mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
5cc69ce12b
Introduce new APIs in essp_heap_caps.h: - heap_caps_walk() - heap_caps_walk_all() Those functions are triggering a callback for all blocks (allocated or free) of memory present in heaps meeting the set of capabilities passed as parameter (or all heaps for heap_caps_walk_all() function) test_walker.c added to test the new functionality in test_apps/heap_test/
233 lines
9.0 KiB
C
233 lines
9.0 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#pragma once
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
|
|
/* multi_heap is a heap implementation for handling multiple
|
|
heterogenous heaps in a single program.
|
|
|
|
Any contiguous block of memory can be registered as a heap.
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/** @brief Opaque handle to a registered heap */
|
|
typedef struct multi_heap_info *multi_heap_handle_t;
|
|
|
|
/**
|
|
* @brief allocate a chunk of memory with specific alignment
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param size size in bytes of memory chunk
|
|
* @param alignment how the memory must be aligned
|
|
*
|
|
* @return pointer to the memory allocated, NULL on failure
|
|
*/
|
|
void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment);
|
|
|
|
/** @brief malloc() a buffer in a given heap
|
|
*
|
|
* Semantics are the same as standard malloc(), only the returned buffer will be allocated in the specified heap.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param size Size of desired buffer.
|
|
*
|
|
* @return Pointer to new memory, or NULL if allocation fails.
|
|
*/
|
|
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size);
|
|
|
|
/** @brief free() a buffer aligned in a given heap.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param p NULL, or a pointer previously returned from multi_heap_aligned_alloc() for the same heap.
|
|
* @note This function is deprecated, consider using multi_heap_free() instead
|
|
*/
|
|
void __attribute__((deprecated)) multi_heap_aligned_free(multi_heap_handle_t heap, void *p);
|
|
|
|
/** @brief free() a buffer in a given heap.
|
|
*
|
|
* Semantics are the same as standard free(), only the argument 'p' must be NULL or have been allocated in the specified heap.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param p NULL, or a pointer previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
|
|
*/
|
|
void multi_heap_free(multi_heap_handle_t heap, void *p);
|
|
|
|
/** @brief realloc() a buffer in a given heap.
|
|
*
|
|
* Semantics are the same as standard realloc(), only the argument 'p' must be NULL or have been allocated in the specified heap.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param p NULL, or a pointer previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
|
|
* @param size Desired new size for buffer.
|
|
*
|
|
* @return New buffer of 'size' containing contents of 'p', or NULL if reallocation failed.
|
|
*/
|
|
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size);
|
|
|
|
|
|
/** @brief Return the size that a particular pointer was allocated with.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param p Pointer, must have been previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
|
|
*
|
|
* @return Size of the memory allocated at this block. May be more than the original size argument, due
|
|
* to padding and minimum block sizes.
|
|
*/
|
|
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p);
|
|
|
|
|
|
/** @brief Register a new heap for use
|
|
*
|
|
* This function initialises a heap at the specified address, and returns a handle for future heap operations.
|
|
*
|
|
* There is no equivalent function for deregistering a heap - if all blocks in the heap are free, you can immediately start using the memory for other purposes.
|
|
*
|
|
* @param start Start address of the memory to use for a new heap.
|
|
* @param size Size (in bytes) of the new heap.
|
|
*
|
|
* @return Handle of a new heap ready for use, or NULL if the heap region was too small to be initialised.
|
|
*/
|
|
multi_heap_handle_t multi_heap_register(void *start, size_t size);
|
|
|
|
|
|
/** @brief Associate a private lock pointer with a heap
|
|
*
|
|
* The lock argument is supplied to the MULTI_HEAP_LOCK() and MULTI_HEAP_UNLOCK() macros, defined in multi_heap_platform.h.
|
|
*
|
|
* The lock in question must be recursive.
|
|
*
|
|
* When the heap is first registered, the associated lock is NULL.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param lock Optional pointer to a locking structure to associate with this heap.
|
|
*/
|
|
void multi_heap_set_lock(multi_heap_handle_t heap, void* lock);
|
|
|
|
/** @brief Dump heap information to stdout
|
|
*
|
|
* For debugging purposes, this function dumps information about every block in the heap to stdout.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
*/
|
|
void multi_heap_dump(multi_heap_handle_t heap);
|
|
|
|
/** @brief Check heap integrity
|
|
*
|
|
* Walks the heap and checks all heap data structures are valid. If any errors are detected, an error-specific message
|
|
* can be optionally printed to stderr. Print behaviour can be overridden at compile time by defining
|
|
* MULTI_CHECK_FAIL_PRINTF in multi_heap_platform.h.
|
|
*
|
|
* @note This function is not thread-safe as it sets a global variable with the value of print_errors.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param print_errors If true, errors will be printed to stderr.
|
|
* @return true if heap is valid, false otherwise.
|
|
*/
|
|
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors);
|
|
|
|
/** @brief Return free heap size
|
|
*
|
|
* Returns the number of bytes available in the heap.
|
|
*
|
|
* Equivalent to the total_free_bytes member returned by multi_heap_get_heap_info().
|
|
*
|
|
* Note that the heap may be fragmented, so the actual maximum size for a single malloc() may be lower. To know this
|
|
* size, see the largest_free_block member returned by multi_heap_get_heap_info().
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @return Number of free bytes.
|
|
*/
|
|
size_t multi_heap_free_size(multi_heap_handle_t heap);
|
|
|
|
/** @brief Return the lifetime minimum free heap size
|
|
*
|
|
* Equivalent to the minimum_free_bytes member returned by multi_heap_get_info().
|
|
*
|
|
* Returns the lifetime "low watermark" of possible values returned from multi_free_heap_size(), for the specified
|
|
* heap.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @return Number of free bytes.
|
|
*/
|
|
size_t multi_heap_minimum_free_size(multi_heap_handle_t heap);
|
|
|
|
/** @brief Structure to access heap metadata via multi_heap_get_info */
|
|
typedef struct {
|
|
size_t total_free_bytes; ///< Total free bytes in the heap. Equivalent to multi_free_heap_size().
|
|
size_t total_allocated_bytes; ///< Total bytes allocated to data in the heap.
|
|
size_t largest_free_block; ///< Size of the largest free block in the heap. This is the largest malloc-able size.
|
|
size_t minimum_free_bytes; ///< Lifetime minimum free heap size. Equivalent to multi_minimum_free_heap_size().
|
|
size_t allocated_blocks; ///< Number of (variable size) blocks allocated in the heap.
|
|
size_t free_blocks; ///< Number of (variable size) free blocks in the heap.
|
|
size_t total_blocks; ///< Total number of (variable size) blocks in the heap.
|
|
} multi_heap_info_t;
|
|
|
|
/** @brief Return metadata about a given heap
|
|
*
|
|
* Fills a multi_heap_info_t structure with information about the specified heap.
|
|
*
|
|
* @param heap Handle to a registered heap.
|
|
* @param info Pointer to a structure to fill with heap metadata.
|
|
*/
|
|
void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info);
|
|
|
|
/**
|
|
* @brief Perform an aligned allocation from the provided offset
|
|
*
|
|
* @param heap The heap in which to perform the allocation
|
|
* @param size The size of the allocation
|
|
* @param alignment How the memory must be aligned
|
|
* @param offset The offset at which the alignment should start
|
|
* @return void* The ptr to the allocated memory
|
|
*/
|
|
void *multi_heap_aligned_alloc_offs(multi_heap_handle_t heap, size_t size, size_t alignment, size_t offset);
|
|
|
|
/**
|
|
* @brief Reset the minimum_free_bytes value (setting it to free_bytes) and return the former value
|
|
*
|
|
* @param heap The heap in which the reset is taking place
|
|
* @return size_t the value of minimum_free_bytes before it is reset
|
|
*/
|
|
size_t multi_heap_reset_minimum_free_bytes(multi_heap_handle_t heap);
|
|
|
|
/**
|
|
* @brief Set the value of minimum_free_bytes to new_minimum_free_bytes_value or keep
|
|
* the current value of minimum_free_bytes if it is smaller than new_minimum_free_bytes_value
|
|
*
|
|
* @param heap The heap in which the restore is taking place
|
|
* @param new_minimum_free_bytes_value The value to restore the minimum_free_bytes to
|
|
*/
|
|
void multi_heap_restore_minimum_free_bytes(multi_heap_handle_t heap, const size_t new_minimum_free_bytes_value);
|
|
|
|
/**
|
|
* @brief Callback called when walking the given heap blocks of memory
|
|
*
|
|
* @param block_ptr Pointer to the block data
|
|
* @param block_size The size of the block
|
|
* @param block_used Block status. 0 if free, else, false
|
|
* @param user_data Opaque pointer to user defined data
|
|
*/
|
|
typedef void (*multi_heap_walker_cb_t)(void *block_ptr, size_t block_size, int block_used, void *user_data);
|
|
|
|
/**
|
|
* @brief Call the tlsf_walk_pool function of the heap given as parameter with
|
|
* the walker function passed as parameter
|
|
*
|
|
* @param heap The heap to traverse
|
|
* @param walker_func The walker to trigger on each block of the heap
|
|
* @param user_data Opaque pointer to user defined data
|
|
*/
|
|
void multi_heap_walk(multi_heap_handle_t heap, multi_heap_walker_cb_t walker_func, void *user_data);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|