1021 lines
34 KiB
C

/*
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <stdint.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_pm.h"
#include "esp_log.h"
#include "esp_cpu.h"
#include "esp_private/crosscore_int.h"
#include "esp_private/uart_private.h"
#include "soc/rtc.h"
#include "hal/uart_ll.h"
#include "hal/uart_types.h"
#include "driver/uart.h"
#include "driver/gpio.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
#include "freertos/xtensa_timer.h"
#include "xtensa/core-macros.h"
#endif
#if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
#include "esp_private/mspi_timing_tuning.h"
#endif
#include "esp_private/pm_impl.h"
#include "esp_private/pm_trace.h"
#include "esp_private/esp_timer_private.h"
#include "esp_private/esp_clk.h"
#include "esp_private/sleep_cpu.h"
#include "esp_private/sleep_gpio.h"
#include "esp_private/sleep_modem.h"
#include "esp_sleep.h"
#include "esp_memory_utils.h"
#include "sdkconfig.h"
#define MHZ (1000000)
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
* for the purpose of detecting a deadlock.
*/
#define CCOMPARE_UPDATE_TIMEOUT 1000000
/* When changing CCOMPARE, don't allow changes if the difference is less
* than this. This is to prevent setting CCOMPARE below CCOUNT.
*/
#define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
#endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
/* When light sleep is used, wake this number of microseconds earlier than
* the next tick.
*/
#define LIGHT_SLEEP_EARLY_WAKEUP_US 100
#if CONFIG_IDF_TARGET_ESP32
/* Minimal divider at which REF_CLK_FREQ can be obtained */
#define REF_CLK_DIV_MIN 10
#elif CONFIG_IDF_TARGET_ESP32S2
/* Minimal divider at which REF_CLK_FREQ can be obtained */
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32S3
/* Minimal divider at which REF_CLK_FREQ can be obtained */
#define REF_CLK_DIV_MIN 2 // TODO: IDF-5660
#elif CONFIG_IDF_TARGET_ESP32C3
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32C2
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32C6
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32H2
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32P4
#define REF_CLK_DIV_MIN 2
#endif
#ifdef CONFIG_PM_PROFILING
#define WITH_PROFILING
#endif
static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
/* The following state variables are protected using s_switch_lock: */
/* Current sleep mode; When switching, contains old mode until switch is complete */
static pm_mode_t s_mode = PM_MODE_CPU_MAX;
/* True when switch is in progress */
static volatile bool s_is_switching;
/* Number of times each mode was locked */
static size_t s_mode_lock_counts[PM_MODE_COUNT];
/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
static uint32_t s_mode_mask;
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
#define PERIPH_SKIP_LIGHT_SLEEP_NO 2
/* Indicates if light sleep shoule be skipped by peripherals. */
static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
/* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
* This in turn gets used in IDLE hook to decide if `waiti` needs
* to be invoked or not.
*/
static bool s_skipped_light_sleep[portNUM_PROCESSORS];
#if portNUM_PROCESSORS == 2
/* When light sleep is finished on one CPU, it is possible that the other CPU
* will enter light sleep again very soon, before interrupts on the first CPU
* get a chance to run. To avoid such situation, set a flag for the other CPU to
* skip light sleep attempt.
*/
static bool s_skip_light_sleep[portNUM_PROCESSORS];
#endif // portNUM_PROCESSORS == 2
static _lock_t s_skip_light_sleep_lock;
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
/* A flag indicating that Idle hook has run on a given CPU;
* Next interrupt on the same CPU will take s_rtos_lock_handle.
*/
static bool s_core_idle[portNUM_PROCESSORS];
/* When no RTOS tasks are active, these locks are released to allow going into
* a lower power mode. Used by ISR hook and idle hook.
*/
static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
/* Lookup table of CPU frequency configs to be used in each mode.
* Initialized by esp_pm_impl_init and modified by esp_pm_configure.
*/
static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
/* Whether automatic light sleep is enabled */
static bool s_light_sleep_en = false;
/* When configuration is changed, current frequency may not match the
* newly configured frequency for the current mode. This is an indicator
* to the mode switch code to get the actual current frequency instead of
* relying on the current mode.
*/
static bool s_config_changed = false;
#ifdef WITH_PROFILING
/* Time, in microseconds, spent so far in each mode */
static pm_time_t s_time_in_mode[PM_MODE_COUNT];
/* Timestamp, in microseconds, when the mode switch last happened */
static pm_time_t s_last_mode_change_time;
/* User-readable mode names, used by esp_pm_impl_dump_stats */
static const char* s_mode_names[] = {
"SLEEP",
"APB_MIN",
"APB_MAX",
"CPU_MAX"
};
static uint32_t s_light_sleep_counts, s_light_sleep_reject_counts;
#endif // WITH_PROFILING
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
* Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
*/
static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
/* Divider and multiplier used to adjust (ccompare - ccount) duration.
* Only set to non-zero values when switch is in progress.
*/
static uint32_t s_ccount_div;
static uint32_t s_ccount_mul;
static void update_ccompare(void);
#endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
static const char* TAG = "pm";
static void do_switch(pm_mode_t new_mode);
static void leave_idle(void);
static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
{
(void) arg;
if (type == ESP_PM_CPU_FREQ_MAX) {
return PM_MODE_CPU_MAX;
} else if (type == ESP_PM_APB_FREQ_MAX) {
return PM_MODE_APB_MAX;
} else if (type == ESP_PM_NO_LIGHT_SLEEP) {
return PM_MODE_APB_MIN;
} else {
// unsupported mode
abort();
}
}
#if CONFIG_PM_LIGHT_SLEEP_CALLBACKS
/**
* @brief Function entry parameter types for light sleep callback functions (if CONFIG_FREERTOS_USE_TICKLESS_IDLE)
*/
struct _esp_pm_sleep_cb_config_t {
/**
* Callback function defined by user.
*/
esp_pm_light_sleep_cb_t cb;
/**
* Input parameters of callback function defined by user.
*/
void *arg;
/**
* Execution priority of callback function defined by user.
*/
uint32_t prior;
/**
* Next callback function defined by user.
*/
struct _esp_pm_sleep_cb_config_t *next;
};
typedef struct _esp_pm_sleep_cb_config_t esp_pm_sleep_cb_config_t;
static esp_pm_sleep_cb_config_t *s_light_sleep_enter_cb_config;
static esp_pm_sleep_cb_config_t *s_light_sleep_exit_cb_config;
static portMUX_TYPE s_sleep_pm_cb_mutex = portMUX_INITIALIZER_UNLOCKED;
esp_err_t esp_pm_light_sleep_register_cbs(esp_pm_sleep_cbs_register_config_t *cbs_conf)
{
if (cbs_conf->enter_cb == NULL && cbs_conf->exit_cb == NULL) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&s_sleep_pm_cb_mutex);
if (cbs_conf->enter_cb != NULL) {
esp_pm_sleep_cb_config_t **current_enter_ptr = &(s_light_sleep_enter_cb_config);
while (*current_enter_ptr != NULL) {
if (((*current_enter_ptr)->cb) == (cbs_conf->enter_cb)) {
portEXIT_CRITICAL(&s_sleep_pm_cb_mutex);
return ESP_FAIL;
}
current_enter_ptr = &((*current_enter_ptr)->next);
}
esp_pm_sleep_cb_config_t *new_enter_config = (esp_pm_sleep_cb_config_t *)heap_caps_malloc(sizeof(esp_pm_sleep_cb_config_t), MALLOC_CAP_INTERNAL);
if (new_enter_config == NULL) {
portEXIT_CRITICAL(&s_sleep_pm_cb_mutex);
return ESP_ERR_NO_MEM; /* Memory allocation failed */
}
new_enter_config->cb = cbs_conf->enter_cb;
new_enter_config->arg = cbs_conf->enter_cb_user_arg;
new_enter_config->prior = cbs_conf->enter_cb_prior;
while (*current_enter_ptr != NULL && (*current_enter_ptr)->prior <= new_enter_config->prior) {
current_enter_ptr = &((*current_enter_ptr)->next);
}
new_enter_config->next = *current_enter_ptr;
*current_enter_ptr = new_enter_config;
}
if (cbs_conf->exit_cb != NULL) {
esp_pm_sleep_cb_config_t **current_exit_ptr = &(s_light_sleep_exit_cb_config);
while (*current_exit_ptr != NULL) {
if (((*current_exit_ptr)->cb) == (cbs_conf->exit_cb)) {
portEXIT_CRITICAL(&s_sleep_pm_cb_mutex);
return ESP_FAIL;
}
current_exit_ptr = &((*current_exit_ptr)->next);
}
esp_pm_sleep_cb_config_t *new_exit_config = (esp_pm_sleep_cb_config_t *)heap_caps_malloc(sizeof(esp_pm_sleep_cb_config_t), MALLOC_CAP_INTERNAL);
if (new_exit_config == NULL) {
portEXIT_CRITICAL(&s_sleep_pm_cb_mutex);
return ESP_ERR_NO_MEM; /* Memory allocation failed */
}
new_exit_config->cb = cbs_conf->exit_cb;
new_exit_config->arg = cbs_conf->exit_cb_user_arg;
new_exit_config->prior = cbs_conf->exit_cb_prior;
while (*current_exit_ptr != NULL && (*current_exit_ptr)->prior <= new_exit_config->prior) {
current_exit_ptr = &((*current_exit_ptr)->next);
}
new_exit_config->next = *current_exit_ptr;
*current_exit_ptr = new_exit_config;
}
portEXIT_CRITICAL(&s_sleep_pm_cb_mutex);
return ESP_OK;
}
esp_err_t esp_pm_light_sleep_unregister_cbs(esp_pm_sleep_cbs_register_config_t *cbs_conf)
{
if (cbs_conf->enter_cb == NULL && cbs_conf->exit_cb == NULL) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&s_sleep_pm_cb_mutex);
if (cbs_conf->enter_cb != NULL) {
esp_pm_sleep_cb_config_t **current_enter_ptr = &(s_light_sleep_enter_cb_config);
while (*current_enter_ptr != NULL) {
if ((*current_enter_ptr)->cb == cbs_conf->enter_cb) {
esp_pm_sleep_cb_config_t *temp = *current_enter_ptr;
*current_enter_ptr = (*current_enter_ptr)->next;
free(temp);
break;
}
current_enter_ptr = &((*current_enter_ptr)->next);
}
}
if (cbs_conf->exit_cb != NULL) {
esp_pm_sleep_cb_config_t **current_exit_ptr = &(s_light_sleep_exit_cb_config);
while (*current_exit_ptr != NULL) {
if ((*current_exit_ptr)->cb == cbs_conf->exit_cb) {
esp_pm_sleep_cb_config_t *temp = *current_exit_ptr;
*current_exit_ptr = (*current_exit_ptr)->next;
free(temp);
break;
}
current_exit_ptr = &((*current_exit_ptr)->next);
}
}
portEXIT_CRITICAL(&s_sleep_pm_cb_mutex);
return ESP_OK;
}
static void IRAM_ATTR esp_pm_execute_enter_sleep_callbacks(int64_t sleep_time_us)
{
esp_pm_sleep_cb_config_t *enter_current = s_light_sleep_enter_cb_config;
while (enter_current != NULL) {
if (enter_current->cb != NULL) {
if (ESP_OK != (*enter_current->cb)(sleep_time_us, enter_current->arg)) {
ESP_EARLY_LOGW(TAG, "esp_pm_execute_enter_sleep_callbacks has an err, enter_current = %p", enter_current);
}
}
enter_current = enter_current->next;
}
}
static void IRAM_ATTR esp_pm_execute_exit_sleep_callbacks(int64_t sleep_time_us)
{
esp_pm_sleep_cb_config_t *exit_current = s_light_sleep_exit_cb_config;
while (exit_current != NULL) {
if (exit_current->cb != NULL) {
if (ESP_OK != (*exit_current->cb)(sleep_time_us, exit_current->arg)) {
ESP_EARLY_LOGW(TAG, "esp_pm_execute_exit_sleep_callbacks has an err, exit_current = %p", exit_current);
}
}
exit_current = exit_current->next;
}
}
#endif
static esp_err_t esp_pm_sleep_configure(const void *vconfig)
{
esp_err_t err = ESP_OK;
const esp_pm_config_t* config = (const esp_pm_config_t*) vconfig;
#if SOC_PM_SUPPORT_CPU_PD
err = sleep_cpu_configure(config->light_sleep_enable);
if (err != ESP_OK) {
return err;
}
#endif
err = sleep_modem_configure(config->max_freq_mhz, config->min_freq_mhz, config->light_sleep_enable);
return err;
}
esp_err_t esp_pm_configure(const void* vconfig)
{
#ifndef CONFIG_PM_ENABLE
return ESP_ERR_NOT_SUPPORTED;
#endif
const esp_pm_config_t* config = (const esp_pm_config_t*) vconfig;
#ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
if (config->light_sleep_enable) {
return ESP_ERR_NOT_SUPPORTED;
}
#endif
int min_freq_mhz = config->min_freq_mhz;
int max_freq_mhz = config->max_freq_mhz;
if (min_freq_mhz > max_freq_mhz) {
return ESP_ERR_INVALID_ARG;
}
rtc_cpu_freq_config_t freq_config;
if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
return ESP_ERR_INVALID_ARG;
}
int xtal_freq_mhz = esp_clk_xtal_freq() / MHZ;
if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
return ESP_ERR_INVALID_ARG;
}
if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
return ESP_ERR_INVALID_ARG;
}
#if CONFIG_IDF_TARGET_ESP32
int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
if (max_freq_mhz == 240) {
/* We can't switch between 240 and 80/160 without disabling PLL,
* so use 240MHz CPU frequency when 80MHz APB frequency is requested.
*/
apb_max_freq = 240;
} else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
/* Otherwise, can use 80MHz
* CPU frequency when 80MHz APB frequency is requested.
*/
apb_max_freq = 80;
}
#else
/* Maximum SOC APB clock frequency is 40 MHz, maximum Modem (WiFi,
* Bluetooth, etc..) APB clock frequency is 80 MHz */
int apb_clk_freq = esp_clk_apb_freq() / MHZ;
#if CONFIG_ESP_WIFI_ENABLED || CONFIG_BT_ENABLED || CONFIG_IEEE802154_ENABLED
apb_clk_freq = MAX(apb_clk_freq, MODEM_REQUIRED_MIN_APB_CLK_FREQ / MHZ);
#endif
int apb_max_freq = MIN(max_freq_mhz, apb_clk_freq); /* CPU frequency in APB_MAX mode */
#endif
apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
ESP_LOGI(TAG, "Frequency switching config: "
"CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
max_freq_mhz,
apb_max_freq,
min_freq_mhz,
config->light_sleep_enable ? "ENABLED" : "DISABLED");
// CPU & Modem power down initialization, which must be initialized before s_light_sleep_en set true,
// to avoid entering idle and sleep in this function.
esp_pm_sleep_configure(config);
portENTER_CRITICAL(&s_switch_lock);
bool res __attribute__((unused));
res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
assert(res);
res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
assert(res);
res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
assert(res);
s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
s_light_sleep_en = config->light_sleep_enable;
s_config_changed = true;
portEXIT_CRITICAL(&s_switch_lock);
return ESP_OK;
}
esp_err_t esp_pm_get_configuration(void* vconfig)
{
if (vconfig == NULL) {
return ESP_ERR_INVALID_ARG;
}
esp_pm_config_t* config = (esp_pm_config_t*) vconfig;
portENTER_CRITICAL(&s_switch_lock);
config->light_sleep_enable = s_light_sleep_en;
config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz;
config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz;
portEXIT_CRITICAL(&s_switch_lock);
return ESP_OK;
}
static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
{
/* TODO: optimize using ffs/clz */
if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
return PM_MODE_CPU_MAX;
} else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
return PM_MODE_APB_MAX;
} else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
return PM_MODE_APB_MIN;
} else {
return PM_MODE_LIGHT_SLEEP;
}
}
void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
pm_mode_switch_t lock_or_unlock, pm_time_t now)
{
bool need_switch = false;
uint32_t mode_mask = BIT(mode);
portENTER_CRITICAL_SAFE(&s_switch_lock);
uint32_t count;
if (lock_or_unlock == MODE_LOCK) {
count = ++s_mode_lock_counts[mode];
} else {
count = s_mode_lock_counts[mode]--;
}
if (count == 1) {
if (lock_or_unlock == MODE_LOCK) {
s_mode_mask |= mode_mask;
} else {
s_mode_mask &= ~mode_mask;
}
need_switch = true;
}
pm_mode_t new_mode = s_mode;
if (need_switch) {
new_mode = get_lowest_allowed_mode();
#ifdef WITH_PROFILING
if (s_last_mode_change_time != 0) {
pm_time_t diff = now - s_last_mode_change_time;
s_time_in_mode[s_mode] += diff;
}
s_last_mode_change_time = now;
#endif // WITH_PROFILING
}
portEXIT_CRITICAL_SAFE(&s_switch_lock);
if (need_switch) {
do_switch(new_mode);
}
}
/**
* @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
* values on both CPUs.
* @param old_ticks_per_us old CPU frequency
* @param ticks_per_us new CPU frequency
*/
static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
{
uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
/* Update APB frequency value used by the timer */
if (old_apb_ticks_per_us != apb_ticks_per_us) {
esp_timer_private_update_apb_freq(apb_ticks_per_us);
}
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
#ifdef XT_RTOS_TIMER_INT
/* Calculate new tick divisor */
_xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
#endif
int core_id = xPortGetCoreID();
if (s_rtos_lock_handle[core_id] != NULL) {
ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
/* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
* to calculate new CCOMPARE value.
*/
s_ccount_div = old_ticks_per_us;
s_ccount_mul = ticks_per_us;
/* Update CCOMPARE value on this CPU */
update_ccompare();
#if portNUM_PROCESSORS == 2
/* Send interrupt to the other CPU to update CCOMPARE value */
int other_core_id = (core_id == 0) ? 1 : 0;
s_need_update_ccompare[other_core_id] = true;
esp_crosscore_int_send_freq_switch(other_core_id);
int timeout = 0;
while (s_need_update_ccompare[other_core_id]) {
if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
assert(false && "failed to update CCOMPARE, possible deadlock");
}
}
#endif // portNUM_PROCESSORS == 2
s_ccount_mul = 0;
s_ccount_div = 0;
ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
}
#endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
}
/**
* Perform the switch to new power mode.
* Currently only changes the CPU frequency and adjusts clock dividers.
* No light sleep yet.
* @param new_mode mode to switch to
*/
static void IRAM_ATTR do_switch(pm_mode_t new_mode)
{
const int core_id = xPortGetCoreID();
do {
portENTER_CRITICAL_ISR(&s_switch_lock);
if (!s_is_switching) {
break;
}
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
if (s_need_update_ccompare[core_id]) {
s_need_update_ccompare[core_id] = false;
}
#endif
portEXIT_CRITICAL_ISR(&s_switch_lock);
} while (true);
if (new_mode == s_mode) {
portEXIT_CRITICAL_ISR(&s_switch_lock);
return;
}
s_is_switching = true;
bool config_changed = s_config_changed;
s_config_changed = false;
portEXIT_CRITICAL_ISR(&s_switch_lock);
rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
rtc_cpu_freq_config_t old_config;
if (!config_changed) {
old_config = s_cpu_freq_by_mode[s_mode];
} else {
rtc_clk_cpu_freq_get_config(&old_config);
}
if (new_config.freq_mhz != old_config.freq_mhz) {
uint32_t old_ticks_per_us = old_config.freq_mhz;
uint32_t new_ticks_per_us = new_config.freq_mhz;
bool switch_down = new_ticks_per_us < old_ticks_per_us;
ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
if (switch_down) {
on_freq_update(old_ticks_per_us, new_ticks_per_us);
}
if (new_config.source == SOC_CPU_CLK_SRC_PLL) {
rtc_clk_cpu_freq_set_config_fast(&new_config);
#if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
mspi_timing_change_speed_mode_cache_safe(false);
#endif
} else {
#if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
mspi_timing_change_speed_mode_cache_safe(true);
#endif
rtc_clk_cpu_freq_set_config_fast(&new_config);
}
if (!switch_down) {
on_freq_update(old_ticks_per_us, new_ticks_per_us);
}
ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
}
portENTER_CRITICAL_ISR(&s_switch_lock);
s_mode = new_mode;
s_is_switching = false;
portEXIT_CRITICAL_ISR(&s_switch_lock);
}
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
/**
* @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
*
* Adjusts CCOMPARE value so that the interrupt happens at the same time as it
* would happen without the frequency change.
* Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
*/
static void IRAM_ATTR update_ccompare(void)
{
#if CONFIG_PM_UPDATE_CCOMPARE_HLI_WORKAROUND
/* disable level 4 and below */
uint32_t irq_status = XTOS_SET_INTLEVEL(XCHAL_DEBUGLEVEL - 2);
#endif
uint32_t ccount = esp_cpu_get_cycle_count();
uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
uint32_t diff = ccompare - ccount;
uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
if (diff_scaled < _xt_tick_divisor) {
uint32_t new_ccompare = ccount + diff_scaled;
XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
}
}
#if CONFIG_PM_UPDATE_CCOMPARE_HLI_WORKAROUND
XTOS_RESTORE_INTLEVEL(irq_status);
#endif
}
#endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
static void IRAM_ATTR leave_idle(void)
{
int core_id = xPortGetCoreID();
if (s_core_idle[core_id]) {
// TODO: possible optimization: raise frequency here first
esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
s_core_idle[core_id] = false;
}
}
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
{
_lock_acquire(&s_skip_light_sleep_lock);
for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
if (s_periph_skip_light_sleep_cb[i] == cb) {
_lock_release(&s_skip_light_sleep_lock);
return ESP_OK;
} else if (s_periph_skip_light_sleep_cb[i] == NULL) {
s_periph_skip_light_sleep_cb[i] = cb;
_lock_release(&s_skip_light_sleep_lock);
return ESP_OK;
}
}
_lock_release(&s_skip_light_sleep_lock);
return ESP_ERR_NO_MEM;
}
esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
{
_lock_acquire(&s_skip_light_sleep_lock);
for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
if (s_periph_skip_light_sleep_cb[i] == cb) {
s_periph_skip_light_sleep_cb[i] = NULL;
_lock_release(&s_skip_light_sleep_lock);
return ESP_OK;
}
}
_lock_release(&s_skip_light_sleep_lock);
return ESP_ERR_INVALID_STATE;
}
static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
{
if (s_light_sleep_en) {
for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
if (s_periph_skip_light_sleep_cb[i]) {
if (s_periph_skip_light_sleep_cb[i]() == true) {
return true;
}
}
}
}
return false;
}
static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
{
#if portNUM_PROCESSORS == 2
if (s_skip_light_sleep[core_id]) {
s_skip_light_sleep[core_id] = false;
s_skipped_light_sleep[core_id] = true;
return true;
}
#endif // portNUM_PROCESSORS == 2
if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
s_skipped_light_sleep[core_id] = true;
} else {
s_skipped_light_sleep[core_id] = false;
}
return s_skipped_light_sleep[core_id];
}
static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
{
#if portNUM_PROCESSORS == 2
s_skip_light_sleep[!core_id] = true;
#endif
}
void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
{
portENTER_CRITICAL(&s_switch_lock);
int core_id = xPortGetCoreID();
if (!should_skip_light_sleep(core_id)) {
/* Calculate how much we can sleep */
int64_t next_esp_timer_alarm = esp_timer_get_next_alarm_for_wake_up();
int64_t now = esp_timer_get_time();
int64_t time_until_next_alarm = next_esp_timer_alarm - now;
int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
int64_t slept_us = 0;
#if CONFIG_PM_LIGHT_SLEEP_CALLBACKS
uint32_t cycle = esp_cpu_get_cycle_count();
esp_pm_execute_enter_sleep_callbacks(sleep_time_us);
sleep_time_us -= (esp_cpu_get_cycle_count() - cycle) / (esp_clk_cpu_freq() / 1000000ULL);
#endif
if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
#if CONFIG_PM_TRACE && SOC_PM_SUPPORT_RTC_PERIPH_PD
/* to force tracing GPIOs to keep state */
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
#endif
/* Enter sleep */
ESP_PM_TRACE_ENTER(SLEEP, core_id);
int64_t sleep_start = esp_timer_get_time();
if (esp_light_sleep_start() != ESP_OK){
#ifdef WITH_PROFILING
s_light_sleep_reject_counts++;
} else {
s_light_sleep_counts++;
#endif
}
slept_us = esp_timer_get_time() - sleep_start;
ESP_PM_TRACE_EXIT(SLEEP, core_id);
uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
if (slept_ticks > 0) {
/* Adjust RTOS tick count based on the amount of time spent in sleep */
vTaskStepTick(slept_ticks);
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
/* Trigger tick interrupt, since sleep time was longer
* than portTICK_PERIOD_MS. Note that setting INTSET does not
* work for timer interrupt, and changing CCOMPARE would clear
* the interrupt flag.
*/
esp_cpu_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
;
}
#else
portYIELD_WITHIN_API();
#endif
}
other_core_should_skip_light_sleep(core_id);
}
#if CONFIG_PM_LIGHT_SLEEP_CALLBACKS
esp_pm_execute_exit_sleep_callbacks(slept_us);
#endif
}
portEXIT_CRITICAL(&s_switch_lock);
}
#endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
#ifdef WITH_PROFILING
void esp_pm_impl_dump_stats(FILE* out)
{
pm_time_t time_in_mode[PM_MODE_COUNT];
portENTER_CRITICAL_ISR(&s_switch_lock);
memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
pm_time_t last_mode_change_time = s_last_mode_change_time;
pm_mode_t cur_mode = s_mode;
pm_time_t now = pm_get_time();
bool light_sleep_en = s_light_sleep_en;
uint32_t light_sleep_counts = s_light_sleep_counts;
uint32_t light_sleep_reject_counts = s_light_sleep_reject_counts;
portEXIT_CRITICAL_ISR(&s_switch_lock);
time_in_mode[cur_mode] += now - last_mode_change_time;
fprintf(out, "\nMode stats:\n");
fprintf(out, "%-8s %-10s %-10s %-10s\n", "Mode", "CPU_freq", "Time(us)", "Time(%)");
for (int i = 0; i < PM_MODE_COUNT; ++i) {
if (i == PM_MODE_LIGHT_SLEEP && !light_sleep_en) {
/* don't display light sleep mode if it's not enabled */
continue;
}
fprintf(out, "%-8s %-3"PRIu32"M%-7s %-10lld %-2d%%\n",
s_mode_names[i],
s_cpu_freq_by_mode[i].freq_mhz,
"", //Empty space to align columns
time_in_mode[i],
(int) (time_in_mode[i] * 100 / now));
}
if (light_sleep_en){
fprintf(out, "\nSleep stats:\n");
fprintf(out, "light_sleep_counts:%ld light_sleep_reject_counts:%ld\n", light_sleep_counts, light_sleep_reject_counts);
}
}
#endif // WITH_PROFILING
int esp_pm_impl_get_cpu_freq(pm_mode_t mode)
{
int freq_mhz;
if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) {
portENTER_CRITICAL(&s_switch_lock);
freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz;
portEXIT_CRITICAL(&s_switch_lock);
} else {
abort();
}
return freq_mhz;
}
void esp_pm_impl_init(void)
{
#if defined(CONFIG_ESP_CONSOLE_UART)
//This clock source should be a source which won't be affected by DFS
uart_sclk_t clk_source = UART_SCLK_DEFAULT;
#if SOC_UART_SUPPORT_REF_TICK
clk_source = UART_SCLK_REF_TICK;
#elif SOC_UART_SUPPORT_XTAL_CLK
clk_source = UART_SCLK_XTAL;
#else
#error "No UART clock source is aware of DFS"
#endif // SOC_UART_SUPPORT_xxx
while (!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM))) {
;
}
/* When DFS is enabled, override system setting and use REFTICK as UART clock source */
HP_UART_SRC_CLK_ATOMIC() {
uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), (soc_module_clk_t)clk_source);
}
uint32_t sclk_freq;
esp_err_t err = uart_get_sclk_freq(clk_source, &sclk_freq);
assert(err == ESP_OK);
HP_UART_SRC_CLK_ATOMIC() {
uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE, sclk_freq);
}
#endif // CONFIG_ESP_CONSOLE_UART
#ifdef CONFIG_PM_TRACE
esp_pm_trace_init();
#endif
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
&s_rtos_lock_handle[0]));
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
#if portNUM_PROCESSORS == 2
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
&s_rtos_lock_handle[1]));
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
#endif // portNUM_PROCESSORS == 2
/* Configure all modes to use the default CPU frequency.
* This will be modified later by a call to esp_pm_configure.
*/
rtc_cpu_freq_config_t default_config;
if (!rtc_clk_cpu_freq_mhz_to_config(CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ, &default_config)) {
assert(false && "unsupported frequency");
}
for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
s_cpu_freq_by_mode[i] = default_config;
}
#ifdef CONFIG_PM_DFS_INIT_AUTO
int xtal_freq_mhz = esp_clk_xtal_freq() / MHZ;
esp_pm_config_t cfg = {
.max_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ,
.min_freq_mhz = xtal_freq_mhz,
};
esp_pm_configure(&cfg);
#endif //CONFIG_PM_DFS_INIT_AUTO
}
void esp_pm_impl_idle_hook(void)
{
int core_id = xPortGetCoreID();
#if CONFIG_FREERTOS_SMP
uint32_t state = portDISABLE_INTERRUPTS();
#else
uint32_t state = portSET_INTERRUPT_MASK_FROM_ISR();
#endif
if (!s_core_idle[core_id]
#ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
&& !periph_should_skip_light_sleep()
#endif
) {
esp_pm_lock_release(s_rtos_lock_handle[core_id]);
s_core_idle[core_id] = true;
}
#if CONFIG_FREERTOS_SMP
portRESTORE_INTERRUPTS(state);
#else
portCLEAR_INTERRUPT_MASK_FROM_ISR(state);
#endif
ESP_PM_TRACE_ENTER(IDLE, core_id);
}
void IRAM_ATTR esp_pm_impl_isr_hook(void)
{
int core_id = xPortGetCoreID();
ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
/* Prevent higher level interrupts (than the one this function was called from)
* from happening in this section, since they will also call into esp_pm_impl_isr_hook.
*/
#if CONFIG_FREERTOS_SMP
uint32_t state = portDISABLE_INTERRUPTS();
#else
uint32_t state = portSET_INTERRUPT_MASK_FROM_ISR();
#endif
#if defined(CONFIG_FREERTOS_SYSTICK_USES_CCOUNT) && (portNUM_PROCESSORS == 2)
if (s_need_update_ccompare[core_id]) {
update_ccompare();
s_need_update_ccompare[core_id] = false;
} else {
leave_idle();
}
#else
leave_idle();
#endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT && portNUM_PROCESSORS == 2
#if CONFIG_FREERTOS_SMP
portRESTORE_INTERRUPTS(state);
#else
portCLEAR_INTERRUPT_MASK_FROM_ISR(state);
#endif
ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
}
void esp_pm_impl_waiti(void)
{
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
int core_id = xPortGetCoreID();
if (s_skipped_light_sleep[core_id]) {
esp_cpu_wait_for_intr();
/* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
* is now taken. However since we are back to idle task, we can release
* the lock so that vApplicationSleep can attempt to enter light sleep.
*/
esp_pm_impl_idle_hook();
}
s_skipped_light_sleep[core_id] = true;
#else
esp_cpu_wait_for_intr();
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
}