esp-idf/components/esp_hw_support/sleep_cpu.c

794 lines
31 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <string.h>
#include <inttypes.h>
#include <sys/lock.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_check.h"
#include "esp_sleep.h"
#include "esp_log.h"
#include "esp_rom_crc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_heap_caps.h"
#include "soc/soc_caps.h"
#include "esp_private/sleep_cpu.h"
#include "esp_private/sleep_event.h"
#include "sdkconfig.h"
#if SOC_PMU_SUPPORTED
#include "esp_private/esp_pmu.h"
#else
#include "hal/rtc_hal.h"
#endif
#if CONFIG_PM_CHECK_SLEEP_RETENTION_FRAME
#include "esp_private/system_internal.h"
#include "hal/clk_gate_ll.h"
#include "hal/uart_hal.h"
#endif
#include "soc/rtc_periph.h"
#ifdef CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/cache.h"
#elif CONFIG_IDF_TARGET_ESP32C6
#include "esp32c6/rom/rtc.h"
#include "riscv/rvsleep-frames.h"
#include "soc/intpri_reg.h"
#include "soc/extmem_reg.h"
#include "soc/plic_reg.h"
#include "soc/clint_reg.h"
#include "esp32c6/rom/cache.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/rtc.h"
#include "riscv/rvsleep-frames.h"
#include "soc/intpri_reg.h"
#include "soc/extmem_reg.h"
#include "soc/plic_reg.h"
#include "soc/clint_reg.h"
#include "esp32h2/rom/cache.h"
#endif
static __attribute__((unused)) const char *TAG = "sleep";
typedef struct {
uint32_t start;
uint32_t end;
} cpu_domain_dev_regs_region_t;
typedef struct {
cpu_domain_dev_regs_region_t *region;
int region_num;
uint32_t *regs_frame;
} cpu_domain_dev_sleep_frame_t;
/**
* Internal structure which holds all requested light sleep cpu retention parameters
*/
typedef struct {
#if SOC_PM_SUPPORT_CPU_PD && SOC_PM_CPU_RETENTION_BY_RTCCNTL
rtc_cntl_sleep_retent_t retent;
#elif SOC_PM_SUPPORT_CPU_PD && SOC_PM_CPU_RETENTION_BY_SW
struct {
RvCoreCriticalSleepFrame *critical_frame;
RvCoreNonCriticalSleepFrame *non_critical_frame;
cpu_domain_dev_sleep_frame_t *intpri_frame;
cpu_domain_dev_sleep_frame_t *cache_config_frame;
cpu_domain_dev_sleep_frame_t *plic_frame;
cpu_domain_dev_sleep_frame_t *clint_frame;
} retent;
#endif
} sleep_cpu_retention_t;
static DRAM_ATTR __attribute__((unused)) sleep_cpu_retention_t s_cpu_retention;
#if SOC_PM_SUPPORT_TAGMEM_PD && SOC_PM_CPU_RETENTION_BY_RTCCNTL
#if CONFIG_PM_POWER_DOWN_TAGMEM_IN_LIGHT_SLEEP
static uint32_t cache_tagmem_retention_setup(uint32_t code_seg_vaddr, uint32_t code_seg_size, uint32_t data_seg_vaddr, uint32_t data_seg_size)
{
uint32_t sets; /* i/d-cache total set counts */
uint32_t index; /* virtual address mapping i/d-cache row offset */
uint32_t waysgrp;
uint32_t icache_tagmem_blk_gs, dcache_tagmem_blk_gs;
struct cache_mode imode = { .icache = 1 };
struct cache_mode dmode = { .icache = 0 };
/* calculate/prepare i-cache tag memory retention parameters */
Cache_Get_Mode(&imode);
sets = imode.cache_size / imode.cache_ways / imode.cache_line_size;
index = (code_seg_vaddr / imode.cache_line_size) % sets;
waysgrp = imode.cache_ways >> 2;
code_seg_size = ALIGNUP(imode.cache_line_size, code_seg_size);
s_cpu_retention.retent.tagmem.icache.start_point = index;
s_cpu_retention.retent.tagmem.icache.size = (sets * waysgrp) & 0xff;
s_cpu_retention.retent.tagmem.icache.vld_size = s_cpu_retention.retent.tagmem.icache.size;
if (code_seg_size < imode.cache_size / imode.cache_ways) {
s_cpu_retention.retent.tagmem.icache.vld_size = (code_seg_size / imode.cache_line_size) * waysgrp;
}
s_cpu_retention.retent.tagmem.icache.enable = (code_seg_size != 0) ? 1 : 0;
icache_tagmem_blk_gs = s_cpu_retention.retent.tagmem.icache.vld_size ? s_cpu_retention.retent.tagmem.icache.vld_size : sets * waysgrp;
icache_tagmem_blk_gs = ALIGNUP(4, icache_tagmem_blk_gs);
ESP_LOGD(TAG, "I-cache size:%d KiB, line size:%d B, ways:%d, sets:%d, index:%d, tag block groups:%d", (imode.cache_size>>10),
imode.cache_line_size, imode.cache_ways, sets, index, icache_tagmem_blk_gs);
/* calculate/prepare d-cache tag memory retention parameters */
Cache_Get_Mode(&dmode);
sets = dmode.cache_size / dmode.cache_ways / dmode.cache_line_size;
index = (data_seg_vaddr / dmode.cache_line_size) % sets;
waysgrp = dmode.cache_ways >> 2;
data_seg_size = ALIGNUP(dmode.cache_line_size, data_seg_size);
s_cpu_retention.retent.tagmem.dcache.start_point = index;
s_cpu_retention.retent.tagmem.dcache.size = (sets * waysgrp) & 0x1ff;
s_cpu_retention.retent.tagmem.dcache.vld_size = s_cpu_retention.retent.tagmem.dcache.size;
#ifndef CONFIG_ESP32S3_DATA_CACHE_16KB
if (data_seg_size < dmode.cache_size / dmode.cache_ways) {
s_cpu_retention.retent.tagmem.dcache.vld_size = (data_seg_size / dmode.cache_line_size) * waysgrp;
}
s_cpu_retention.retent.tagmem.dcache.enable = (data_seg_size != 0) ? 1 : 0;
#else
s_cpu_retention.retent.tagmem.dcache.enable = 1;
#endif
dcache_tagmem_blk_gs = s_cpu_retention.retent.tagmem.dcache.vld_size ? s_cpu_retention.retent.tagmem.dcache.vld_size : sets * waysgrp;
dcache_tagmem_blk_gs = ALIGNUP(4, dcache_tagmem_blk_gs);
ESP_LOGD(TAG, "D-cache size:%d KiB, line size:%d B, ways:%d, sets:%d, index:%d, tag block groups:%d", (dmode.cache_size>>10),
dmode.cache_line_size, dmode.cache_ways, sets, index, dcache_tagmem_blk_gs);
/* For I or D cache tagmem retention, backup and restore are performed through
* RTC DMA (its bus width is 128 bits), For I/D Cache tagmem blocks (i-cache
* tagmem blocks = 92 bits, d-cache tagmem blocks = 88 bits), RTC DMA automatically
* aligns its bit width to 96 bits, therefore, 3 times RTC DMA can transfer 4
* i/d-cache tagmem blocks (128 bits * 3 = 96 bits * 4) */
return (((icache_tagmem_blk_gs + dcache_tagmem_blk_gs) << 2) * 3);
}
#endif // CONFIG_PM_POWER_DOWN_TAGMEM_IN_LIGHT_SLEEP
static esp_err_t esp_sleep_tagmem_pd_low_init(void)
{
#if CONFIG_PM_POWER_DOWN_TAGMEM_IN_LIGHT_SLEEP
if (s_cpu_retention.retent.tagmem.link_addr == NULL) {
extern char _stext[], _etext[];
uint32_t code_start = (uint32_t)_stext;
uint32_t code_size = (uint32_t)(_etext - _stext);
#if !(CONFIG_SPIRAM && CONFIG_SOC_PM_SUPPORT_TAGMEM_PD)
extern char _rodata_start[], _rodata_reserved_end[];
uint32_t data_start = (uint32_t)_rodata_start;
uint32_t data_size = (uint32_t)(_rodata_reserved_end - _rodata_start);
#else
uint32_t data_start = SOC_DROM_LOW;
uint32_t data_size = SOC_EXTRAM_DATA_SIZE;
#endif
ESP_LOGI(TAG, "Code start at 0x%08"PRIx32", total %"PRIu32", data start at 0x%08"PRIx32", total %"PRIu32" Bytes",
code_start, code_size, data_start, data_size);
uint32_t tagmem_sz = cache_tagmem_retention_setup(code_start, code_size, data_start, data_size);
void *buf = heap_caps_aligned_calloc(SOC_RTC_CNTL_TAGMEM_PD_DMA_ADDR_ALIGN, 1,
tagmem_sz + RTC_HAL_DMA_LINK_NODE_SIZE,
MALLOC_CAP_RETENTION);
if (buf) {
s_cpu_retention.retent.tagmem.link_addr = rtc_cntl_hal_dma_link_init(buf,
buf + RTC_HAL_DMA_LINK_NODE_SIZE, tagmem_sz, NULL);
} else {
s_cpu_retention.retent.tagmem.icache.enable = 0;
s_cpu_retention.retent.tagmem.dcache.enable = 0;
s_cpu_retention.retent.tagmem.link_addr = NULL;
return ESP_ERR_NO_MEM;
}
}
#else // CONFIG_PM_POWER_DOWN_TAGMEM_IN_LIGHT_SLEEP
s_cpu_retention.retent.tagmem.icache.enable = 0;
s_cpu_retention.retent.tagmem.dcache.enable = 0;
s_cpu_retention.retent.tagmem.link_addr = NULL;
#endif // CONFIG_PM_POWER_DOWN_TAGMEM_IN_LIGHT_SLEEP
return ESP_OK;
}
static esp_err_t esp_sleep_tagmem_pd_low_deinit(void)
{
#if SOC_PM_SUPPORT_TAGMEM_PD
if (s_cpu_retention.retent.tagmem.link_addr) {
heap_caps_free(s_cpu_retention.retent.tagmem.link_addr);
s_cpu_retention.retent.tagmem.icache.enable = 0;
s_cpu_retention.retent.tagmem.dcache.enable = 0;
s_cpu_retention.retent.tagmem.link_addr = NULL;
}
#endif
return ESP_OK;
}
#endif // SOC_PM_SUPPORT_TAGMEM_PD && SOC_PM_CPU_RETENTION_BY_RTCCNTL
#if SOC_PM_SUPPORT_CPU_PD && SOC_PM_CPU_RETENTION_BY_RTCCNTL
esp_err_t esp_sleep_cpu_pd_low_init(void)
{
if (s_cpu_retention.retent.cpu_pd_mem == NULL) {
void *buf = heap_caps_aligned_calloc(SOC_RTC_CNTL_CPU_PD_DMA_ADDR_ALIGN, 1,
SOC_RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE,
MALLOC_CAP_RETENTION);
if (buf) {
s_cpu_retention.retent.cpu_pd_mem = rtc_cntl_hal_dma_link_init(buf,
buf + RTC_HAL_DMA_LINK_NODE_SIZE, SOC_RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE, NULL);
} else {
return ESP_ERR_NO_MEM;
}
}
#if SOC_PM_SUPPORT_TAGMEM_PD && SOC_PM_CPU_RETENTION_BY_RTCCNTL
if (esp_sleep_tagmem_pd_low_init() != ESP_OK) {
#ifdef CONFIG_ESP32S3_DATA_CACHE_16KB
esp_sleep_cpu_pd_low_deinit();
return ESP_ERR_NO_MEM;
#endif
}
#endif
return ESP_OK;
}
esp_err_t esp_sleep_cpu_pd_low_deinit(void)
{
if (s_cpu_retention.retent.cpu_pd_mem) {
heap_caps_free(s_cpu_retention.retent.cpu_pd_mem);
s_cpu_retention.retent.cpu_pd_mem = NULL;
}
#if SOC_PM_SUPPORT_TAGMEM_PD && SOC_PM_CPU_RETENTION_BY_RTCCNTL
if (esp_sleep_tagmem_pd_low_deinit() != ESP_OK) {
#ifdef CONFIG_ESP32S3_DATA_CACHE_16KB
esp_sleep_cpu_pd_low_deinit();
return ESP_ERR_NO_MEM;
#endif
}
#endif
return ESP_OK;
}
void sleep_enable_cpu_retention(void)
{
rtc_cntl_hal_enable_cpu_retention(&s_cpu_retention.retent);
#if SOC_PM_SUPPORT_TAGMEM_PD
rtc_cntl_hal_enable_tagmem_retention(&s_cpu_retention.retent);
#endif
}
void IRAM_ATTR sleep_disable_cpu_retention(void)
{
rtc_cntl_hal_disable_cpu_retention(&s_cpu_retention.retent);
#if SOC_PM_SUPPORT_TAGMEM_PD
rtc_cntl_hal_disable_tagmem_retention(&s_cpu_retention.retent);
#endif
}
#endif
#if SOC_PM_SUPPORT_CPU_PD && SOC_PM_CPU_RETENTION_BY_SW
#define CUSTOM_CSR_PCER_MACHINE 0x7e0
#define CUSTOM_CSR_PCMR_MACHINE 0x7e1
#define CUSTOM_CSR_PCCR_MACHINE 0x7e2
#define CUSTOM_CSR_CPU_TESTBUS_CTRL 0x7e3
#define CUSTOM_CSR_PCER_USER 0x800
#define CUSTOM_CSR_PCMR_USER 0x801
#define CUSTOM_CSR_PCCR_USER 0x802
#define CUSTOM_CSR_GPIO_OEN_USER 0x803
#define CUSTOM_CSR_GPIO_IN_USER 0x804
#define CUSTOM_CSR_GPIO_OUT_USER 0x805
#define CUSTOM_CSR_CO_EXCEPTION_CAUSE 0x7f0
#define CUSTOM_CSR_CO_HWLP 0x7f1
#define CUSTOM_CSR_CO_AIA 0x7f2
extern RvCoreCriticalSleepFrame *rv_core_critical_regs_frame;
static void * cpu_domain_dev_sleep_frame_alloc_and_init(const cpu_domain_dev_regs_region_t *regions, const int region_num)
{
const int region_sz = sizeof(cpu_domain_dev_regs_region_t) * region_num;
int regs_frame_sz = 0;
for (int num = 0; num < region_num; num++) {
regs_frame_sz += regions[num].end - regions[num].start;
}
void *frame = heap_caps_malloc(sizeof(cpu_domain_dev_sleep_frame_t) + region_sz + regs_frame_sz, MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL);
if (frame) {
cpu_domain_dev_regs_region_t *region = (cpu_domain_dev_regs_region_t *)(frame + sizeof(cpu_domain_dev_sleep_frame_t));
memcpy(region, regions, region_num * sizeof(cpu_domain_dev_regs_region_t));
void *regs_frame = frame + sizeof(cpu_domain_dev_sleep_frame_t) + region_sz;
memset(regs_frame, 0, regs_frame_sz);
*(cpu_domain_dev_sleep_frame_t *)frame = (cpu_domain_dev_sleep_frame_t) {
.region = region,
.region_num = region_num,
.regs_frame = (uint32_t *)regs_frame
};
}
return frame;
}
static inline void * cpu_domain_intpri_sleep_frame_alloc_and_init(void)
{
const static cpu_domain_dev_regs_region_t regions[] = {
{ .start = INTPRI_CORE0_CPU_INT_ENABLE_REG, .end = INTPRI_RND_ECO_LOW_REG + 4 },
{ .start = INTPRI_RND_ECO_HIGH_REG, .end = INTPRI_RND_ECO_HIGH_REG + 4 }
};
return cpu_domain_dev_sleep_frame_alloc_and_init(regions, sizeof(regions) / sizeof(regions[0]));
}
static inline void * cpu_domain_cache_config_sleep_frame_alloc_and_init(void)
{
const static cpu_domain_dev_regs_region_t regions[] = {
#if CONFIG_IDF_TARGET_ESP32C6
{ .start = EXTMEM_L1_CACHE_CTRL_REG, .end = EXTMEM_L1_CACHE_CTRL_REG + 4 },
{ .start = EXTMEM_L1_CACHE_WRAP_AROUND_CTRL_REG, .end = EXTMEM_L1_CACHE_WRAP_AROUND_CTRL_REG + 4 }
#elif CONFIG_IDF_TARGET_ESP32H2
{ .start = CACHE_L1_CACHE_CTRL_REG, .end = CACHE_L1_CACHE_CTRL_REG + 4 },
{ .start = CACHE_L1_CACHE_WRAP_AROUND_CTRL_REG, .end = CACHE_L1_CACHE_WRAP_AROUND_CTRL_REG + 4 }
#endif
};
return cpu_domain_dev_sleep_frame_alloc_and_init(regions, sizeof(regions) / sizeof(regions[0]));
}
static inline void * cpu_domain_plic_sleep_frame_alloc_and_init(void)
{
const static cpu_domain_dev_regs_region_t regions[] = {
{ .start = PLIC_MXINT_ENABLE_REG, .end = PLIC_MXINT_CLAIM_REG + 4 },
{ .start = PLIC_MXINT_CONF_REG, .end = PLIC_MXINT_CONF_REG + 4 },
{ .start = PLIC_UXINT_ENABLE_REG, .end = PLIC_UXINT_CLAIM_REG + 4 },
{ .start = PLIC_UXINT_CONF_REG, .end = PLIC_UXINT_CONF_REG + 4 }
};
return cpu_domain_dev_sleep_frame_alloc_and_init(regions, sizeof(regions) / sizeof(regions[0]));
}
static inline void * cpu_domain_clint_sleep_frame_alloc_and_init(void)
{
const static cpu_domain_dev_regs_region_t regions[] = {
{ .start = CLINT_MINT_SIP_REG, .end = CLINT_MINT_MTIMECMP_H_REG + 4 },
{ .start = CLINT_UINT_SIP_REG, .end = CLINT_UINT_UTIMECMP_H_REG + 4 }
};
return cpu_domain_dev_sleep_frame_alloc_and_init(regions, sizeof(regions) / sizeof(regions[0]));
}
static esp_err_t esp_sleep_cpu_retention_init_impl(void)
{
if (s_cpu_retention.retent.critical_frame == NULL) {
void *frame = heap_caps_calloc(1, RV_SLEEP_CTX_FRMSZ, MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL);
if (frame == NULL) {
goto err;
}
s_cpu_retention.retent.critical_frame = (RvCoreCriticalSleepFrame *)frame;
rv_core_critical_regs_frame = (RvCoreCriticalSleepFrame *)frame;
}
if (s_cpu_retention.retent.non_critical_frame == NULL) {
void *frame = heap_caps_calloc(1, sizeof(RvCoreNonCriticalSleepFrame), MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL);
if (frame == NULL) {
goto err;
}
s_cpu_retention.retent.non_critical_frame = (RvCoreNonCriticalSleepFrame *)frame;
}
if (s_cpu_retention.retent.intpri_frame == NULL) {
void *frame = cpu_domain_intpri_sleep_frame_alloc_and_init();
if (frame == NULL) {
goto err;
}
s_cpu_retention.retent.intpri_frame = (cpu_domain_dev_sleep_frame_t *)frame;
}
if (s_cpu_retention.retent.cache_config_frame == NULL) {
void *frame = cpu_domain_cache_config_sleep_frame_alloc_and_init();
if (frame == NULL) {
goto err;
}
s_cpu_retention.retent.cache_config_frame = (cpu_domain_dev_sleep_frame_t *)frame;
}
if (s_cpu_retention.retent.plic_frame == NULL) {
void *frame = cpu_domain_plic_sleep_frame_alloc_and_init();
if (frame == NULL) {
goto err;
}
s_cpu_retention.retent.plic_frame = (cpu_domain_dev_sleep_frame_t *)frame;
}
if (s_cpu_retention.retent.clint_frame == NULL) {
void *frame = cpu_domain_clint_sleep_frame_alloc_and_init();
if (frame == NULL) {
goto err;
}
s_cpu_retention.retent.clint_frame = (cpu_domain_dev_sleep_frame_t *)frame;
}
return ESP_OK;
err:
esp_sleep_cpu_retention_deinit();
return ESP_ERR_NO_MEM;
}
static esp_err_t esp_sleep_cpu_retention_deinit_impl(void)
{
if (s_cpu_retention.retent.critical_frame) {
heap_caps_free((void *)s_cpu_retention.retent.critical_frame);
s_cpu_retention.retent.critical_frame = NULL;
rv_core_critical_regs_frame = NULL;
}
if (s_cpu_retention.retent.non_critical_frame) {
heap_caps_free((void *)s_cpu_retention.retent.non_critical_frame);
s_cpu_retention.retent.non_critical_frame = NULL;
}
if (s_cpu_retention.retent.intpri_frame) {
heap_caps_free((void *)s_cpu_retention.retent.intpri_frame);
s_cpu_retention.retent.intpri_frame = NULL;
}
if (s_cpu_retention.retent.cache_config_frame) {
heap_caps_free((void *)s_cpu_retention.retent.cache_config_frame);
s_cpu_retention.retent.cache_config_frame = NULL;
}
if (s_cpu_retention.retent.plic_frame) {
heap_caps_free((void *)s_cpu_retention.retent.plic_frame);
s_cpu_retention.retent.plic_frame = NULL;
}
if (s_cpu_retention.retent.clint_frame) {
heap_caps_free((void *)s_cpu_retention.retent.clint_frame);
s_cpu_retention.retent.clint_frame = NULL;
}
return ESP_OK;
}
static inline IRAM_ATTR uint32_t save_mstatus_and_disable_global_int(void)
{
uint32_t mstatus;
__asm__ __volatile__ (
"csrr %0, mstatus\n"
"csrci mstatus, 0x8\n"
: "=r"(mstatus)
);
return mstatus;
}
static inline IRAM_ATTR void restore_mstatus(uint32_t mstatus)
{
__asm__ __volatile__ ("csrw mstatus, %0\n" :: "r"(mstatus));
}
static IRAM_ATTR RvCoreNonCriticalSleepFrame * rv_core_noncritical_regs_save(void)
{
assert(s_cpu_retention.retent.non_critical_frame);
RvCoreNonCriticalSleepFrame *frame = s_cpu_retention.retent.non_critical_frame;
frame->mscratch = RV_READ_CSR(mscratch);
frame->mideleg = RV_READ_CSR(mideleg);
frame->misa = RV_READ_CSR(misa);
frame->tselect = RV_READ_CSR(tselect);
frame->tdata1 = RV_READ_CSR(tdata1);
frame->tdata2 = RV_READ_CSR(tdata2);
frame->tcontrol = RV_READ_CSR(tcontrol);
frame->pmpaddr0 = RV_READ_CSR(pmpaddr0);
frame->pmpaddr1 = RV_READ_CSR(pmpaddr1);
frame->pmpaddr2 = RV_READ_CSR(pmpaddr2);
frame->pmpaddr3 = RV_READ_CSR(pmpaddr3);
frame->pmpaddr4 = RV_READ_CSR(pmpaddr4);
frame->pmpaddr5 = RV_READ_CSR(pmpaddr5);
frame->pmpaddr6 = RV_READ_CSR(pmpaddr6);
frame->pmpaddr7 = RV_READ_CSR(pmpaddr7);
frame->pmpaddr8 = RV_READ_CSR(pmpaddr8);
frame->pmpaddr9 = RV_READ_CSR(pmpaddr9);
frame->pmpaddr10 = RV_READ_CSR(pmpaddr10);
frame->pmpaddr11 = RV_READ_CSR(pmpaddr11);
frame->pmpaddr12 = RV_READ_CSR(pmpaddr12);
frame->pmpaddr13 = RV_READ_CSR(pmpaddr13);
frame->pmpaddr14 = RV_READ_CSR(pmpaddr14);
frame->pmpaddr15 = RV_READ_CSR(pmpaddr15);
frame->pmpcfg0 = RV_READ_CSR(pmpcfg0);
frame->pmpcfg1 = RV_READ_CSR(pmpcfg1);
frame->pmpcfg2 = RV_READ_CSR(pmpcfg2);
frame->pmpcfg3 = RV_READ_CSR(pmpcfg3);
#if SOC_CPU_HAS_PMA
frame->pmaaddr0 = RV_READ_CSR(CSR_PMAADDR(0));
frame->pmaaddr1 = RV_READ_CSR(CSR_PMAADDR(1));
frame->pmaaddr2 = RV_READ_CSR(CSR_PMAADDR(2));
frame->pmaaddr3 = RV_READ_CSR(CSR_PMAADDR(3));
frame->pmaaddr4 = RV_READ_CSR(CSR_PMAADDR(4));
frame->pmaaddr5 = RV_READ_CSR(CSR_PMAADDR(5));
frame->pmaaddr6 = RV_READ_CSR(CSR_PMAADDR(6));
frame->pmaaddr7 = RV_READ_CSR(CSR_PMAADDR(7));
frame->pmaaddr8 = RV_READ_CSR(CSR_PMAADDR(8));
frame->pmaaddr9 = RV_READ_CSR(CSR_PMAADDR(9));
frame->pmaaddr10 = RV_READ_CSR(CSR_PMAADDR(10));
frame->pmaaddr11 = RV_READ_CSR(CSR_PMAADDR(11));
frame->pmaaddr12 = RV_READ_CSR(CSR_PMAADDR(12));
frame->pmaaddr13 = RV_READ_CSR(CSR_PMAADDR(13));
frame->pmaaddr14 = RV_READ_CSR(CSR_PMAADDR(14));
frame->pmaaddr15 = RV_READ_CSR(CSR_PMAADDR(15));
frame->pmacfg0 = RV_READ_CSR(CSR_PMACFG(0));
frame->pmacfg1 = RV_READ_CSR(CSR_PMACFG(1));
frame->pmacfg2 = RV_READ_CSR(CSR_PMACFG(2));
frame->pmacfg3 = RV_READ_CSR(CSR_PMACFG(3));
frame->pmacfg4 = RV_READ_CSR(CSR_PMACFG(4));
frame->pmacfg5 = RV_READ_CSR(CSR_PMACFG(5));
frame->pmacfg6 = RV_READ_CSR(CSR_PMACFG(6));
frame->pmacfg7 = RV_READ_CSR(CSR_PMACFG(7));
frame->pmacfg8 = RV_READ_CSR(CSR_PMACFG(8));
frame->pmacfg9 = RV_READ_CSR(CSR_PMACFG(9));
frame->pmacfg10 = RV_READ_CSR(CSR_PMACFG(10));
frame->pmacfg11 = RV_READ_CSR(CSR_PMACFG(11));
frame->pmacfg12 = RV_READ_CSR(CSR_PMACFG(12));
frame->pmacfg13 = RV_READ_CSR(CSR_PMACFG(13));
frame->pmacfg14 = RV_READ_CSR(CSR_PMACFG(14));
frame->pmacfg15 = RV_READ_CSR(CSR_PMACFG(15));
#endif // SOC_CPU_HAS_PMA
frame->utvec = RV_READ_CSR(utvec);
frame->ustatus = RV_READ_CSR(ustatus);
frame->uepc = RV_READ_CSR(uepc);
frame->ucause = RV_READ_CSR(ucause);
frame->mpcer = RV_READ_CSR(CUSTOM_CSR_PCER_MACHINE);
frame->mpcmr = RV_READ_CSR(CUSTOM_CSR_PCMR_MACHINE);
frame->mpccr = RV_READ_CSR(CUSTOM_CSR_PCCR_MACHINE);
frame->cpu_testbus_ctrl = RV_READ_CSR(CUSTOM_CSR_CPU_TESTBUS_CTRL);
frame->upcer = RV_READ_CSR(CUSTOM_CSR_PCER_USER);
frame->upcmr = RV_READ_CSR(CUSTOM_CSR_PCMR_USER);
frame->upccr = RV_READ_CSR(CUSTOM_CSR_PCCR_USER);
frame->ugpio_oen = RV_READ_CSR(CUSTOM_CSR_GPIO_OEN_USER);
frame->ugpio_in = RV_READ_CSR(CUSTOM_CSR_GPIO_IN_USER);
frame->ugpio_out = RV_READ_CSR(CUSTOM_CSR_GPIO_OUT_USER);
return frame;
}
static IRAM_ATTR void rv_core_noncritical_regs_restore(RvCoreNonCriticalSleepFrame *frame)
{
assert(frame);
RV_WRITE_CSR(mscratch, frame->mscratch);
RV_WRITE_CSR(mideleg, frame->mideleg);
RV_WRITE_CSR(misa, frame->misa);
RV_WRITE_CSR(tselect, frame->tselect);
RV_WRITE_CSR(tdata1, frame->tdata1);
RV_WRITE_CSR(tdata2, frame->tdata2);
RV_WRITE_CSR(tcontrol, frame->tcontrol);
RV_WRITE_CSR(pmpaddr0, frame->pmpaddr0);
RV_WRITE_CSR(pmpaddr1, frame->pmpaddr1);
RV_WRITE_CSR(pmpaddr2, frame->pmpaddr2);
RV_WRITE_CSR(pmpaddr3, frame->pmpaddr3);
RV_WRITE_CSR(pmpaddr4, frame->pmpaddr4);
RV_WRITE_CSR(pmpaddr5, frame->pmpaddr5);
RV_WRITE_CSR(pmpaddr6, frame->pmpaddr6);
RV_WRITE_CSR(pmpaddr7, frame->pmpaddr7);
RV_WRITE_CSR(pmpaddr8, frame->pmpaddr8);
RV_WRITE_CSR(pmpaddr9, frame->pmpaddr9);
RV_WRITE_CSR(pmpaddr10,frame->pmpaddr10);
RV_WRITE_CSR(pmpaddr11,frame->pmpaddr11);
RV_WRITE_CSR(pmpaddr12,frame->pmpaddr12);
RV_WRITE_CSR(pmpaddr13,frame->pmpaddr13);
RV_WRITE_CSR(pmpaddr14,frame->pmpaddr14);
RV_WRITE_CSR(pmpaddr15,frame->pmpaddr15);
RV_WRITE_CSR(pmpcfg0, frame->pmpcfg0);
RV_WRITE_CSR(pmpcfg1, frame->pmpcfg1);
RV_WRITE_CSR(pmpcfg2, frame->pmpcfg2);
RV_WRITE_CSR(pmpcfg3, frame->pmpcfg3);
#if SOC_CPU_HAS_PMA
RV_WRITE_CSR(CSR_PMAADDR(0), frame->pmaaddr0);
RV_WRITE_CSR(CSR_PMAADDR(1), frame->pmaaddr1);
RV_WRITE_CSR(CSR_PMAADDR(2), frame->pmaaddr2);
RV_WRITE_CSR(CSR_PMAADDR(3), frame->pmaaddr3);
RV_WRITE_CSR(CSR_PMAADDR(4), frame->pmaaddr4);
RV_WRITE_CSR(CSR_PMAADDR(5), frame->pmaaddr5);
RV_WRITE_CSR(CSR_PMAADDR(6), frame->pmaaddr6);
RV_WRITE_CSR(CSR_PMAADDR(7), frame->pmaaddr7);
RV_WRITE_CSR(CSR_PMAADDR(8), frame->pmaaddr8);
RV_WRITE_CSR(CSR_PMAADDR(9), frame->pmaaddr9);
RV_WRITE_CSR(CSR_PMAADDR(10),frame->pmaaddr10);
RV_WRITE_CSR(CSR_PMAADDR(11),frame->pmaaddr11);
RV_WRITE_CSR(CSR_PMAADDR(12),frame->pmaaddr12);
RV_WRITE_CSR(CSR_PMAADDR(13),frame->pmaaddr13);
RV_WRITE_CSR(CSR_PMAADDR(14),frame->pmaaddr14);
RV_WRITE_CSR(CSR_PMAADDR(15),frame->pmaaddr15);
RV_WRITE_CSR(CSR_PMACFG(0), frame->pmacfg0);
RV_WRITE_CSR(CSR_PMACFG(1), frame->pmacfg1);
RV_WRITE_CSR(CSR_PMACFG(2), frame->pmacfg2);
RV_WRITE_CSR(CSR_PMACFG(3), frame->pmacfg3);
RV_WRITE_CSR(CSR_PMACFG(4), frame->pmacfg4);
RV_WRITE_CSR(CSR_PMACFG(5), frame->pmacfg5);
RV_WRITE_CSR(CSR_PMACFG(6), frame->pmacfg6);
RV_WRITE_CSR(CSR_PMACFG(7), frame->pmacfg7);
RV_WRITE_CSR(CSR_PMACFG(8), frame->pmacfg8);
RV_WRITE_CSR(CSR_PMACFG(9), frame->pmacfg9);
RV_WRITE_CSR(CSR_PMACFG(10), frame->pmacfg10);
RV_WRITE_CSR(CSR_PMACFG(11), frame->pmacfg11);
RV_WRITE_CSR(CSR_PMACFG(12), frame->pmacfg12);
RV_WRITE_CSR(CSR_PMACFG(13), frame->pmacfg13);
RV_WRITE_CSR(CSR_PMACFG(14), frame->pmacfg14);
RV_WRITE_CSR(CSR_PMACFG(15), frame->pmacfg15);
#endif //SOC_CPU_HAS_PMA
RV_WRITE_CSR(utvec, frame->utvec);
RV_WRITE_CSR(ustatus, frame->ustatus);
RV_WRITE_CSR(uepc, frame->uepc);
RV_WRITE_CSR(ucause, frame->ucause);
RV_WRITE_CSR(CUSTOM_CSR_PCER_MACHINE, frame->mpcer);
RV_WRITE_CSR(CUSTOM_CSR_PCMR_MACHINE, frame->mpcmr);
RV_WRITE_CSR(CUSTOM_CSR_PCCR_MACHINE, frame->mpccr);
RV_WRITE_CSR(CUSTOM_CSR_CPU_TESTBUS_CTRL, frame->cpu_testbus_ctrl);
RV_WRITE_CSR(CUSTOM_CSR_PCER_USER, frame->upcer);
RV_WRITE_CSR(CUSTOM_CSR_PCMR_USER, frame->upcmr);
RV_WRITE_CSR(CUSTOM_CSR_PCCR_USER, frame->upccr);
RV_WRITE_CSR(CUSTOM_CSR_GPIO_OEN_USER,frame->ugpio_oen);
RV_WRITE_CSR(CUSTOM_CSR_GPIO_IN_USER, frame->ugpio_in);
RV_WRITE_CSR(CUSTOM_CSR_GPIO_OUT_USER,frame->ugpio_out);
}
static IRAM_ATTR void cpu_domain_dev_regs_save(cpu_domain_dev_sleep_frame_t *frame)
{
assert(frame);
cpu_domain_dev_regs_region_t *region = frame->region;
uint32_t *regs_frame = frame->regs_frame;
int offset = 0;
for (int i = 0; i < frame->region_num; i++) {
for (uint32_t addr = region[i].start; addr < region[i].end; addr+=4) {
regs_frame[offset++] = *(uint32_t *)addr;
}
}
}
static IRAM_ATTR void cpu_domain_dev_regs_restore(cpu_domain_dev_sleep_frame_t *frame)
{
assert(frame);
cpu_domain_dev_regs_region_t *region = frame->region;
uint32_t *regs_frame = frame->regs_frame;
int offset = 0;
for (int i = 0; i < frame->region_num; i++) {
for (uint32_t addr = region[i].start; addr < region[i].end; addr+=4) {
*(uint32_t *)addr = regs_frame[offset++];
}
}
}
#if CONFIG_PM_CHECK_SLEEP_RETENTION_FRAME
static void update_retention_frame_crc(uint32_t *frame_ptr, uint32_t frame_check_size, uint32_t *frame_crc_ptr)
{
*(frame_crc_ptr) = esp_rom_crc32_le(0, (void *)frame_ptr, frame_check_size);
}
static void validate_retention_frame_crc(uint32_t *frame_ptr, uint32_t frame_check_size, uint32_t *frame_crc_ptr)
{
if(*(frame_crc_ptr) != esp_rom_crc32_le(0, (void *)(frame_ptr), frame_check_size)){
// resume uarts
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifndef CONFIG_IDF_TARGET_ESP32
if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
continue;
}
#endif
uart_ll_force_xon(i);
}
/* Since it is still in the critical now, use ESP_EARLY_LOG */
ESP_EARLY_LOGE(TAG, "Sleep retention frame is corrupted");
esp_restart_noos();
}
}
#endif
extern RvCoreCriticalSleepFrame * rv_core_critical_regs_save(void);
extern RvCoreCriticalSleepFrame * rv_core_critical_regs_restore(void);
typedef uint32_t (* sleep_cpu_entry_cb_t)(uint32_t, uint32_t, uint32_t, bool);
static IRAM_ATTR esp_err_t do_cpu_retention(sleep_cpu_entry_cb_t goto_sleep,
uint32_t wakeup_opt, uint32_t reject_opt, uint32_t lslp_mem_inf_fpu, bool dslp)
{
RvCoreCriticalSleepFrame * frame = rv_core_critical_regs_save();
if ((frame->pmufunc & 0x3) == 0x1) {
esp_sleep_execute_event_callbacks(SLEEP_EVENT_SW_CPU_TO_MEM_END, (void *)0);
#if CONFIG_PM_CHECK_SLEEP_RETENTION_FRAME
/* Minus 2 * sizeof(long) is for bypass `pmufunc` and `frame_crc` field */
update_retention_frame_crc((uint32_t*)frame, RV_SLEEP_CTX_FRMSZ - 2 * sizeof(long), (uint32_t *)(&frame->frame_crc));
#endif
REG_WRITE(LIGHT_SLEEP_WAKE_STUB_ADDR_REG, (uint32_t)rv_core_critical_regs_restore);
return (*goto_sleep)(wakeup_opt, reject_opt, lslp_mem_inf_fpu, dslp);
}
#if CONFIG_PM_CHECK_SLEEP_RETENTION_FRAME
else {
validate_retention_frame_crc((uint32_t*)frame, RV_SLEEP_CTX_FRMSZ - 2 * sizeof(long), (uint32_t *)(&frame->frame_crc));
}
#endif
return pmu_sleep_finish();
}
esp_err_t IRAM_ATTR esp_sleep_cpu_retention(uint32_t (*goto_sleep)(uint32_t, uint32_t, uint32_t, bool),
uint32_t wakeup_opt, uint32_t reject_opt, uint32_t lslp_mem_inf_fpu, bool dslp)
{
esp_sleep_execute_event_callbacks(SLEEP_EVENT_SW_CPU_TO_MEM_START, (void *)0);
uint32_t mstatus = save_mstatus_and_disable_global_int();
cpu_domain_dev_regs_save(s_cpu_retention.retent.plic_frame);
cpu_domain_dev_regs_save(s_cpu_retention.retent.clint_frame);
cpu_domain_dev_regs_save(s_cpu_retention.retent.intpri_frame);
cpu_domain_dev_regs_save(s_cpu_retention.retent.cache_config_frame);
RvCoreNonCriticalSleepFrame *frame = rv_core_noncritical_regs_save();
#if CONFIG_PM_CHECK_SLEEP_RETENTION_FRAME
/* Minus sizeof(long) is for bypass `frame_crc` field */
update_retention_frame_crc((uint32_t*)frame, sizeof(RvCoreNonCriticalSleepFrame) - sizeof(long), (uint32_t *)(&frame->frame_crc));
#endif
esp_err_t err = do_cpu_retention(goto_sleep, wakeup_opt, reject_opt, lslp_mem_inf_fpu, dslp);
#if CONFIG_PM_CHECK_SLEEP_RETENTION_FRAME
validate_retention_frame_crc((uint32_t*)frame, sizeof(RvCoreNonCriticalSleepFrame) - sizeof(long), (uint32_t *)(&frame->frame_crc));
#endif
rv_core_noncritical_regs_restore(frame);
cpu_domain_dev_regs_restore(s_cpu_retention.retent.cache_config_frame);
cpu_domain_dev_regs_restore(s_cpu_retention.retent.intpri_frame);
cpu_domain_dev_regs_restore(s_cpu_retention.retent.clint_frame);
cpu_domain_dev_regs_restore(s_cpu_retention.retent.plic_frame);
restore_mstatus(mstatus);
return err;
}
#endif // SOC_PM_SUPPORT_CPU_PD && SOC_PM_CPU_RETENTION_BY_SW
#if SOC_PM_SUPPORT_CPU_PD
esp_err_t esp_sleep_cpu_retention_init(void)
{
esp_err_t err = ESP_OK;
#if SOC_PM_CPU_RETENTION_BY_RTCCNTL
err = esp_sleep_cpu_pd_low_init();
#elif SOC_PM_CPU_RETENTION_BY_SW
err = esp_sleep_cpu_retention_init_impl();
#endif
return err;
}
esp_err_t esp_sleep_cpu_retention_deinit(void)
{
esp_err_t err = ESP_OK;
#if SOC_PM_CPU_RETENTION_BY_RTCCNTL
err = esp_sleep_cpu_pd_low_deinit();
#elif SOC_PM_CPU_RETENTION_BY_SW
err = esp_sleep_cpu_retention_deinit_impl();
#endif
return err;
}
bool cpu_domain_pd_allowed(void)
{
#if SOC_PM_CPU_RETENTION_BY_RTCCNTL
return (s_cpu_retention.retent.cpu_pd_mem != NULL);
#elif SOC_PM_CPU_RETENTION_BY_SW
return (s_cpu_retention.retent.critical_frame != NULL) && \
(s_cpu_retention.retent.non_critical_frame != NULL) && \
(s_cpu_retention.retent.intpri_frame != NULL) && \
(s_cpu_retention.retent.cache_config_frame != NULL) && \
(s_cpu_retention.retent.plic_frame != NULL) && \
(s_cpu_retention.retent.clint_frame != NULL);
#else
return false;
#endif
}
esp_err_t sleep_cpu_configure(bool light_sleep_enable)
{
#if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP
if (light_sleep_enable) {
ESP_RETURN_ON_ERROR(esp_sleep_cpu_retention_init(), TAG, "Failed to enable CPU power down during light sleep.");
} else {
ESP_RETURN_ON_ERROR(esp_sleep_cpu_retention_deinit(), TAG, "Failed to release CPU retention memory");
}
#endif
return ESP_OK;
}
#endif