235 lines
5.6 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <string.h>
#include "esp_partition.h"
#include "esp_flash.h"
#include "esp_system.h"
#include "esp_private/cache_utils.h"
#include "esp_memory_utils.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "hal/mpu_hal.h"
/* Test utility function */
extern void esp_restart_noos(void) __attribute__ ((noreturn));
void die(const char* msg)
{
printf("Test error: %s\n\n", msg);
fflush(stdout);
fsync(fileno(stdout));
usleep(1000);
/* Don't use abort here as it would enter the panic handler */
esp_restart_noos();
}
/* implementations of the test functions */
void test_abort(void)
{
abort();
}
void IRAM_ATTR test_abort_cache_disabled(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
abort();
}
void test_int_wdt(void)
{
portDISABLE_INTERRUPTS();
while (true) {
;
}
}
void test_task_wdt_cpu0(void)
{
while (true) {
;
}
}
__attribute__((optimize("-O0")))
void test_hw_stack_guard_cpu0(void)
{
uint32_t buf[128];
test_hw_stack_guard_cpu0();
}
#if CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH && CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
static void stack_in_extram(void* arg) {
(void) arg;
/* Abort instead of using a load/store prohibited to prevent a sanitize error */
abort();
}
void test_panic_extram_stack(void) {
/* Start by initializing a Task which has a stack in external RAM */
StaticTask_t handle;
const uint32_t stack_size = 8192;
void* stack = heap_caps_malloc(stack_size, MALLOC_CAP_SPIRAM);
/* Make sure the stack is in external RAM */
if (!esp_ptr_external_ram(stack)) {
die("Allocated stack is not in external RAM!\n");
}
xTaskCreateStatic(stack_in_extram, "Task_stack_extram", stack_size, NULL, 4, (StackType_t*) stack, &handle);
vTaskDelay(1000);
}
#endif // ESP_COREDUMP_ENABLE_TO_FLASH && SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
#if !CONFIG_FREERTOS_UNICORE
static void infinite_loop(void* arg) {
(void) arg;
while(1) {
;
}
}
void test_task_wdt_cpu1(void)
{
xTaskCreatePinnedToCore(infinite_loop, "Infinite loop", 1024, NULL, 1, NULL, 1);
while (true) {
vTaskDelay(1);
}
}
void test_task_wdt_both_cpus(void)
{
xTaskCreatePinnedToCore(infinite_loop, "Infinite loop", 1024, NULL, 4, NULL, 1);
/* Give some time to the task on CPU 1 to be scheduled */
vTaskDelay(1);
xTaskCreatePinnedToCore(infinite_loop, "Infinite loop", 1024, NULL, 4, NULL, 0);
while (true) {
;
}
}
#endif
void __attribute__((no_sanitize_undefined)) test_storeprohibited(void)
{
*(int*) 0x1 = 0;
}
void IRAM_ATTR test_cache_error(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
die("this should not be printed");
}
void IRAM_ATTR test_int_wdt_cache_disabled(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
portDISABLE_INTERRUPTS();
while (true) {
;
}
}
void test_assert(void)
{
assert(0);
}
void IRAM_ATTR test_assert_cache_disabled(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
assert(0);
}
/**
* This function overwrites the stack beginning from the valid area continuously towards and beyond
* the end of the stack (stack base) of the current task.
* This is to test stack protection measures like a watchpoint at the end of the stack.
*
* @note: This test DOES NOT write beyond the stack limit. It only writes up to exactly the limit itself.
* The FreeRTOS stack protection mechanisms all trigger shortly before the end of the stack.
*/
void test_stack_overflow(void)
{
register uint32_t* sp asm("sp");
TaskStatus_t pxTaskStatus;
vTaskGetInfo(NULL, &pxTaskStatus, pdFALSE, pdFALSE);
uint32_t *end = (uint32_t*) pxTaskStatus.pxStackBase;
// offset - 20 bytes from SP in order to not corrupt the current frame.
// Need to write from higher to lower addresses since the stack grows downwards and the watchpoint/canary is near
// the end of the stack (lowest address).
for (uint32_t* ptr = sp - 5; ptr != end; --ptr) {
*ptr = 0;
}
// trigger a context switch to initiate checking the FreeRTOS stack canary
vTaskDelay(pdMS_TO_TICKS(0));
}
void test_illegal_instruction(void)
{
#if __XTENSA__
__asm__ __volatile__("ill");
#elif __riscv
__asm__ __volatile__("unimp");
#endif
}
void test_instr_fetch_prohibited(void)
{
typedef void (*fptr_t)(void);
volatile fptr_t fptr = (fptr_t) 0x4;
fptr();
}
void test_ub(void)
{
uint8_t stuff[1] = {rand()};
printf("%d\n", stuff[rand()]);
}
/* NOTE: The following test verifies the behaviour for the
* Xtensa-specific MPU instructions (Refer WDTLB, DSYNC, WDTIB, ISYNC)
* used for memory protection.
*
* However, this test is not valid for S2 and S3, because they have PMS
* enabled on top of this, giving unpredicatable results.
*/
#if CONFIG_IDF_TARGET_ESP32
void test_illegal_access(void)
{
intptr_t addr = 0x80000000; // MPU region 4
volatile int __attribute__((unused)) val = INT16_MAX;
// Marked as an illegal access region at startup in ESP32, ESP32S2.
// Make accessible temporarily.
mpu_hal_set_region_access(4, MPU_REGION_RW);
val = *((int*) addr);
printf("[1] val: %d at %p\n", val, (void *)addr);
// Make access to region illegal again.
mpu_hal_set_region_access(4, MPU_REGION_ILLEGAL);
val = *((int*) addr);
// Does not reach here as device resets due to illegal access
printf("[2] val: %d at %p\n", val, (void *)addr);
}
#endif