {
|
|
free(handle->mode_info);
|
|
}
|
|
if (handle->dma.desc) {
|
|
i2s_free_dma_desc(handle);
|
|
}
|
|
#if CONFIG_I2S_ISR_IRAM_SAFE
|
|
if (handle->msg_que_storage) {
|
|
free(handle->msg_que_storage);
|
|
}
|
|
if (handle->msg_que_struct) {
|
|
free(handle->msg_que_struct);
|
|
}
|
|
if (handle->mutex) {
|
|
free(handle->mutex_struct);
|
|
}
|
|
if (handle->binary_struct) {
|
|
free(handle->binary_struct);
|
|
}
|
|
#endif
|
|
if (handle->msg_queue) {
|
|
vQueueDelete(handle->msg_queue);
|
|
}
|
|
if (handle->mutex) {
|
|
vSemaphoreDelete(handle->mutex);
|
|
}
|
|
if (handle->binary) {
|
|
vSemaphoreDelete(handle->binary);
|
|
}
|
|
#if SOC_I2S_HW_VERSION_1
|
|
i2s_obj->chan_occupancy = 0;
|
|
#else
|
|
i2s_obj->chan_occupancy &= ~(uint32_t)dir;
|
|
#endif
|
|
if (handle->dma.dma_chan) {
|
|
#if SOC_GDMA_SUPPORTED
|
|
gdma_del_channel(handle->dma.dma_chan);
|
|
#else
|
|
esp_intr_free(handle->dma.dma_chan);
|
|
#endif
|
|
}
|
|
if (handle == i2s_obj->tx_chan) {
|
|
free(i2s_obj->tx_chan);
|
|
i2s_obj->tx_chan = NULL;
|
|
i2s_obj->full_duplex = false;
|
|
} else if (handle == i2s_obj->rx_chan) {
|
|
free(i2s_obj->rx_chan);
|
|
i2s_obj->rx_chan = NULL;
|
|
i2s_obj->full_duplex = false;
|
|
} else {
|
|
/* Indicate the delete channel is an unbound free channel */
|
|
is_bound = false;
|
|
free(handle);
|
|
}
|
|
|
|
/* If the delete channel was bound to a controller before,
|
|
we need to destroy this controller object if there is no channel any more */
|
|
if (is_bound) {
|
|
if (!(i2s_obj->tx_chan) && !(i2s_obj->rx_chan)) {
|
|
i2s_destroy_controller_obj(&g_i2s.controller[i2s_obj->id]);
|
|
}
|
|
ESP_LOGD(TAG, "%s channel on I2S%d deleted", dir == I2S_DIR_TX ? "tx" : "rx", id);
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t i2s_channel_get_info(i2s_chan_handle_t handle, i2s_chan_info_t *chan_info)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
I2S_NULL_POINTER_CHECK(TAG, chan_info);
|
|
|
|
/* Find whether the handle is a registered i2s handle or still available */
|
|
for (int i = 0; i < SOC_I2S_NUM; i++) {
|
|
if (g_i2s.controller[i] != NULL) {
|
|
if (g_i2s.controller[i]->tx_chan == handle ||
|
|
g_i2s.controller[i]->rx_chan == handle) {
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
return ESP_ERR_NOT_FOUND;
|
|
found:
|
|
/* Assign the handle information */
|
|
xSemaphoreTake(handle->mutex, portMAX_DELAY);
|
|
chan_info->id = handle->controller->id;
|
|
chan_info->dir = handle->dir;
|
|
chan_info->role = handle->role;
|
|
chan_info->mode = handle->mode;
|
|
if (handle->controller->full_duplex) {
|
|
if (handle->dir == I2S_DIR_TX) {
|
|
chan_info->pair_chan = handle->controller->rx_chan;
|
|
} else {
|
|
chan_info->pair_chan = handle->controller->tx_chan;
|
|
}
|
|
} else {
|
|
chan_info->pair_chan = NULL;
|
|
}
|
|
xSemaphoreGive(handle->mutex);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t i2s_channel_enable(i2s_chan_handle_t handle)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
xSemaphoreTake(handle->mutex, portMAX_DELAY);
|
|
ESP_GOTO_ON_FALSE(handle->state == I2S_CHAN_STATE_READY, ESP_ERR_INVALID_STATE, err, TAG, "the channel has already enabled or not initialized");
|
|
#if CONFIG_PM_ENABLE
|
|
esp_pm_lock_acquire(handle->pm_lock);
|
|
#endif
|
|
handle->dma.curr_ptr = NULL;
|
|
handle->dma.rw_pos = 0;
|
|
handle->start(handle);
|
|
handle->state = I2S_CHAN_STATE_RUNNING;
|
|
/* Reset queue */
|
|
xQueueReset(handle->msg_queue);
|
|
xSemaphoreGive(handle->mutex);
|
|
/* Give the binary semaphore to enable reading / writing task */
|
|
xSemaphoreGive(handle->binary);
|
|
|
|
ESP_LOGD(TAG, "i2s %s channel enabled", handle->dir == I2S_DIR_TX ? "tx" : "rx");
|
|
return ret;
|
|
|
|
err:
|
|
xSemaphoreGive(handle->mutex);
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t i2s_channel_disable(i2s_chan_handle_t handle)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
xSemaphoreTake(handle->mutex, portMAX_DELAY);
|
|
ESP_GOTO_ON_FALSE(handle->state > I2S_CHAN_STATE_READY, ESP_ERR_INVALID_STATE, err, TAG, "the channel has not been enabled yet");
|
|
/* Update the state to force quit the current reading/wrinting operation */
|
|
handle->state = I2S_CHAN_STATE_READY;
|
|
/* Waiting for reading/wrinting operation quit */
|
|
xSemaphoreTake(handle->binary, portMAX_DELAY);
|
|
handle->stop(handle);
|
|
#if CONFIG_PM_ENABLE
|
|
esp_pm_lock_release(handle->pm_lock);
|
|
#endif
|
|
xSemaphoreGive(handle->mutex);
|
|
ESP_LOGD(TAG, "i2s %s channel disabled", handle->dir == I2S_DIR_TX ? "tx" : "rx");
|
|
return ret;
|
|
|
|
err:
|
|
xSemaphoreGive(handle->mutex);
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t i2s_channel_write(i2s_chan_handle_t handle, const void *src, size_t size, size_t *bytes_written, uint32_t timeout_ms)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
ESP_RETURN_ON_FALSE(handle->dir == I2S_DIR_TX, ESP_ERR_INVALID_ARG, TAG, "this channel is not tx channel");
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
char *data_ptr;
|
|
char *src_byte;
|
|
size_t bytes_can_write;
|
|
*bytes_written = 0;
|
|
|
|
/* The binary semaphore can only be taken when the channel has been enabled and no other writing operation in progress */
|
|
ESP_RETURN_ON_FALSE(xSemaphoreTake(handle->binary, pdMS_TO_TICKS(timeout_ms)) == pdTRUE, ESP_ERR_INVALID_STATE, TAG, "The channel is not enabled");
|
|
src_byte = (char *)src;
|
|
while (size > 0 && handle->state == I2S_CHAN_STATE_RUNNING) {
|
|
if (handle->dma.rw_pos == handle->dma.buf_size || handle->dma.curr_ptr == NULL) {
|
|
if (xQueueReceive(handle->msg_queue, &(handle->dma.curr_ptr), pdMS_TO_TICKS(timeout_ms)) == pdFALSE) {
|
|
ret = ESP_ERR_TIMEOUT;
|
|
break;
|
|
}
|
|
handle->dma.rw_pos = 0;
|
|
}
|
|
data_ptr = (char *)handle->dma.curr_ptr;
|
|
data_ptr += handle->dma.rw_pos;
|
|
bytes_can_write = handle->dma.buf_size - handle->dma.rw_pos;
|
|
if (bytes_can_write > size) {
|
|
bytes_can_write = size;
|
|
}
|
|
memcpy(data_ptr, src_byte, bytes_can_write);
|
|
size -= bytes_can_write;
|
|
src_byte += bytes_can_write;
|
|
handle->dma.rw_pos += bytes_can_write;
|
|
(*bytes_written) += bytes_can_write;
|
|
}
|
|
xSemaphoreGive(handle->binary);
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t i2s_channel_read(i2s_chan_handle_t handle, void *dest, size_t size, size_t *bytes_read, uint32_t timeout_ms)
|
|
{
|
|
I2S_NULL_POINTER_CHECK(TAG, handle);
|
|
ESP_RETURN_ON_FALSE(handle->dir == I2S_DIR_RX, ESP_ERR_INVALID_ARG, TAG, "this channel is not rx channel");
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
uint8_t *data_ptr;
|
|
uint8_t *dest_byte;
|
|
int bytes_can_read;
|
|
*bytes_read = 0;
|
|
dest_byte = (uint8_t *)dest;
|
|
/* The binary semaphore can only be taken when the channel has been enabled and no other reading operation in progress */
|
|
ESP_RETURN_ON_FALSE(xSemaphoreTake(handle->binary, pdMS_TO_TICKS(timeout_ms)) == pdTRUE, ESP_ERR_INVALID_STATE, TAG, "The channel is not enabled");
|
|
while (size > 0 && handle->state == I2S_CHAN_STATE_RUNNING) {
|
|
if (handle->dma.rw_pos == handle->dma.buf_size || handle->dma.curr_ptr == NULL) {
|
|
if (xQueueReceive(handle->msg_queue, &(handle->dma.curr_ptr), pdMS_TO_TICKS(timeout_ms)) == pdFALSE) {
|
|
ret = ESP_ERR_TIMEOUT;
|
|
break;
|
|
}
|
|
handle->dma.rw_pos = 0;
|
|
}
|
|
data_ptr = (uint8_t *)handle->dma.curr_ptr;
|
|
data_ptr += handle->dma.rw_pos;
|
|
bytes_can_read = handle->dma.buf_size - handle->dma.rw_pos;
|
|
if (bytes_can_read > (int)size) {
|
|
bytes_can_read = size;
|
|
}
|
|
memcpy(dest_byte, data_ptr, bytes_can_read);
|
|
size -= bytes_can_read;
|
|
dest_byte += bytes_can_read;
|
|
handle->dma.rw_pos += bytes_can_read;
|
|
(*bytes_read) += bytes_can_read;
|
|
}
|
|
xSemaphoreGive(handle->binary);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
I2S Platform APIs
|
|
----------------------------------------------------------------------------
|
|
Scope: This file and ADC/DAC/LCD driver
|
|
----------------------------------------------------------------------------*/
|
|
|
|
esp_err_t i2s_platform_acquire_occupation(int id, const char *comp_name)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
const char *occupied_comp = NULL;
|
|
ESP_RETURN_ON_FALSE(id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid i2s port id");
|
|
portENTER_CRITICAL(&g_i2s.spinlock);
|
|
if ((!g_i2s.controller[id]) && (g_i2s.comp_name[id] == NULL)) {
|
|
g_i2s.comp_name[id] = comp_name;
|
|
/* Enable module clock */
|
|
periph_module_enable(i2s_periph_signal[id].module);
|
|
i2s_ll_enable_clock(I2S_LL_GET_HW(id));
|
|
} else {
|
|
occupied_comp = g_i2s.comp_name[id];
|
|
ret = ESP_ERR_NOT_FOUND;
|
|
}
|
|
portEXIT_CRITICAL(&g_i2s.spinlock);
|
|
if (occupied_comp != NULL) {
|
|
ESP_LOGW(TAG, "i2s controller %d has been occupied by %s", id, occupied_comp);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t i2s_platform_release_occupation(int id)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_RETURN_ON_FALSE(id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid i2s port id");
|
|
portENTER_CRITICAL(&g_i2s.spinlock);
|
|
if (!g_i2s.controller[id]) {
|
|
g_i2s.comp_name[id] = NULL;
|
|
/* Disable module clock */
|
|
periph_module_disable(i2s_periph_signal[id].module);
|
|
i2s_ll_disable_clock(I2S_LL_GET_HW(id));
|
|
} else {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
}
|
|
portEXIT_CRITICAL(&g_i2s.spinlock);
|
|
return ret;
|
|
}
|
|
|
|
// Only used in `test_i2s_iram.c` to write DMA buffer directly
|
|
size_t inline i2s_platform_get_dma_buffer_offset(void)
|
|
{
|
|
/* Force to transfer address '0' into 'i2s_chan_handle_t' type,
|
|
* then find the corresponding field , the address of this field is the offset of this type */
|
|
return (size_t)&(((i2s_chan_handle_t)0)->dma.bufs);
|
|
}
|