esp-idf/components/hal/esp32s3/include/hal/dac_ll.h
Marius Vikhammer b2f390df01 hal: update link to HAL readme.md
The HAL readme was moved during refactoring, but links were not updated.
2020-09-11 15:48:08 +08:00

207 lines
5.8 KiB
C

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in hal/include/hal/readme.md
******************************************************************************/
#pragma once
#include <stdlib.h>
#include "soc/dac_periph.h"
#include "hal/dac_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Power on dac module and start output voltage.
*
* @note Before powering up, make sure the DAC PAD is set to RTC PAD and floating status.
* @param channel DAC channel num.
*/
static inline void dac_ll_power_on(dac_channel_t channel)
{
RTCIO.pad_dac[channel].dac_xpd_force = 1;
RTCIO.pad_dac[channel].xpd_dac = 1;
}
/**
* Power done dac module and stop output voltage.
*
* @param channel DAC channel num.
*/
static inline void dac_ll_power_down(dac_channel_t channel)
{
RTCIO.pad_dac[channel].dac_xpd_force = 0;
RTCIO.pad_dac[channel].xpd_dac = 0;
}
/**
* Output voltage with value (8 bit).
*
* @param channel DAC channel num.
* @param value Output value. Value range: 0 ~ 255.
* The corresponding range of voltage is 0v ~ VDD3P3_RTC.
*/
static inline void dac_ll_update_output_value(dac_channel_t channel, uint8_t value)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_cw_en1 = 0;
RTCIO.pad_dac[channel].dac = value;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_cw_en2 = 0;
RTCIO.pad_dac[channel].dac = value;
}
}
/**
* Enable/disable the synchronization operation function of ADC1 and DAC.
*
* @note If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage.
*
* @param enable Enable or disable adc and dac synchronization function.
*/
static inline void dac_ll_rtc_sync_by_adc(bool enable)
{
// SENS.sar_meas_ctrl2.sar1_dac_xpd_fsm = enable;
}
/************************************/
/* DAC cosine wave generator API's */
/************************************/
/**
* Enable cosine wave generator output.
*/
static inline void dac_ll_cw_generator_enable(void)
{
SENS.sar_dac_ctrl1.sw_tone_en = 1;
}
/**
* Disable cosine wave generator output.
*/
static inline void dac_ll_cw_generator_disable(void)
{
SENS.sar_dac_ctrl1.sw_tone_en = 0;
}
/**
* Enable the cosine wave generator of DAC channel.
*
* @param channel DAC channel num.
* @param enable
*/
static inline void dac_ll_cw_set_channel(dac_channel_t channel, bool enable)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_cw_en1 = enable;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_cw_en2 = enable;
}
}
/**
* Set frequency of cosine wave generator output.
*
* @note We know that CLK8M is about 8M, but don't know the actual value. so this freq have limited error.
* @param freq_hz CW generator frequency. Range: 130(130Hz) ~ 55000(100KHz).
*/
static inline void dac_ll_cw_set_freq(uint32_t freq)
{
uint32_t sw_freq = freq * 0xFFFF / RTC_FAST_CLK_FREQ_APPROX;
SENS.sar_dac_ctrl1.sw_fstep = (sw_freq > 0xFFFF) ? 0xFFFF : sw_freq;
}
/**
* Set the amplitude of the cosine wave generator output.
*
* @param channel DAC channel num.
* @param scale The multiple of the amplitude. The max amplitude is VDD3P3_RTC.
*/
static inline void dac_ll_cw_set_scale(dac_channel_t channel, dac_cw_scale_t scale)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_scale1 = scale;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_scale2 = scale;
}
}
/**
* Set the phase of the cosine wave generator output.
*
* @param channel DAC channel num.
* @param scale Phase value.
*/
static inline void dac_ll_cw_set_phase(dac_channel_t channel, dac_cw_phase_t phase)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_inv1 = phase;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_inv2 = phase;
}
}
/**
* Set the voltage value of the DC component of the cosine wave generator output.
*
* @note The DC offset setting should be after phase setting.
* @note Unreasonable settings can cause the signal to be oversaturated.
* @param channel DAC channel num.
* @param offset DC value. Range: -128 ~ 127.
*/
static inline void dac_ll_cw_set_dc_offset(dac_channel_t channel, int8_t offset)
{
if (channel == DAC_CHANNEL_1) {
if (SENS.sar_dac_ctrl2.dac_inv1 == DAC_CW_PHASE_180) {
offset = 0 - offset;
}
SENS.sar_dac_ctrl2.dac_dc1 = offset ? offset : (-128 - offset);
} else if (channel == DAC_CHANNEL_2) {
if (SENS.sar_dac_ctrl2.dac_inv2 == DAC_CW_PHASE_180) {
offset = 0 - offset;
}
SENS.sar_dac_ctrl2.dac_dc2 = offset ? offset : (-128 - offset);
}
}
/************************************/
/* DAC DMA API's */
/************************************/
/**
* Enable DAC output data from I2S DMA.
* I2S_CLK connect to DAC_CLK, I2S_DATA_OUT connect to DAC_DATA.
*/
static inline void dac_ll_dma_enable(void)
{
SENS.sar_dac_ctrl1.dac_dig_force = 1;
}
/**
* Disable DAC output data from I2S DMA.
*/
static inline void dac_ll_dma_disable(void)
{
SENS.sar_dac_ctrl1.dac_dig_force = 0;
}
#ifdef __cplusplus
}
#endif