esp-idf/components/freertos/FreeRTOS-Kernel-SMP/tasks.c
Darian Leung 5d75bfdb3c
feat(freertos/smp): Update SMP FreeRTOS files to V11.1.0
This commit updates the source files of Amazon SMP FreeRTOS to upstream
V11.1.0 (https://github.com/FreeRTOS/FreeRTOS-Kernel/tree/V11.1.0).

This version contains some new features and bugfixes. See upstream V11.1.0
release notes for more details.

Note: ESP-IDF specific changes to the source file have been preserved
2024-06-03 03:13:58 +08:00

8710 lines
345 KiB
C

/*
* FreeRTOS Kernel V11.1.0
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-FileCopyrightText: 2021 Amazon.com, Inc. or its affiliates
*
* SPDX-License-Identifier: MIT
*
* SPDX-FileContributor: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/* Standard includes. */
#include <stdlib.h>
#include <string.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
* all the API functions to use the MPU wrappers. That should only be done when
* task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "stack_macros.h"
/* The default definitions are only available for non-MPU ports. The
* reason is that the stack alignment requirements vary for different
* architectures.*/
#if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) )
#error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually.
#endif
/* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
* for the header files above, but not in this file, in order to generate the
* correct privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
* functions but without including stdio.h here. */
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
/* At the bottom of this file are two optional functions that can be used
* to generate human readable text from the raw data generated by the
* uxTaskGetSystemState() function. Note the formatting functions are provided
* for convenience only, and are NOT considered part of the kernel. */
#include <stdio.h>
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
#if ( configUSE_PREEMPTION == 0 )
/* If the cooperative scheduler is being used then a yield should not be
* performed just because a higher priority task has been woken. */
#define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
#define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
#else
#if ( configNUMBER_OF_CORES == 1 )
/* This macro requests the running task pxTCB to yield. In single core
* scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
* can be used to request the task running on core 0 to yield. Therefore, pxTCB
* is not used in this macro. */
#define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
do { \
( void ) ( pxTCB ); \
portYIELD_WITHIN_API(); \
} while( 0 )
#define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
do { \
if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \
{ \
portYIELD_WITHIN_API(); \
} \
else \
{ \
mtCOVERAGE_TEST_MARKER(); \
} \
} while( 0 )
#else /* if ( configNUMBER_OF_CORES == 1 ) */
/* Yield the core on which this task is running. */
#define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState )
/* Yield for the task if a running task has priority lower than this task. */
#define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB )
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
#endif /* if ( configUSE_PREEMPTION == 0 ) */
/* Values that can be assigned to the ucNotifyState member of the TCB. */
#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
/*
* The value used to fill the stack of a task when the task is created. This
* is used purely for checking the high water mark for tasks.
*/
#define tskSTACK_FILL_BYTE ( 0xa5U )
/* Bits used to record how a task's stack and TCB were allocated. */
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
/* If any of the following are set then task stacks are filled with a known
* value so the high water mark can be determined. If none of the following are
* set then don't fill the stack so there is no unnecessary dependency on memset. */
#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
#else
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
#endif
/*
* Macros used by vListTask to indicate which state a task is in.
*/
#define tskRUNNING_CHAR ( 'X' )
#define tskBLOCKED_CHAR ( 'B' )
#define tskREADY_CHAR ( 'R' )
#define tskDELETED_CHAR ( 'D' )
#define tskSUSPENDED_CHAR ( 'S' )
/*
* Some kernel aware debuggers require the data the debugger needs access to be
* global, rather than file scope.
*/
#ifdef portREMOVE_STATIC_QUALIFIER
#define static
#endif
/* The name allocated to the Idle task. This can be overridden by defining
* configIDLE_TASK_NAME in FreeRTOSConfig.h. */
#ifndef configIDLE_TASK_NAME
#define configIDLE_TASK_NAME "IDLE"
#endif
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
* performed in a generic way that is not optimised to any particular
* microcontroller architecture. */
/* uxTopReadyPriority holds the priority of the highest priority ready
* state task. */
#define taskRECORD_READY_PRIORITY( uxPriority ) \
do { \
if( ( uxPriority ) > uxTopReadyPriority ) \
{ \
uxTopReadyPriority = ( uxPriority ); \
} \
} while( 0 ) /* taskRECORD_READY_PRIORITY */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES == 1 )
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
do { \
UBaseType_t uxTopPriority = uxTopReadyPriority; \
\
/* Find the highest priority queue that contains ready tasks. */ \
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) != pdFALSE ) \
{ \
configASSERT( uxTopPriority ); \
--uxTopPriority; \
} \
\
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
* the same priority get an equal share of the processor time. */ \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
uxTopReadyPriority = uxTopPriority; \
} while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
#else /* if ( configNUMBER_OF_CORES == 1 ) */
#define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID )
#endif /* if ( configNUMBER_OF_CORES == 1 ) */
/*-----------------------------------------------------------*/
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
* they are only required when a port optimised method of task selection is
* being used. */
#define taskRESET_READY_PRIORITY( uxPriority )
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
* performed in a way that is tailored to the particular microcontroller
* architecture being used. */
/* A port optimised version is provided. Call the port defined macros. */
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
/*-----------------------------------------------------------*/
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
do { \
UBaseType_t uxTopPriority; \
\
/* Find the highest priority list that contains ready tasks. */ \
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
} while( 0 )
/*-----------------------------------------------------------*/
/* A port optimised version is provided, call it only if the TCB being reset
* is being referenced from a ready list. If it is referenced from a delayed
* or suspended list then it won't be in a ready list. */
#define taskRESET_READY_PRIORITY( uxPriority ) \
do { \
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
{ \
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
} \
} while( 0 )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
* count overflows. */
#define taskSWITCH_DELAYED_LISTS() \
do { \
List_t * pxTemp; \
\
/* The delayed tasks list should be empty when the lists are switched. */ \
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\
pxTemp = pxDelayedTaskList; \
pxDelayedTaskList = pxOverflowDelayedTaskList; \
pxOverflowDelayedTaskList = pxTemp; \
xNumOfOverflows = ( BaseType_t ) ( xNumOfOverflows + 1 ); \
prvResetNextTaskUnblockTime(); \
} while( 0 )
/*-----------------------------------------------------------*/
/*
* Place the task represented by pxTCB into the appropriate ready list for
* the task. It is inserted at the end of the list.
*/
#define prvAddTaskToReadyList( pxTCB ) \
do { \
traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \
} while( 0 )
/*-----------------------------------------------------------*/
/*
* Several functions take a TaskHandle_t parameter that can optionally be NULL,
* where NULL is used to indicate that the handle of the currently executing
* task should be used in place of the parameter. This macro simply checks to
* see if the parameter is NULL and returns a pointer to the appropriate TCB.
*/
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
/* The item value of the event list item is normally used to hold the priority
* of the task to which it belongs (coded to allow it to be held in reverse
* priority order). However, it is occasionally borrowed for other purposes. It
* is important its value is not updated due to a task priority change while it is
* being used for another purpose. The following bit definition is used to inform
* the scheduler that the value should not be changed - in which case it is the
* responsibility of whichever module is using the value to ensure it gets set back
* to its original value when it is released. */
#if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint16_t ) 0x8000U )
#elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint32_t ) 0x80000000U )
#elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint64_t ) 0x8000000000000000U )
#endif
/* Indicates that the task is not actively running on any core. */
#define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) )
/* Indicates that the task is actively running but scheduled to yield. */
#define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) )
/* Returns pdTRUE if the task is actively running and not scheduled to yield. */
#if ( configNUMBER_OF_CORES == 1 )
#define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
#define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
#else
#define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
#define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
#endif
/* Indicates that the task is an Idle task. */
#define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1U << 0U )
#if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
#define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
#define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
#define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
#define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
#define taskBITS_PER_BYTE ( ( size_t ) 8 )
#if ( configNUMBER_OF_CORES > 1 )
/* Yields the given core. This must be called from a critical section and xCoreID
* must be valid. This macro is not required in single core since there is only
* one core to yield. */
#define prvYieldCore( xCoreID ) \
do { \
if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() ) \
{ \
/* Pending a yield for this core since it is in the critical section. */ \
xYieldPendings[ ( xCoreID ) ] = pdTRUE; \
} \
else \
{ \
/* Request other core to yield if it is not requested before. */ \
if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \
{ \
portYIELD_CORE( xCoreID ); \
pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD; \
} \
} \
} while( 0 )
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
/*
* Task control block. A task control block (TCB) is allocated for each task,
* and stores task state information, including a pointer to the task's context
* (the task's run time environment, including register values)
*/
typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
{
volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
#if ( portUSING_MPU_WRAPPERS == 1 )
xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
#endif
#if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
#endif
ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
ListItem_t xEventListItem; /**< Used to reference a task from an event list. */
UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */
StackType_t * pxStack; /**< Points to the start of the stack. */
#if ( configNUMBER_OF_CORES > 1 )
volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */
#endif
char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
#endif
#if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
#endif
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
#endif
#if ( configUSE_MUTEXES == 1 )
UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
UBaseType_t uxMutexesHeld;
#endif
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t pxTaskTag;
#endif
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
#endif
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
#endif
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
#endif
/* See the comments in FreeRTOS.h with the definition of
* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
#endif
#if ( INCLUDE_xTaskAbortDelay == 1 )
uint8_t ucDelayAborted;
#endif
#if ( configUSE_POSIX_ERRNO == 1 )
int iTaskErrno;
#endif
} tskTCB;
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
* below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;
#if ( configNUMBER_OF_CORES == 1 )
/* MISRA Ref 8.4.1 [Declaration shall be visible] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
/* coverity[misra_c_2012_rule_8_4_violation] */
portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
#else
/* MISRA Ref 8.4.1 [Declaration shall be visible] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
/* coverity[misra_c_2012_rule_8_4_violation] */
portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
#define pxCurrentTCB xTaskGetCurrentTaskHandle()
#endif
/* Lists for ready and blocked tasks. --------------------
* xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
* doing so breaks some kernel aware debuggers and debuggers that rely on removing
* the static qualifier. */
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
#if ( INCLUDE_vTaskDelete == 1 )
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
#endif
/* Global POSIX errno. Its value is changed upon context switching to match
* the errno of the currently running task. */
#if ( configUSE_POSIX_ERRNO == 1 )
int FreeRTOS_errno = 0;
#endif
/* Other file private variables. --------------------------------*/
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
#if ( ( ESP_PLATFORM == 1 ) && ( configNUM_CORES > 1 ) )
/*
* Workaround for non-thread safe multi-core OS startup (see IDF-4524)
*/
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunningPerCore[ configNUMBER_OF_CORES ] = { pdFALSE };
#define xSchedulerRunning xSchedulerRunningPerCore[ portGET_CORE_ID() ]
#else // ( ESP_PLATFORM == 1 ) && ( configNUM_CORES > 1 )
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
#endif // ( ESP_PLATFORM == 1 ) && ( configNUM_CORES > 1 )
PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */
/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
* For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
* to determine the number of priority lists to read back from the remote target. */
static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
/* Context switches are held pending while the scheduler is suspended. Also,
* interrupts must not manipulate the xStateListItem of a TCB, or any of the
* lists the xStateListItem can be referenced from, if the scheduler is suspended.
* If an interrupt needs to unblock a task while the scheduler is suspended then it
* moves the task's event list item into the xPendingReadyList, ready for the
* kernel to move the task from the pending ready list into the real ready list
* when the scheduler is unsuspended. The pending ready list itself can only be
* accessed from a critical section.
*
* Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
* and must not be done from an ISR. Reads must be protected by either lock and may be done
* from either an ISR or a task. */
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
#if ( configGENERATE_RUN_TIME_STATS == 1 )
/* Do not move these variables to function scope as doing so prevents the
* code working with debuggers that need to remove the static qualifier. */
PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */
PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
#endif
/*-----------------------------------------------------------*/
/* File private functions. --------------------------------*/
/*
* Creates the idle tasks during scheduler start.
*/
static BaseType_t prvCreateIdleTasks( void );
#if ( configNUMBER_OF_CORES > 1 )
/*
* Checks to see if another task moved the current task out of the ready
* list while it was waiting to enter a critical section and yields, if so.
*/
static void prvCheckForRunStateChange( void );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
#if ( configNUMBER_OF_CORES > 1 )
/*
* Yields a core, or cores if multiple priorities are not allowed to run
* simultaneously, to allow the task pxTCB to run.
*/
static void prvYieldForTask( const TCB_t * pxTCB );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
#if ( configNUMBER_OF_CORES > 1 )
/*
* Selects the highest priority available task for the given core.
*/
static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/**
* Utility task that simply returns pdTRUE if the task referenced by xTask is
* currently in the Suspended state, or pdFALSE if the task referenced by xTask
* is in any other state.
*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
#endif /* INCLUDE_vTaskSuspend */
/*
* Utility to ready all the lists used by the scheduler. This is called
* automatically upon the creation of the first task.
*/
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
/*
* The idle task, which as all tasks is implemented as a never ending loop.
* The idle task is automatically created and added to the ready lists upon
* creation of the first user task.
*
* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also
* created to ensure that each core has an idle task to run when no other
* task is available to run.
*
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for these functions are:
*
* void prvIdleTask( void *pvParameters );
* void prvPassiveIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
#if ( configNUMBER_OF_CORES > 1 )
static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
#endif
/*
* Utility to free all memory allocated by the scheduler to hold a TCB,
* including the stack pointed to by the TCB.
*
* This does not free memory allocated by the task itself (i.e. memory
* allocated by calls to pvPortMalloc from within the tasks application code).
*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
#endif
/*
* Used only by the idle task. This checks to see if anything has been placed
* in the list of tasks waiting to be deleted. If so the task is cleaned up
* and its TCB deleted.
*/
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
/*
* The currently executing task is entering the Blocked state. Add the task to
* either the current or the overflow delayed task list.
*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
/*
* Fills an TaskStatus_t structure with information on each task that is
* referenced from the pxList list (which may be a ready list, a delayed list,
* a suspended list, etc.).
*
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
* NORMAL APPLICATION CODE.
*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState ) PRIVILEGED_FUNCTION;
#endif
/*
* Searches pxList for a task with name pcNameToQuery - returning a handle to
* the task if it is found, or NULL if the task is not found.
*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
#endif
/*
* When a task is created, the stack of the task is filled with a known value.
* This function determines the 'high water mark' of the task stack by
* determining how much of the stack remains at the original preset value.
*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
#endif
/*
* Return the amount of time, in ticks, that will pass before the kernel will
* next move a task from the Blocked state to the Running state.
*
* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be
* set to a value other than 1.
*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
#endif
/*
* Set xNextTaskUnblockTime to the time at which the next Blocked state task
* will exit the Blocked state.
*/
static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
#if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
/*
* Helper function used to pad task names with spaces when printing out
* human readable tables of task information.
*/
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName ) PRIVILEGED_FUNCTION;
#endif
/*
* Called after a Task_t structure has been allocated either statically or
* dynamically to fill in the structure's members.
*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
/*
* Called after a new task has been created and initialised to place the task
* under the control of the scheduler.
*/
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
/*
* Create a task with static buffer for both TCB and stack. Returns a handle to
* the task if it is created successfully. Otherwise, returns NULL.
*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer,
TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
#endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*
* Create a restricted task with static buffer for both TCB and stack. Returns
* a handle to the task if it is created successfully. Otherwise, returns NULL.
*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
#endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
/*
* Create a restricted task with static buffer for task stack and allocated buffer
* for TCB. Returns a handle to the task if it is created successfully. Otherwise,
* returns NULL.
*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
#endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
/*
* Create a task with allocated buffer for both TCB and stack. Returns a handle to
* the task if it is created successfully. Otherwise, returns NULL.
*/
#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
#endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */
/*
* freertos_tasks_c_additions_init() should only be called if the user definable
* macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
* called by the function.
*/
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
#endif
#if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
extern void vApplicationPassiveIdleHook( void );
#endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
/*
* Convert the snprintf return value to the number of characters
* written. The following are the possible cases:
*
* 1. The buffer supplied to snprintf is large enough to hold the
* generated string. The return value in this case is the number
* of characters actually written, not counting the terminating
* null character.
* 2. The buffer supplied to snprintf is NOT large enough to hold
* the generated string. The return value in this case is the
* number of characters that would have been written if the
* buffer had been sufficiently large, not counting the
* terminating null character.
* 3. Encoding error. The return value in this case is a negative
* number.
*
* From 1 and 2 above ==> Only when the return value is non-negative
* and less than the supplied buffer length, the string has been
* completely written.
*/
static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
size_t n );
#endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvCheckForRunStateChange( void )
{
UBaseType_t uxPrevCriticalNesting;
const TCB_t * pxThisTCB;
/* This must only be called from within a task. */
portASSERT_IF_IN_ISR();
/* This function is always called with interrupts disabled
* so this is safe. */
pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
{
/* We are only here if we just entered a critical section
* or if we just suspended the scheduler, and another task
* has requested that we yield.
*
* This is slightly complicated since we need to save and restore
* the suspension and critical nesting counts, as well as release
* and reacquire the correct locks. And then, do it all over again
* if our state changed again during the reacquisition. */
uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
if( uxPrevCriticalNesting > 0U )
{
portSET_CRITICAL_NESTING_COUNT( 0U );
portRELEASE_ISR_LOCK();
}
else
{
/* The scheduler is suspended. uxSchedulerSuspended is updated
* only when the task is not requested to yield. */
mtCOVERAGE_TEST_MARKER();
}
portRELEASE_TASK_LOCK();
portMEMORY_BARRIER();
configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
portENABLE_INTERRUPTS();
/* Enabling interrupts should cause this core to immediately
* service the pending interrupt and yield. If the run state is still
* yielding here then that is a problem. */
configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
portDISABLE_INTERRUPTS();
portGET_TASK_LOCK();
portGET_ISR_LOCK();
portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
if( uxPrevCriticalNesting == 0U )
{
portRELEASE_ISR_LOCK();
}
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvYieldForTask( const TCB_t * pxTCB )
{
BaseType_t xLowestPriorityToPreempt;
BaseType_t xCurrentCoreTaskPriority;
BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
BaseType_t xCoreID;
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
BaseType_t xYieldCount = 0;
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
/* This must be called from a critical section. */
configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
/* No task should yield for this one if it is a lower priority
* than priority level of currently ready tasks. */
if( pxTCB->uxPriority >= uxTopReadyPriority )
#else
/* Yield is not required for a task which is already running. */
if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
#endif
{
xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
/* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
* is 0. This is ok as we will give system idle tasks a priority of -1 below. */
--xLowestPriorityToPreempt;
for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
/* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
xCurrentCoreTaskPriority = ( BaseType_t ) ( xCurrentCoreTaskPriority - 1 );
}
if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
{
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
#endif
{
if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
{
#if ( configUSE_CORE_AFFINITY == 1 )
if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
#endif
{
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
#endif
{
xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
xLowestPriorityCore = xCoreID;
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
/* Yield all currently running non-idle tasks with a priority lower than
* the task that needs to run. */
if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
{
prvYieldCore( xCoreID );
xYieldCount++;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
#else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
if( xLowestPriorityCore >= 0 )
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
{
prvYieldCore( xLowestPriorityCore );
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
/* Verify that the calling core always yields to higher priority tasks. */
if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) &&
( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
{
configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
}
#endif
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
{
UBaseType_t uxCurrentPriority = uxTopReadyPriority;
BaseType_t xTaskScheduled = pdFALSE;
BaseType_t xDecrementTopPriority = pdTRUE;
TCB_t * pxTCB = NULL;
#if ( configUSE_CORE_AFFINITY == 1 )
const TCB_t * pxPreviousTCB = NULL;
#endif
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
BaseType_t xPriorityDropped = pdFALSE;
#endif
/* This function should be called when scheduler is running. */
configASSERT( xSchedulerRunning == pdTRUE );
/* A new task is created and a running task with the same priority yields
* itself to run the new task. When a running task yields itself, it is still
* in the ready list. This running task will be selected before the new task
* since the new task is always added to the end of the ready list.
* The other problem is that the running task still in the same position of
* the ready list when it yields itself. It is possible that it will be selected
* earlier then other tasks which waits longer than this task.
*
* To fix these problems, the running task should be put to the end of the
* ready list before searching for the ready task in the ready list. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
&pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
{
( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
&pxCurrentTCBs[ xCoreID ]->xStateListItem );
}
while( xTaskScheduled == pdFALSE )
{
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
if( uxCurrentPriority < uxTopReadyPriority )
{
/* We can't schedule any tasks, other than idle, that have a
* priority lower than the priority of a task currently running
* on another core. */
uxCurrentPriority = tskIDLE_PRIORITY;
}
}
#endif
if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
{
const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
ListItem_t * pxIterator;
/* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
* must not be decremented any further. */
xDecrementTopPriority = pdFALSE;
for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
{
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
/* When falling back to the idle priority because only one priority
* level is allowed to run at a time, we should ONLY schedule the true
* idle tasks, not user tasks at the idle priority. */
if( uxCurrentPriority < uxTopReadyPriority )
{
if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U )
{
continue;
}
}
}
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
{
#if ( configUSE_CORE_AFFINITY == 1 )
if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
#endif
{
/* If the task is not being executed by any core swap it in. */
pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
#if ( configUSE_CORE_AFFINITY == 1 )
pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
#endif
pxTCB->xTaskRunState = xCoreID;
pxCurrentTCBs[ xCoreID ] = pxTCB;
xTaskScheduled = pdTRUE;
}
}
else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
{
configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
#if ( configUSE_CORE_AFFINITY == 1 )
if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
#endif
{
/* The task is already running on this core, mark it as scheduled. */
pxTCB->xTaskRunState = xCoreID;
xTaskScheduled = pdTRUE;
}
}
else
{
/* This task is running on the core other than xCoreID. */
mtCOVERAGE_TEST_MARKER();
}
if( xTaskScheduled != pdFALSE )
{
/* A task has been selected to run on this core. */
break;
}
}
}
else
{
if( xDecrementTopPriority != pdFALSE )
{
uxTopReadyPriority--;
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
xPriorityDropped = pdTRUE;
}
#endif
}
}
/* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
* The scheduler should be able to select a task to run when uxCurrentPriority
* is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
* tskIDLE_PRIORITY. */
if( uxCurrentPriority > tskIDLE_PRIORITY )
{
uxCurrentPriority--;
}
else
{
/* This function is called when idle task is not created. Break the
* loop to prevent uxCurrentPriority overrun. */
break;
}
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
if( xTaskScheduled == pdTRUE )
{
if( xPriorityDropped != pdFALSE )
{
/* There may be several ready tasks that were being prevented from running because there was
* a higher priority task running. Now that the last of the higher priority tasks is no longer
* running, make sure all the other idle tasks yield. */
BaseType_t x;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
{
if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
prvYieldCore( x );
}
}
}
}
}
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
#if ( configUSE_CORE_AFFINITY == 1 )
{
if( xTaskScheduled == pdTRUE )
{
if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
{
/* A ready task was just evicted from this core. See if it can be
* scheduled on any other core. */
UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
BaseType_t xLowestPriorityCore = -1;
BaseType_t x;
if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
xLowestPriority = xLowestPriority - 1;
}
if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
{
/* pxPreviousTCB was removed from this core and this core is not excluded
* from it's core affinity mask.
*
* pxPreviousTCB is preempted by the new higher priority task
* pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB,
* we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ]
* is allowed to run. The reason is - when more than one cores are
* eligible for an incoming task, we preempt the core with the minimum
* priority task. Because this core (i.e. xCoreID) was preempted for
* pxCurrentTCBs[ xCoreID ], this means that all the others cores
* where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority
* no lower than pxPreviousTCB's priority. Therefore, the only cores where
* which can be preempted for pxPreviousTCB are the ones where
* pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously,
* pxPreviousTCB is allowed to run).
*
* This is an optimization which reduces the number of cores needed to be
* searched for pxPreviousTCB to run. */
uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
}
else
{
/* pxPreviousTCB's core affinity mask is changed and it is no longer
* allowed to run on this core. Searching all the cores in pxPreviousTCB's
* new core affinity mask to find a core on which it can run. */
}
uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
{
UBaseType_t uxCore = ( UBaseType_t ) x;
BaseType_t xTaskPriority;
if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
{
xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
}
uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
if( ( xTaskPriority < xLowestPriority ) &&
( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
( xYieldPendings[ uxCore ] == pdFALSE ) )
{
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
#endif
{
xLowestPriority = xTaskPriority;
xLowestPriorityCore = ( BaseType_t ) uxCore;
}
}
}
}
if( xLowestPriorityCore >= 0 )
{
prvYieldCore( xLowestPriorityCore );
}
}
}
}
#endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
}
#endif /* ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
configASSERT( puxStackBuffer != NULL );
configASSERT( pxTaskBuffer != NULL );
#if ( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
* variable of type StaticTask_t equals the size of the real task
* structure. */
volatile size_t xSize = sizeof( StaticTask_t );
configASSERT( xSize == sizeof( TCB_t ) );
( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */
}
#endif /* configASSERT_DEFINED */
if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
{
/* The memory used for the task's TCB and stack are passed into this
* function - use them. */
/* MISRA Ref 11.3.1 [Misaligned access] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
/* coverity[misra_c_2012_rule_11_3_violation] */
pxNewTCB = ( TCB_t * ) pxTaskBuffer;
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
}
else
{
pxNewTCB = NULL;
}
return pxNewTCB;
}
/*-----------------------------------------------------------*/
TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer )
{
TaskHandle_t xReturn = NULL;
TCB_t * pxNewTCB;
traceENTER_xTaskCreateStatic( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
if( pxNewTCB != NULL )
{
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_xTaskCreateStatic( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer,
UBaseType_t uxCoreAffinityMask )
{
TaskHandle_t xReturn = NULL;
TCB_t * pxNewTCB;
traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask );
pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn );
if( pxNewTCB != NULL )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
prvAddNewTaskToReadyList( pxNewTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_xTaskCreateStaticAffinitySet( xReturn );
return xReturn;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
#endif /* SUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
{
/* Allocate space for the TCB. Where the memory comes from depends
* on the implementation of the port malloc function and whether or
* not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
}
else
{
pxNewTCB = NULL;
}
return pxNewTCB;
}
/*-----------------------------------------------------------*/
BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
configASSERT( pxTaskDefinition != NULL );
pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
if( pxNewTCB != NULL )
{
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreateRestrictedStatic( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
UBaseType_t uxCoreAffinityMask,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
configASSERT( pxTaskDefinition != NULL );
pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask );
if( pxNewTCB != NULL )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn );
return xReturn;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
configASSERT( pxTaskDefinition->puxStackBuffer );
if( pxTaskDefinition->puxStackBuffer != NULL )
{
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note
* this task had a statically allocated stack in case it is
* later deleted. The TCB was allocated dynamically. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
}
}
else
{
pxNewTCB = NULL;
}
return pxNewTCB;
}
/*-----------------------------------------------------------*/
BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
if( pxNewTCB != NULL )
{
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreateRestricted( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
UBaseType_t uxCoreAffinityMask,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask );
pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask );
if( pxNewTCB != NULL )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn );
return xReturn;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
/* If the stack grows down then allocate the stack then the TCB so the stack
* does not grow into the TCB. Likewise if the stack grows up then allocate
* the TCB then the stack. */
#if ( portSTACK_GROWTH > 0 )
{
/* Allocate space for the TCB. Where the memory comes from depends on
* the implementation of the port malloc function and whether or not static
* allocation is being used. */
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Allocate space for the stack used by the task being created.
* The base of the stack memory stored in the TCB so the task can
* be deleted later if required. */
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
if( pxNewTCB->pxStack == NULL )
{
/* Could not allocate the stack. Delete the allocated TCB. */
vPortFree( pxNewTCB );
pxNewTCB = NULL;
}
}
}
#else /* portSTACK_GROWTH */
{
StackType_t * pxStack;
/* Allocate space for the stack used by the task being created. */
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxStack = pvPortMallocStack( ( ( ( size_t ) uxStackDepth ) * sizeof( StackType_t ) ) );
if( pxStack != NULL )
{
/* Allocate space for the TCB. */
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxStack;
}
else
{
/* The stack cannot be used as the TCB was not created. Free
* it again. */
vPortFreeStack( pxStack );
}
}
else
{
pxNewTCB = NULL;
}
}
#endif /* portSTACK_GROWTH */
if( pxNewTCB != NULL )
{
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created dynamically in case it is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
}
return pxNewTCB;
}
/*-----------------------------------------------------------*/
BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreate( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
if( pxNewTCB != NULL )
{
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = configTASK_DEFAULT_CORE_AFFINITY;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreate( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
UBaseType_t uxCoreAffinityMask,
TaskHandle_t * const pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask );
pxNewTCB = prvCreateTask( pxTaskCode, pcName, uxStackDepth, pvParameters, uxPriority, pxCreatedTask );
if( pxNewTCB != NULL )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreateAffinitySet( xReturn );
return xReturn;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
/*-----------------------------------------------------------*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE uxStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions )
{
StackType_t * pxTopOfStack;
UBaseType_t x;
#if ( portUSING_MPU_WRAPPERS == 1 )
/* Should the task be created in privileged mode? */
BaseType_t xRunPrivileged;
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
{
xRunPrivileged = pdTRUE;
}
else
{
xRunPrivileged = pdFALSE;
}
uxPriority &= ~portPRIVILEGE_BIT;
#endif /* portUSING_MPU_WRAPPERS == 1 */
/* Avoid dependency on memset() if it is not required. */
#if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
{
/* Fill the stack with a known value to assist debugging. */
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) uxStackDepth * sizeof( StackType_t ) );
}
#endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
/* Calculate the top of stack address. This depends on whether the stack
* grows from high memory to low (as per the 80x86) or vice versa.
* portSTACK_GROWTH is used to make the result positive or negative as required
* by the port. */
#if ( portSTACK_GROWTH < 0 )
{
pxTopOfStack = &( pxNewTCB->pxStack[ uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 ] );
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0U ) );
#if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
{
/* Also record the stack's high address, which may assist
* debugging. */
pxNewTCB->pxEndOfStack = pxTopOfStack;
}
#endif /* configRECORD_STACK_HIGH_ADDRESS */
}
#else /* portSTACK_GROWTH */
{
pxTopOfStack = pxNewTCB->pxStack;
pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0U ) );
/* The other extreme of the stack space is required if stack checking is
* performed. */
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( uxStackDepth - ( configSTACK_DEPTH_TYPE ) 1 );
}
#endif /* portSTACK_GROWTH */
/* Store the task name in the TCB. */
if( pcName != NULL )
{
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
pxNewTCB->pcTaskName[ x ] = pcName[ x ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( pcName[ x ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Ensure the name string is terminated in the case that the string length
* was greater or equal to configMAX_TASK_NAME_LEN. */
pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0';
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* This is used as an array index so must ensure it's not too large. */
configASSERT( uxPriority < configMAX_PRIORITIES );
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxNewTCB->uxPriority = uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
pxNewTCB->uxBasePriority = uxPriority;
}
#endif /* configUSE_MUTEXES */
vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
/* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
* back to the containing TCB from a generic item in a list. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
/* Event lists are always in priority order. */
listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority );
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
#if ( portUSING_MPU_WRAPPERS == 1 )
{
vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, uxStackDepth );
}
#else
{
/* Avoid compiler warning about unreferenced parameter. */
( void ) xRegions;
}
#endif
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
{
/* Allocate and initialize memory for the task's TLS Block. */
configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
}
#endif
/* Initialize the TCB stack to look as if the task was already running,
* but had been interrupted by the scheduler. The return address is set
* to the start of the task function. Once the stack has been initialised
* the top of stack variable is updated. */
#if ( portUSING_MPU_WRAPPERS == 1 )
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#else /* portUSING_MPU_WRAPPERS */
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#endif /* portUSING_MPU_WRAPPERS */
/* Initialize task state and task attributes. */
#if ( configNUMBER_OF_CORES > 1 )
{
pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
/* Is this an idle task? */
if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) )
{
pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
if( pxCreatedTask != NULL )
{
/* Pass the handle out in an anonymous way. The handle can be used to
* change the created task's priority, delete the created task, etc.*/
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES == 1 )
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
/* Ensure interrupts don't access the task lists while the lists are being
* updated. */
taskENTER_CRITICAL();
{
uxCurrentNumberOfTasks = ( UBaseType_t ) ( uxCurrentNumberOfTasks + 1U );
if( pxCurrentTCB == NULL )
{
/* There are no other tasks, or all the other tasks are in
* the suspended state - make this the current task. */
pxCurrentTCB = pxNewTCB;
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
{
/* This is the first task to be created so do the preliminary
* initialisation required. We will not recover if this call
* fails, but we will report the failure. */
prvInitialiseTaskLists();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* If the scheduler is not already running, make this task the
* current task if it is the highest priority task to be created
* so far. */
if( xSchedulerRunning == pdFALSE )
{
if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
{
pxCurrentTCB = pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
uxTaskNumber++;
#if ( configUSE_TRACE_FACILITY == 1 )
{
/* Add a counter into the TCB for tracing only. */
pxNewTCB->uxTCBNumber = uxTaskNumber;
}
#endif /* configUSE_TRACE_FACILITY */
traceTASK_CREATE( pxNewTCB );
prvAddTaskToReadyList( pxNewTCB );
portSETUP_TCB( pxNewTCB );
}
taskEXIT_CRITICAL();
if( xSchedulerRunning != pdFALSE )
{
/* If the created task is of a higher priority than the current task
* then it should run now. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
/* Ensure interrupts don't access the task lists while the lists are being
* updated. */
taskENTER_CRITICAL();
{
uxCurrentNumberOfTasks++;
if( xSchedulerRunning == pdFALSE )
{
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
{
/* This is the first task to be created so do the preliminary
* initialisation required. We will not recover if this call
* fails, but we will report the failure. */
prvInitialiseTaskLists();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* All the cores start with idle tasks before the SMP scheduler
* is running. Idle tasks are assigned to cores when they are
* created in prvCreateIdleTasks(). */
}
uxTaskNumber++;
#if ( configUSE_TRACE_FACILITY == 1 )
{
/* Add a counter into the TCB for tracing only. */
pxNewTCB->uxTCBNumber = uxTaskNumber;
}
#endif /* configUSE_TRACE_FACILITY */
traceTASK_CREATE( pxNewTCB );
prvAddTaskToReadyList( pxNewTCB );
portSETUP_TCB( pxNewTCB );
if( xSchedulerRunning != pdFALSE )
{
/* If the created task is of a higher priority than another
* currently running task and preemption is on then it should
* run now. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
size_t n )
{
size_t uxCharsWritten;
if( iSnprintfReturnValue < 0 )
{
/* Encoding error - Return 0 to indicate that nothing
* was written to the buffer. */
uxCharsWritten = 0;
}
else if( iSnprintfReturnValue >= ( int ) n )
{
/* This is the case when the supplied buffer is not
* large to hold the generated string. Return the
* number of characters actually written without
* counting the terminating NULL character. */
uxCharsWritten = n - 1U;
}
else
{
/* Complete string was written to the buffer. */
uxCharsWritten = ( size_t ) iSnprintfReturnValue;
}
return uxCharsWritten;
}
#endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
void vTaskDelete( TaskHandle_t xTaskToDelete )
{
TCB_t * pxTCB;
BaseType_t xDeleteTCBInIdleTask = pdFALSE;
BaseType_t xTaskIsRunningOrYielding;
traceENTER_vTaskDelete( xTaskToDelete );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the calling task that is
* being deleted. */
pxTCB = prvGetTCBFromHandle( xTaskToDelete );
/* Remove task from the ready/delayed list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Increment the uxTaskNumber also so kernel aware debuggers can
* detect that the task lists need re-generating. This is done before
* portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
* not return. */
uxTaskNumber++;
/* Use temp variable as distinct sequence points for reading volatile
* variables prior to a logical operator to ensure compliance with
* MISRA C 2012 Rule 13.5. */
xTaskIsRunningOrYielding = taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB );
/* If the task is running (or yielding), we must add it to the
* termination list so that an idle task can delete it when it is
* no longer running. */
if( ( xSchedulerRunning != pdFALSE ) && ( xTaskIsRunningOrYielding != pdFALSE ) )
{
/* A running task or a task which is scheduled to yield is being
* deleted. This cannot complete when the task is still running
* on a core, as a context switch to another task is required.
* Place the task in the termination list. The idle task will check
* the termination list and free up any memory allocated by the
* scheduler for the TCB and stack of the deleted task. */
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
/* Increment the ucTasksDeleted variable so the idle task knows
* there is a task that has been deleted and that it should therefore
* check the xTasksWaitingTermination list. */
++uxDeletedTasksWaitingCleanUp;
/* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
* portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
traceTASK_DELETE( pxTCB );
/* Delete the task TCB in idle task. */
xDeleteTCBInIdleTask = pdTRUE;
/* The pre-delete hook is primarily for the Windows simulator,
* in which Windows specific clean up operations are performed,
* after which it is not possible to yield away from this task -
* hence xYieldPending is used to latch that a context switch is
* required. */
#if ( configNUMBER_OF_CORES == 1 )
portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
#else
portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
#endif
/* In the case of SMP, it is possible that the task being deleted
* is running on another core. We must evict the task before
* exiting the critical section to ensure that the task cannot
* take an action which puts it back on ready/state/event list,
* thereby nullifying the delete operation. Once evicted, the
* task won't be scheduled ever as it will no longer be on the
* ready list. */
#if ( configNUMBER_OF_CORES > 1 )
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
{
configASSERT( uxSchedulerSuspended == 0 );
taskYIELD_WITHIN_API();
}
else
{
prvYieldCore( pxTCB->xTaskRunState );
}
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
}
else
{
--uxCurrentNumberOfTasks;
traceTASK_DELETE( pxTCB );
/* Reset the next expected unblock time in case it referred to
* the task that has just been deleted. */
prvResetNextTaskUnblockTime();
}
}
taskEXIT_CRITICAL();
/* If the task is not deleting itself, call prvDeleteTCB from outside of
* critical section. If a task deletes itself, prvDeleteTCB is called
* from prvCheckTasksWaitingTermination which is called from Idle task. */
if( xDeleteTCBInIdleTask != pdTRUE )
{
prvDeleteTCB( pxTCB );
}
/* Force a reschedule if it is the currently running task that has just
* been deleted. */
#if ( configNUMBER_OF_CORES == 1 )
{
if( xSchedulerRunning != pdFALSE )
{
if( pxTCB == pxCurrentTCB )
{
configASSERT( uxSchedulerSuspended == 0 );
taskYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_vTaskDelete();
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskDelayUntil == 1 )
BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
const TickType_t xTimeIncrement )
{
TickType_t xTimeToWake;
BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
configASSERT( pxPreviousWakeTime );
configASSERT( ( xTimeIncrement > 0U ) );
vTaskSuspendAll();
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount;
configASSERT( uxSchedulerSuspended == 1U );
/* Generate the tick time at which the task wants to wake. */
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
if( xConstTickCount < *pxPreviousWakeTime )
{
/* The tick count has overflowed since this function was
* lasted called. In this case the only time we should ever
* actually delay is if the wake time has also overflowed,
* and the wake time is greater than the tick time. When this
* is the case it is as if neither time had overflowed. */
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The tick time has not overflowed. In this case we will
* delay if either the wake time has overflowed, and/or the
* tick time is less than the wake time. */
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Update the wake time ready for the next call. */
*pxPreviousWakeTime = xTimeToWake;
if( xShouldDelay != pdFALSE )
{
traceTASK_DELAY_UNTIL( xTimeToWake );
/* prvAddCurrentTaskToDelayedList() needs the block time, not
* the time to wake, so subtract the current tick count. */
prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
xAlreadyYielded = xTaskResumeAll();
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
taskYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_xTaskDelayUntil( xShouldDelay );
return xShouldDelay;
}
#endif /* INCLUDE_xTaskDelayUntil */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelay == 1 )
void vTaskDelay( const TickType_t xTicksToDelay )
{
BaseType_t xAlreadyYielded = pdFALSE;
traceENTER_vTaskDelay( xTicksToDelay );
/* A delay time of zero just forces a reschedule. */
if( xTicksToDelay > ( TickType_t ) 0U )
{
vTaskSuspendAll();
{
configASSERT( uxSchedulerSuspended == 1U );
traceTASK_DELAY();
/* A task that is removed from the event list while the
* scheduler is suspended will not get placed in the ready
* list or removed from the blocked list until the scheduler
* is resumed.
*
* This task cannot be in an event list as it is the currently
* executing task. */
prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
}
xAlreadyYielded = xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
taskYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskDelay();
}
#endif /* INCLUDE_vTaskDelay */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
eTaskState eTaskGetState( TaskHandle_t xTask )
{
eTaskState eReturn;
List_t const * pxStateList;
List_t const * pxEventList;
List_t const * pxDelayedList;
List_t const * pxOverflowedDelayedList;
const TCB_t * const pxTCB = xTask;
traceENTER_eTaskGetState( xTask );
configASSERT( pxTCB );
#if ( configNUMBER_OF_CORES == 1 )
if( pxTCB == pxCurrentTCB )
{
/* The task calling this function is querying its own state. */
eReturn = eRunning;
}
else
#endif
{
taskENTER_CRITICAL();
{
pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
pxDelayedList = pxDelayedTaskList;
pxOverflowedDelayedList = pxOverflowDelayedTaskList;
}
taskEXIT_CRITICAL();
if( pxEventList == &xPendingReadyList )
{
/* The task has been placed on the pending ready list, so its
* state is eReady regardless of what list the task's state list
* item is currently placed on. */
eReturn = eReady;
}
else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
{
/* The task being queried is referenced from one of the Blocked
* lists. */
eReturn = eBlocked;
}
#if ( INCLUDE_vTaskSuspend == 1 )
else if( pxStateList == &xSuspendedTaskList )
{
/* The task being queried is referenced from the suspended
* list. Is it genuinely suspended or is it blocked
* indefinitely? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
{
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
/* The task does not appear on the event list item of
* and of the RTOS objects, but could still be in the
* blocked state if it is waiting on its notification
* rather than waiting on an object. If not, is
* suspended. */
eReturn = eSuspended;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
eReturn = eBlocked;
break;
}
}
}
#else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
{
eReturn = eSuspended;
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
else
{
eReturn = eBlocked;
}
}
#endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
#if ( INCLUDE_vTaskDelete == 1 )
else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
{
/* The task being queried is referenced from the deleted
* tasks list, or it is not referenced from any lists at
* all. */
eReturn = eDeleted;
}
#endif
else
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* If the task is not in any other state, it must be in the
* Ready (including pending ready) state. */
eReturn = eReady;
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
/* Is it actively running on a core? */
eReturn = eRunning;
}
else
{
/* If the task is not in any other state, it must be in the
* Ready (including pending ready) state. */
eReturn = eReady;
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
}
traceRETURN_eTaskGetState( eReturn );
return eReturn;
}
#endif /* INCLUDE_eTaskGetState */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
traceENTER_uxTaskPriorityGet( xTask );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the priority of the task
* that called uxTaskPriorityGet() that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
taskEXIT_CRITICAL();
traceRETURN_uxTaskPriorityGet( uxReturn );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
UBaseType_t uxSavedInterruptStatus;
traceENTER_uxTaskPriorityGetFromISR( xTask );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
/* MISRA Ref 4.7.1 [Return value shall be checked] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
/* coverity[misra_c_2012_directive_4_7_violation] */
uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
{
/* If null is passed in here then it is the priority of the calling
* task that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
traceENTER_uxTaskBasePriorityGet( xTask );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the base priority of the task
* that called uxTaskBasePriorityGet() that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxBasePriority;
}
taskEXIT_CRITICAL();
traceRETURN_uxTaskBasePriorityGet( uxReturn );
return uxReturn;
}
#endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) )
UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
UBaseType_t uxSavedInterruptStatus;
traceENTER_uxTaskBasePriorityGetFromISR( xTask );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
/* MISRA Ref 4.7.1 [Return value shall be checked] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
/* coverity[misra_c_2012_directive_4_7_violation] */
uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
{
/* If null is passed in here then it is the base priority of the calling
* task that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxBasePriority;
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn );
return uxReturn;
}
#endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskPrioritySet == 1 )
void vTaskPrioritySet( TaskHandle_t xTask,
UBaseType_t uxNewPriority )
{
TCB_t * pxTCB;
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
BaseType_t xYieldRequired = pdFALSE;
#if ( configNUMBER_OF_CORES > 1 )
BaseType_t xYieldForTask = pdFALSE;
#endif
traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
configASSERT( uxNewPriority < configMAX_PRIORITIES );
/* Ensure the new priority is valid. */
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the priority of the calling
* task that is being changed. */
pxTCB = prvGetTCBFromHandle( xTask );
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
#if ( configUSE_MUTEXES == 1 )
{
uxCurrentBasePriority = pxTCB->uxBasePriority;
}
#else
{
uxCurrentBasePriority = pxTCB->uxPriority;
}
#endif
if( uxCurrentBasePriority != uxNewPriority )
{
/* The priority change may have readied a task of higher
* priority than a running task. */
if( uxNewPriority > uxCurrentBasePriority )
{
#if ( configNUMBER_OF_CORES == 1 )
{
if( pxTCB != pxCurrentTCB )
{
/* The priority of a task other than the currently
* running task is being raised. Is the priority being
* raised above that of the running task? */
if( uxNewPriority > pxCurrentTCB->uxPriority )
{
xYieldRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The priority of the running task is being raised,
* but the running task must already be the highest
* priority task able to run so no yield is required. */
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
/* The priority of a task is being raised so
* perform a yield for this task later. */
xYieldForTask = pdTRUE;
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
/* Setting the priority of a running task down means
* there may now be another task of higher priority that
* is ready to execute. */
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxTCB->xPreemptionDisable == pdFALSE )
#endif
{
xYieldRequired = pdTRUE;
}
}
else
{
/* Setting the priority of any other task down does not
* require a yield as the running task must be above the
* new priority of the task being modified. */
}
/* Remember the ready list the task might be referenced from
* before its uxPriority member is changed so the
* taskRESET_READY_PRIORITY() macro can function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
/* Only change the priority being used if the task is not
* currently using an inherited priority or the new priority
* is bigger than the inherited priority. */
if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
{
pxTCB->uxPriority = uxNewPriority;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The base priority gets set whatever. */
pxTCB->uxBasePriority = uxNewPriority;
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
pxTCB->uxPriority = uxNewPriority;
}
#endif /* if ( configUSE_MUTEXES == 1 ) */
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
}
else
{
#if ( configNUMBER_OF_CORES == 1 )
{
mtCOVERAGE_TEST_MARKER();
}
#else
{
/* It's possible that xYieldForTask was already set to pdTRUE because
* its priority is being raised. However, since it is not in a ready list
* we don't actually need to yield for it. */
xYieldForTask = pdFALSE;
}
#endif
}
if( xYieldRequired != pdFALSE )
{
/* The running task priority is set down. Request the task to yield. */
taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
{
#if ( configNUMBER_OF_CORES > 1 )
if( xYieldForTask != pdFALSE )
{
/* The priority of the task is being raised. If a running
* task has priority lower than this task, it should yield
* for this task. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Remove compiler warning about unused variables when the port
* optimised task selection is not being used. */
( void ) uxPriorityUsedOnEntry;
}
}
taskEXIT_CRITICAL();
traceRETURN_vTaskPrioritySet();
}
#endif /* INCLUDE_vTaskPrioritySet */
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
void vTaskCoreAffinitySet( const TaskHandle_t xTask,
UBaseType_t uxCoreAffinityMask )
{
TCB_t * pxTCB;
BaseType_t xCoreID;
UBaseType_t uxPrevCoreAffinityMask;
#if ( configUSE_PREEMPTION == 1 )
UBaseType_t uxPrevNotAllowedCores;
#endif
traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
if( xSchedulerRunning != pdFALSE )
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
/* If the task can no longer run on the core it was running,
* request the core to yield. */
if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
{
prvYieldCore( xCoreID );
}
}
else
{
#if ( configUSE_PREEMPTION == 1 )
{
/* Calculate the cores on which this task was not allowed to
* run previously. */
uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
/* Does the new core mask enables this task to run on any of the
* previously not allowed cores? If yes, check if this task can be
* scheduled on any of those cores. */
if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
{
prvYieldForTask( pxTCB );
}
}
#else /* #if( configUSE_PREEMPTION == 1 ) */
{
mtCOVERAGE_TEST_MARKER();
}
#endif /* #if( configUSE_PREEMPTION == 1 ) */
}
}
}
taskEXIT_CRITICAL();
traceRETURN_vTaskCoreAffinitySet();
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
{
const TCB_t * pxTCB;
UBaseType_t uxCoreAffinityMask;
traceENTER_vTaskCoreAffinityGet( xTask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
}
taskEXIT_CRITICAL();
traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
return uxCoreAffinityMask;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
void vTaskPreemptionDisable( const TaskHandle_t xTask )
{
TCB_t * pxTCB;
traceENTER_vTaskPreemptionDisable( xTask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
pxTCB->xPreemptionDisable = pdTRUE;
}
taskEXIT_CRITICAL();
traceRETURN_vTaskPreemptionDisable();
}
#endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
void vTaskPreemptionEnable( const TaskHandle_t xTask )
{
TCB_t * pxTCB;
BaseType_t xCoreID;
traceENTER_vTaskPreemptionEnable( xTask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
pxTCB->xPreemptionDisable = pdFALSE;
if( xSchedulerRunning != pdFALSE )
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
prvYieldCore( xCoreID );
}
}
}
taskEXIT_CRITICAL();
traceRETURN_vTaskPreemptionEnable();
}
#endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
{
TCB_t * pxTCB;
traceENTER_vTaskSuspend( xTaskToSuspend );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the running task that is
* being suspended. */
pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
traceTASK_SUSPEND( pxTCB );
/* Remove task from the ready/delayed list and place in the
* suspended list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
/* The task was blocked to wait for a notification, but is
* now suspended, so no notification was received. */
pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
}
}
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
/* In the case of SMP, it is possible that the task being suspended
* is running on another core. We must evict the task before
* exiting the critical section to ensure that the task cannot
* take an action which puts it back on ready/state/event list,
* thereby nullifying the suspend operation. Once evicted, the
* task won't be scheduled before it is resumed as it will no longer
* be on the ready list. */
#if ( configNUMBER_OF_CORES > 1 )
{
if( xSchedulerRunning != pdFALSE )
{
/* Reset the next expected unblock time in case it referred to the
* task that is now in the Suspended state. */
prvResetNextTaskUnblockTime();
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended == 0 );
vTaskYieldWithinAPI();
}
else
{
prvYieldCore( pxTCB->xTaskRunState );
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
}
taskEXIT_CRITICAL();
#if ( configNUMBER_OF_CORES == 1 )
{
UBaseType_t uxCurrentListLength;
if( xSchedulerRunning != pdFALSE )
{
/* Reset the next expected unblock time in case it referred to the
* task that is now in the Suspended state. */
taskENTER_CRITICAL();
{
prvResetNextTaskUnblockTime();
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( pxTCB == pxCurrentTCB )
{
if( xSchedulerRunning != pdFALSE )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended == 0 );
portYIELD_WITHIN_API();
}
else
{
/* The scheduler is not running, but the task that was pointed
* to by pxCurrentTCB has just been suspended and pxCurrentTCB
* must be adjusted to point to a different task. */
/* Use a temp variable as a distinct sequence point for reading
* volatile variables prior to a comparison to ensure compliance
* with MISRA C 2012 Rule 13.2. */
uxCurrentListLength = listCURRENT_LIST_LENGTH( &xSuspendedTaskList );
if( uxCurrentListLength == uxCurrentNumberOfTasks )
{
/* No other tasks are ready, so set pxCurrentTCB back to
* NULL so when the next task is created pxCurrentTCB will
* be set to point to it no matter what its relative priority
* is. */
pxCurrentTCB = NULL;
}
else
{
vTaskSwitchContext();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_vTaskSuspend();
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
{
BaseType_t xReturn = pdFALSE;
const TCB_t * const pxTCB = xTask;
/* Accesses xPendingReadyList so must be called from a critical
* section. */
/* It does not make sense to check if the calling task is suspended. */
configASSERT( xTask );
/* Is the task being resumed actually in the suspended list? */
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* Has the task already been resumed from within an ISR? */
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
{
/* Is it in the suspended list because it is in the Suspended
* state, or because it is blocked with no timeout? */
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
{
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
/* The task does not appear on the event list item of
* and of the RTOS objects, but could still be in the
* blocked state if it is waiting on its notification
* rather than waiting on an object. If not, is
* suspended. */
xReturn = pdTRUE;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
xReturn = pdFALSE;
break;
}
}
}
#else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
{
xReturn = pdTRUE;
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskResume( TaskHandle_t xTaskToResume )
{
TCB_t * const pxTCB = xTaskToResume;
traceENTER_vTaskResume( xTaskToResume );
/* It does not make sense to resume the calling task. */
configASSERT( xTaskToResume );
#if ( configNUMBER_OF_CORES == 1 )
/* The parameter cannot be NULL as it is impossible to resume the
* currently executing task. */
if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
#else
/* The parameter cannot be NULL as it is impossible to resume the
* currently executing task. It is also impossible to resume a task
* that is actively running on another core but it is not safe
* to check their run state here. Therefore, we get into a critical
* section and check if the task is actually suspended or not. */
if( pxTCB != NULL )
#endif
{
taskENTER_CRITICAL();
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME( pxTCB );
/* The ready list can be accessed even if the scheduler is
* suspended because this is inside a critical section. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* This yield may not cause the task just resumed to run,
* but will leave the lists in the correct state for the
* next yield. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskResume();
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
{
BaseType_t xYieldRequired = pdFALSE;
TCB_t * const pxTCB = xTaskToResume;
UBaseType_t uxSavedInterruptStatus;
traceENTER_xTaskResumeFromISR( xTaskToResume );
configASSERT( xTaskToResume );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
/* MISRA Ref 4.7.1 [Return value shall be checked] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
/* coverity[misra_c_2012_directive_4_7_violation] */
uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME_FROM_ISR( pxTCB );
/* Check the ready lists can be accessed. */
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* Ready lists can be accessed so move the task from the
* suspended list to the ready list directly. */
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
xYieldRequired = pdTRUE;
/* Mark that a yield is pending in case the user is not
* using the return value to initiate a context switch
* from the ISR using the port specific portYIELD_FROM_ISR(). */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed or ready lists cannot be accessed so the task
* is held in the pending ready list until the scheduler is
* unsuspended. */
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
{
prvYieldForTask( pxTCB );
if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
{
xYieldRequired = pdTRUE;
}
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_xTaskResumeFromISR( xYieldRequired );
return xYieldRequired;
}
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
/*-----------------------------------------------------------*/
static BaseType_t prvCreateIdleTasks( void )
{
BaseType_t xReturn = pdPASS;
BaseType_t xCoreID;
char cIdleName[ configMAX_TASK_NAME_LEN ];
TaskFunction_t pxIdleTaskFunction = NULL;
BaseType_t xIdleTaskNameIndex;
for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ )
{
cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Add each idle task at the lowest priority. */
for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
#if ( configNUMBER_OF_CORES == 1 )
{
pxIdleTaskFunction = prvIdleTask;
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
/* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks
* are also created to ensure that each core has an idle task to
* run when no other task is available to run. */
if( xCoreID == 0 )
{
pxIdleTaskFunction = prvIdleTask;
}
else
{
pxIdleTaskFunction = prvPassiveIdleTask;
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
/* Update the idle task name with suffix to differentiate the idle tasks.
* This function is not required in single core FreeRTOS since there is
* only one idle task. */
#if ( configNUMBER_OF_CORES > 1 )
{
/* Append the idle task number to the end of the name if there is space. */
if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN )
{
cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' );
/* And append a null character if there is space. */
if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN )
{
cIdleName[ xIdleTaskNameIndex + 1 ] = '\0';
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
StaticTask_t * pxIdleTaskTCBBuffer = NULL;
StackType_t * pxIdleTaskStackBuffer = NULL;
configSTACK_DEPTH_TYPE uxIdleTaskStackSize;
/* The Idle task is created using user provided RAM - obtain the
* address of the RAM then create the idle task. */
#if ( configNUMBER_OF_CORES == 1 )
{
vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
}
#else
{
if( xCoreID == 0 )
{
vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize );
}
else
{
vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &uxIdleTaskStackSize, ( BaseType_t ) ( xCoreID - 1 ) );
}
}
#endif /* if ( configNUMBER_OF_CORES == 1 ) */
xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction,
cIdleName,
uxIdleTaskStackSize,
( void * ) NULL,
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
pxIdleTaskStackBuffer,
pxIdleTaskTCBBuffer );
if( xIdleTaskHandles[ xCoreID ] != NULL )
{
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
#else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
{
/* The Idle task is being created using dynamically allocated RAM. */
xReturn = xTaskCreate( pxIdleTaskFunction,
cIdleName,
configMINIMAL_STACK_SIZE,
( void * ) NULL,
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
&xIdleTaskHandles[ xCoreID ] );
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/* Break the loop if any of the idle task is failed to be created. */
if( xReturn == pdFAIL )
{
break;
}
else
{
#if ( configNUMBER_OF_CORES == 1 )
{
mtCOVERAGE_TEST_MARKER();
}
#else
{
/* Assign idle task to each core before SMP scheduler is running. */
xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID;
pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ];
}
#endif
}
}
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskStartScheduler( void )
{
BaseType_t xReturn;
traceENTER_vTaskStartScheduler();
#if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
{
/* Sanity check that the UBaseType_t must have greater than or equal to
* the number of bits as confNUMBER_OF_CORES. */
configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES );
}
#endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
xReturn = prvCreateIdleTasks();
#if ( configUSE_TIMERS == 1 )
{
if( xReturn == pdPASS )
{
xReturn = xTimerCreateTimerTask();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TIMERS */
if( xReturn == pdPASS )
{
/* freertos_tasks_c_additions_init() should only be called if the user
* definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
* the only macro called by the function. */
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
{
freertos_tasks_c_additions_init();
}
#endif
/* Interrupts are turned off here, to ensure a tick does not occur
* before or during the call to xPortStartScheduler(). The stacks of
* the created tasks contain a status word with interrupts switched on
* so interrupts will automatically get re-enabled when the first task
* starts to run. */
portDISABLE_INTERRUPTS();
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
{
/* Switch C-Runtime's TLS Block to point to the TLS
* block specific to the task that will run first. */
configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
}
#endif
xNextTaskUnblockTime = portMAX_DELAY;
xSchedulerRunning = pdTRUE;
xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
/* If configGENERATE_RUN_TIME_STATS is defined then the following
* macro must be defined to configure the timer/counter used to generate
* the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
* is set to 0 and the following line fails to build then ensure you do not
* have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
* FreeRTOSConfig.h file. */
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
traceTASK_SWITCHED_IN();
/* Setting up the timer tick is hardware specific and thus in the
* portable interface. */
/* The return value for xPortStartScheduler is not required
* hence using a void datatype. */
( void ) xPortStartScheduler();
/* In most cases, xPortStartScheduler() will not return. If it
* returns pdTRUE then there was not enough heap memory available
* to create either the Idle or the Timer task. If it returned
* pdFALSE, then the application called xTaskEndScheduler().
* Most ports don't implement xTaskEndScheduler() as there is
* nothing to return to. */
}
else
{
/* This line will only be reached if the kernel could not be started,
* because there was not enough FreeRTOS heap to create the idle task
* or the timer task. */
configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
}
/* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
* meaning xIdleTaskHandles are not used anywhere else. */
( void ) xIdleTaskHandles;
/* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
* from getting optimized out as it is no longer used by the kernel. */
( void ) uxTopUsedPriority;
traceRETURN_vTaskStartScheduler();
}
/*-----------------------------------------------------------*/
void vTaskEndScheduler( void )
{
traceENTER_vTaskEndScheduler();
#if ( INCLUDE_vTaskDelete == 1 )
{
BaseType_t xCoreID;
#if ( configUSE_TIMERS == 1 )
{
/* Delete the timer task created by the kernel. */
vTaskDelete( xTimerGetTimerDaemonTaskHandle() );
}
#endif /* #if ( configUSE_TIMERS == 1 ) */
/* Delete Idle tasks created by the kernel.*/
for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
vTaskDelete( xIdleTaskHandles[ xCoreID ] );
}
/* Idle task is responsible for reclaiming the resources of the tasks in
* xTasksWaitingTermination list. Since the idle task is now deleted and
* no longer going to run, we need to reclaim resources of all the tasks
* in the xTasksWaitingTermination list. */
prvCheckTasksWaitingTermination();
}
#endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
/* Stop the scheduler interrupts and call the portable scheduler end
* routine so the original ISRs can be restored if necessary. The port
* layer must ensure interrupts enable bit is left in the correct state. */
portDISABLE_INTERRUPTS();
xSchedulerRunning = pdFALSE;
/* This function must be called from a task and the application is
* responsible for deleting that task after the scheduler is stopped. */
vPortEndScheduler();
traceRETURN_vTaskEndScheduler();
}
/*----------------------------------------------------------*/
void vTaskSuspendAll( void )
{
traceENTER_vTaskSuspendAll();
#if ( configNUMBER_OF_CORES == 1 )
{
/* A critical section is not required as the variable is of type
* BaseType_t. Please read Richard Barry's reply in the following link to a
* post in the FreeRTOS support forum before reporting this as a bug! -
* https://goo.gl/wu4acr */
/* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
* do not otherwise exhibit real time behaviour. */
portSOFTWARE_BARRIER();
/* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
* is used to allow calls to vTaskSuspendAll() to nest. */
uxSchedulerSuspended = ( UBaseType_t ) ( uxSchedulerSuspended + 1U );
/* Enforces ordering for ports and optimised compilers that may otherwise place
* the above increment elsewhere. */
portMEMORY_BARRIER();
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
UBaseType_t ulState;
/* This must only be called from within a task. */
portASSERT_IF_IN_ISR();
if( xSchedulerRunning != pdFALSE )
{
/* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
* We must disable interrupts before we grab the locks in the event that this task is
* interrupted and switches context before incrementing uxSchedulerSuspended.
* It is safe to re-enable interrupts after releasing the ISR lock and incrementing
* uxSchedulerSuspended since that will prevent context switches. */
ulState = portSET_INTERRUPT_MASK();
/* This must never be called from inside a critical section. */
configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
/* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
* do not otherwise exhibit real time behaviour. */
portSOFTWARE_BARRIER();
portGET_TASK_LOCK();
/* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The
* purpose is to prevent altering the variable when fromISR APIs are readying
* it. */
if( uxSchedulerSuspended == 0U )
{
prvCheckForRunStateChange();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
portGET_ISR_LOCK();
/* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
* is used to allow calls to vTaskSuspendAll() to nest. */
++uxSchedulerSuspended;
portRELEASE_ISR_LOCK();
portCLEAR_INTERRUPT_MASK( ulState );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_vTaskSuspendAll();
}
/*----------------------------------------------------------*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void )
{
TickType_t xReturn;
UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
/* uxHigherPriorityReadyTasks takes care of the case where
* configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
* task that are in the Ready state, even though the idle task is
* running. */
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
{
if( uxTopReadyPriority > tskIDLE_PRIORITY )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#else
{
const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
/* When port optimised task selection is used the uxTopReadyPriority
* variable is used as a bit map. If bits other than the least
* significant bit are set then there are tasks that have a priority
* above the idle priority that are in the Ready state. This takes
* care of the case where the co-operative scheduler is in use. */
if( uxTopReadyPriority > uxLeastSignificantBit )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
{
xReturn = 0;
}
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U )
{
/* There are other idle priority tasks in the ready state. If
* time slicing is used then the very next tick interrupt must be
* processed. */
xReturn = 0;
}
else if( uxHigherPriorityReadyTasks != pdFALSE )
{
/* There are tasks in the Ready state that have a priority above the
* idle priority. This path can only be reached if
* configUSE_PREEMPTION is 0. */
xReturn = 0;
}
else
{
xReturn = xNextTaskUnblockTime;
xReturn -= xTickCount;
}
return xReturn;
}
#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/
BaseType_t xTaskResumeAll( void )
{
TCB_t * pxTCB = NULL;
BaseType_t xAlreadyYielded = pdFALSE;
traceENTER_xTaskResumeAll();
#if ( configNUMBER_OF_CORES > 1 )
if( xSchedulerRunning != pdFALSE )
#endif
{
/* It is possible that an ISR caused a task to be removed from an event
* list while the scheduler was suspended. If this was the case then the
* removed task will have been added to the xPendingReadyList. Once the
* scheduler has been resumed it is safe to move all the pending ready
* tasks from this list into their appropriate ready list. */
taskENTER_CRITICAL();
{
BaseType_t xCoreID;
xCoreID = ( BaseType_t ) portGET_CORE_ID();
/* If uxSchedulerSuspended is zero then this function does not match a
* previous call to vTaskSuspendAll(). */
configASSERT( uxSchedulerSuspended != 0U );
uxSchedulerSuspended = ( UBaseType_t ) ( uxSchedulerSuspended - 1U );
portRELEASE_TASK_LOCK();
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
{
/* Move any readied tasks from the pending list into the
* appropriate ready list. */
while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
{
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
portMEMORY_BARRIER();
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
#if ( configNUMBER_OF_CORES == 1 )
{
/* If the moved task has a priority higher than the current
* task then a yield must be performed. */
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
xYieldPendings[ xCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
/* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
* If the current core yielded then vTaskSwitchContext() has already been called
* which sets xYieldPendings for the current core to pdTRUE. */
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
if( pxTCB != NULL )
{
/* A task was unblocked while the scheduler was suspended,
* which may have prevented the next unblock time from being
* re-calculated, in which case re-calculate it now. Mainly
* important for low power tickless implementations, where
* this can prevent an unnecessary exit from low power
* state. */
prvResetNextTaskUnblockTime();
}
/* If any ticks occurred while the scheduler was suspended then
* they should be processed now. This ensures the tick count does
* not slip, and that any delayed tasks are resumed at the correct
* time.
*
* It should be safe to call xTaskIncrementTick here from any core
* since we are in a critical section and xTaskIncrementTick itself
* protects itself within a critical section. Suspending the scheduler
* from any core causes xTaskIncrementTick to increment uxPendedCounts. */
{
TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
if( xPendedCounts > ( TickType_t ) 0U )
{
do
{
if( xTaskIncrementTick() != pdFALSE )
{
/* Other cores are interrupted from
* within xTaskIncrementTick(). */
xYieldPendings[ xCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
--xPendedCounts;
} while( xPendedCounts > ( TickType_t ) 0U );
xPendedTicks = 0;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
if( xYieldPendings[ xCoreID ] != pdFALSE )
{
#if ( configUSE_PREEMPTION != 0 )
{
xAlreadyYielded = pdTRUE;
}
#endif /* #if ( configUSE_PREEMPTION != 0 ) */
#if ( configNUMBER_OF_CORES == 1 )
{
taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB );
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
traceRETURN_xTaskResumeAll( xAlreadyYielded );
return xAlreadyYielded;
}
/*-----------------------------------------------------------*/
TickType_t xTaskGetTickCount( void )
{
TickType_t xTicks;
traceENTER_xTaskGetTickCount();
/* Critical section required if running on a 16 bit processor. */
portTICK_TYPE_ENTER_CRITICAL();
{
xTicks = xTickCount;
}
portTICK_TYPE_EXIT_CRITICAL();
traceRETURN_xTaskGetTickCount( xTicks );
return xTicks;
}
/*-----------------------------------------------------------*/
TickType_t xTaskGetTickCountFromISR( void )
{
TickType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
traceENTER_xTaskGetTickCountFromISR();
/* RTOS ports that support interrupt nesting have the concept of a maximum
* system call (or maximum API call) interrupt priority. Interrupts that are
* above the maximum system call priority are kept permanently enabled, even
* when the RTOS kernel is in a critical section, but cannot make any calls to
* FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
* then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has been
* assigned a priority above the configured maximum system call priority.
* Only FreeRTOS functions that end in FromISR can be called from interrupts
* that have been assigned a priority at or (logically) below the maximum
* system call interrupt priority. FreeRTOS maintains a separate interrupt
* safe API to ensure interrupt entry is as fast and as simple as possible.
* More information (albeit Cortex-M specific) is provided on the following
* link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
{
xReturn = xTickCount;
}
portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_xTaskGetTickCountFromISR( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
UBaseType_t uxTaskGetNumberOfTasks( void )
{
traceENTER_uxTaskGetNumberOfTasks();
/* A critical section is not required because the variables are of type
* BaseType_t. */
traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks );
return uxCurrentNumberOfTasks;
}
/*-----------------------------------------------------------*/
char * pcTaskGetName( TaskHandle_t xTaskToQuery )
{
TCB_t * pxTCB;
traceENTER_pcTaskGetName( xTaskToQuery );
/* If null is passed in here then the name of the calling task is being
* queried. */
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
configASSERT( pxTCB );
traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) );
return &( pxTCB->pcTaskName[ 0 ] );
}
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] )
{
TCB_t * pxReturn = NULL;
TCB_t * pxTCB = NULL;
UBaseType_t x;
char cNextChar;
BaseType_t xBreakLoop;
const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
ListItem_t * pxIterator;
/* This function is called with the scheduler suspended. */
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
{
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
/* Check each character in the name looking for a match or
* mismatch. */
xBreakLoop = pdFALSE;
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
cNextChar = pxTCB->pcTaskName[ x ];
if( cNextChar != pcNameToQuery[ x ] )
{
/* Characters didn't match. */
xBreakLoop = pdTRUE;
}
else if( cNextChar == ( char ) 0x00 )
{
/* Both strings terminated, a match must have been
* found. */
pxReturn = pxTCB;
xBreakLoop = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xBreakLoop != pdFALSE )
{
break;
}
}
if( pxReturn != NULL )
{
/* The handle has been found. */
break;
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return pxReturn;
}
#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetHandle == 1 )
TaskHandle_t xTaskGetHandle( const char * pcNameToQuery )
{
UBaseType_t uxQueue = configMAX_PRIORITIES;
TCB_t * pxTCB;
traceENTER_xTaskGetHandle( pcNameToQuery );
/* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
vTaskSuspendAll();
{
/* Search the ready lists. */
do
{
uxQueue--;
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
if( pxTCB != NULL )
{
/* Found the handle. */
break;
}
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
/* Search the delayed lists. */
if( pxTCB == NULL )
{
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
}
if( pxTCB == NULL )
{
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
}
#if ( INCLUDE_vTaskSuspend == 1 )
{
if( pxTCB == NULL )
{
/* Search the suspended list. */
pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
}
}
#endif
#if ( INCLUDE_vTaskDelete == 1 )
{
if( pxTCB == NULL )
{
/* Search the deleted list. */
pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
}
}
#endif
}
( void ) xTaskResumeAll();
traceRETURN_xTaskGetHandle( pxTCB );
return pxTCB;
}
#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
StackType_t ** ppuxStackBuffer,
StaticTask_t ** ppxTaskBuffer )
{
BaseType_t xReturn;
TCB_t * pxTCB;
traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer );
configASSERT( ppuxStackBuffer != NULL );
configASSERT( ppxTaskBuffer != NULL );
pxTCB = prvGetTCBFromHandle( xTask );
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
{
if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
{
*ppuxStackBuffer = pxTCB->pxStack;
/* MISRA Ref 11.3.1 [Misaligned access] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */
/* coverity[misra_c_2012_rule_11_3_violation] */
*ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
xReturn = pdTRUE;
}
else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
{
*ppuxStackBuffer = pxTCB->pxStack;
*ppxTaskBuffer = NULL;
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
#else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
{
*ppuxStackBuffer = pxTCB->pxStack;
*ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
xReturn = pdTRUE;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
traceRETURN_xTaskGetStaticBuffers( xReturn );
return xReturn;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
const UBaseType_t uxArraySize,
configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
{
UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime );
vTaskSuspendAll();
{
/* Is there a space in the array for each task in the system? */
if( uxArraySize >= uxCurrentNumberOfTasks )
{
/* Fill in an TaskStatus_t structure with information on each
* task in the Ready state. */
do
{
uxQueue--;
uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) );
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
/* Fill in an TaskStatus_t structure with information on each
* task in the Blocked state. */
uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) );
uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) );
#if ( INCLUDE_vTaskDelete == 1 )
{
/* Fill in an TaskStatus_t structure with information on
* each task that has been deleted but not yet cleaned up. */
uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) );
}
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
{
/* Fill in an TaskStatus_t structure with information on
* each task in the Suspended state. */
uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) );
}
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
if( pulTotalRunTime != NULL )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
#else
*pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
#endif
}
}
#else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
{
if( pulTotalRunTime != NULL )
{
*pulTotalRunTime = 0;
}
}
#endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
( void ) xTaskResumeAll();
traceRETURN_uxTaskGetSystemState( uxTask );
return uxTask;
}
#endif /* configUSE_TRACE_FACILITY */
/*----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
#if ( configNUMBER_OF_CORES == 1 )
TaskHandle_t xTaskGetIdleTaskHandle( void )
{
traceENTER_xTaskGetIdleTaskHandle();
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
* started, then xIdleTaskHandles will be NULL. */
configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) );
traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] );
return xIdleTaskHandles[ 0 ];
}
#endif /* if ( configNUMBER_OF_CORES == 1 ) */
TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID )
{
traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID );
/* Ensure the core ID is valid. */
configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE );
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
* started, then xIdleTaskHandles will be NULL. */
configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) );
traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] );
return xIdleTaskHandles[ xCoreID ];
}
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
/*----------------------------------------------------------*/
/* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure vTaskStepTick() is available when user defined low power mode
* implementations require configUSE_TICKLESS_IDLE to be set to a value other than
* 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )
void vTaskStepTick( TickType_t xTicksToJump )
{
TickType_t xUpdatedTickCount;
traceENTER_vTaskStepTick( xTicksToJump );
/* Correct the tick count value after a period during which the tick
* was suppressed. Note this does *not* call the tick hook function for
* each stepped tick. */
xUpdatedTickCount = xTickCount + xTicksToJump;
configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime );
if( xUpdatedTickCount == xNextTaskUnblockTime )
{
/* Arrange for xTickCount to reach xNextTaskUnblockTime in
* xTaskIncrementTick() when the scheduler resumes. This ensures
* that any delayed tasks are resumed at the correct time. */
configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
configASSERT( xTicksToJump != ( TickType_t ) 0 );
/* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
taskENTER_CRITICAL();
{
xPendedTicks++;
}
taskEXIT_CRITICAL();
xTicksToJump--;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xTickCount += xTicksToJump;
traceINCREASE_TICK_COUNT( xTicksToJump );
traceRETURN_vTaskStepTick();
}
#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/
BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
{
BaseType_t xYieldOccurred;
traceENTER_xTaskCatchUpTicks( xTicksToCatchUp );
/* Must not be called with the scheduler suspended as the implementation
* relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U );
/* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
* the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
vTaskSuspendAll();
/* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
taskENTER_CRITICAL();
{
xPendedTicks += xTicksToCatchUp;
}
taskEXIT_CRITICAL();
xYieldOccurred = xTaskResumeAll();
traceRETURN_xTaskCatchUpTicks( xYieldOccurred );
return xYieldOccurred;
}
/*----------------------------------------------------------*/
#if ( INCLUDE_xTaskAbortDelay == 1 )
BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
{
TCB_t * pxTCB = xTask;
BaseType_t xReturn;
traceENTER_xTaskAbortDelay( xTask );
configASSERT( pxTCB );
vTaskSuspendAll();
{
/* A task can only be prematurely removed from the Blocked state if
* it is actually in the Blocked state. */
if( eTaskGetState( xTask ) == eBlocked )
{
xReturn = pdPASS;
/* Remove the reference to the task from the blocked list. An
* interrupt won't touch the xStateListItem because the
* scheduler is suspended. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
/* Is the task waiting on an event also? If so remove it from
* the event list too. Interrupts can touch the event list item,
* even though the scheduler is suspended, so a critical section
* is used. */
taskENTER_CRITICAL();
{
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
/* This lets the task know it was forcibly removed from the
* blocked state so it should not re-evaluate its block time and
* then block again. */
pxTCB->ucDelayAborted = ( uint8_t ) pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
/* Place the unblocked task into the appropriate ready list. */
prvAddTaskToReadyList( pxTCB );
/* A task being unblocked cannot cause an immediate context
* switch if preemption is turned off. */
#if ( configUSE_PREEMPTION == 1 )
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* Preemption is on, but a context switch should only be
* performed if the unblocked task has a priority that is
* higher than the currently executing task. */
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* Pend the yield to be performed when the scheduler
* is unsuspended. */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
taskENTER_CRITICAL();
{
prvYieldForTask( pxTCB );
}
taskEXIT_CRITICAL();
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
#endif /* #if ( configUSE_PREEMPTION == 1 ) */
}
else
{
xReturn = pdFAIL;
}
}
( void ) xTaskResumeAll();
traceRETURN_xTaskAbortDelay( xReturn );
return xReturn;
}
#endif /* INCLUDE_xTaskAbortDelay */
/*----------------------------------------------------------*/
BaseType_t xTaskIncrementTick( void )
{
TCB_t * pxTCB;
TickType_t xItemValue;
BaseType_t xSwitchRequired = pdFALSE;
#if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 )
BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE };
#endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
traceENTER_xTaskIncrementTick();
/* Called by the portable layer each time a tick interrupt occurs.
* Increments the tick then checks to see if the new tick value will cause any
* tasks to be unblocked. */
traceTASK_INCREMENT_TICK( xTickCount );
/* Tick increment should occur on every kernel timer event. Core 0 has the
* responsibility to increment the tick, or increment the pended ticks if the
* scheduler is suspended. If pended ticks is greater than zero, the core that
* calls xTaskResumeAll has the responsibility to increment the tick. */
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
/* Increment the RTOS tick, switching the delayed and overflowed
* delayed lists if it wraps to 0. */
xTickCount = xConstTickCount;
if( xConstTickCount == ( TickType_t ) 0U )
{
taskSWITCH_DELAYED_LISTS();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* See if this tick has made a timeout expire. Tasks are stored in
* the queue in the order of their wake time - meaning once one task
* has been found whose block time has not expired there is no need to
* look any further down the list. */
if( xConstTickCount >= xNextTaskUnblockTime )
{
for( ; ; )
{
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
{
/* The delayed list is empty. Set xNextTaskUnblockTime
* to the maximum possible value so it is extremely
* unlikely that the
* if( xTickCount >= xNextTaskUnblockTime ) test will pass
* next time through. */
xNextTaskUnblockTime = portMAX_DELAY;
break;
}
else
{
/* The delayed list is not empty, get the value of the
* item at the head of the delayed list. This is the time
* at which the task at the head of the delayed list must
* be removed from the Blocked state. */
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
if( xConstTickCount < xItemValue )
{
/* It is not time to unblock this item yet, but the
* item value is the time at which the task at the head
* of the blocked list must be removed from the Blocked
* state - so record the item value in
* xNextTaskUnblockTime. */
xNextTaskUnblockTime = xItemValue;
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* It is time to remove the item from the Blocked state. */
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
/* Is the task waiting on an event also? If so remove
* it from the event list. */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Place the unblocked task into the appropriate ready
* list. */
prvAddTaskToReadyList( pxTCB );
/* A task being unblocked cannot cause an immediate
* context switch if preemption is turned off. */
#if ( configUSE_PREEMPTION == 1 )
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* Preemption is on, but a context switch should
* only be performed if the unblocked task's
* priority is higher than the currently executing
* task.
* The case of equal priority tasks sharing
* processing time (which happens when both
* preemption and time slicing are on) is
* handled below.*/
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if( configNUMBER_OF_CORES == 1 ) */
{
prvYieldForTask( pxTCB );
}
#endif /* #if( configNUMBER_OF_CORES == 1 ) */
}
#endif /* #if ( configUSE_PREEMPTION == 1 ) */
}
}
}
/* Tasks of equal priority to the currently running task will share
* processing time (time slice) if preemption is on, and the application
* writer has not explicitly turned time slicing off. */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
{
#if ( configNUMBER_OF_CORES == 1 )
{
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
BaseType_t xCoreID;
for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ )
{
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U )
{
xYieldRequiredForCore[ xCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
#endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
#if ( configUSE_TICK_HOOK == 1 )
{
/* Guard against the tick hook being called when the pended tick
* count is being unwound (when the scheduler is being unlocked). */
if( xPendedTicks == ( TickType_t ) 0 )
{
vApplicationTickHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICK_HOOK */
#if ( configUSE_PREEMPTION == 1 )
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* For single core the core ID is always 0. */
if( xYieldPendings[ 0 ] != pdFALSE )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
BaseType_t xCoreID, xCurrentCoreID;
xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID();
for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
#endif
{
if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) )
{
if( xCoreID == xCurrentCoreID )
{
xSwitchRequired = pdTRUE;
}
else
{
prvYieldCore( xCoreID );
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
#endif /* #if ( configUSE_PREEMPTION == 1 ) */
}
else
{
xPendedTicks += 1U;
/* The tick hook gets called at regular intervals, even if the
* scheduler is locked. */
#if ( configUSE_TICK_HOOK == 1 )
{
vApplicationTickHook();
}
#endif
}
traceRETURN_xTaskIncrementTick( xSwitchRequired );
return xSwitchRequired;
}
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
TaskHookFunction_t pxHookFunction )
{
TCB_t * xTCB;
traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction );
/* If xTask is NULL then it is the task hook of the calling task that is
* getting set. */
if( xTask == NULL )
{
xTCB = ( TCB_t * ) pxCurrentTCB;
}
else
{
xTCB = xTask;
}
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
taskENTER_CRITICAL();
{
xTCB->pxTaskTag = pxHookFunction;
}
taskEXIT_CRITICAL();
traceRETURN_vTaskSetApplicationTaskTag();
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
{
TCB_t * pxTCB;
TaskHookFunction_t xReturn;
traceENTER_xTaskGetApplicationTaskTag( xTask );
/* If xTask is NULL then set the calling task's hook. */
pxTCB = prvGetTCBFromHandle( xTask );
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
taskENTER_CRITICAL();
{
xReturn = pxTCB->pxTaskTag;
}
taskEXIT_CRITICAL();
traceRETURN_xTaskGetApplicationTaskTag( xReturn );
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
{
TCB_t * pxTCB;
TaskHookFunction_t xReturn;
UBaseType_t uxSavedInterruptStatus;
traceENTER_xTaskGetApplicationTaskTagFromISR( xTask );
/* If xTask is NULL then set the calling task's hook. */
pxTCB = prvGetTCBFromHandle( xTask );
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
/* MISRA Ref 4.7.1 [Return value shall be checked] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
/* coverity[misra_c_2012_directive_4_7_violation] */
uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
{
xReturn = pxTCB->pxTaskTag;
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn );
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
void * pvParameter )
{
TCB_t * xTCB;
BaseType_t xReturn;
traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter );
/* If xTask is NULL then we are calling our own task hook. */
if( xTask == NULL )
{
xTCB = pxCurrentTCB;
}
else
{
xTCB = xTask;
}
if( xTCB->pxTaskTag != NULL )
{
xReturn = xTCB->pxTaskTag( pvParameter );
}
else
{
xReturn = pdFAIL;
}
traceRETURN_xTaskCallApplicationTaskHook( xReturn );
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES == 1 )
void vTaskSwitchContext( void )
{
traceENTER_vTaskSwitchContext();
if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
{
/* The scheduler is currently suspended - do not allow a context
* switch. */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
xYieldPendings[ 0 ] = pdFALSE;
traceTASK_SWITCHED_OUT();
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] );
#else
ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE();
#endif
/* Add the amount of time the task has been running to the
* accumulated time so far. The time the task started running was
* stored in ulTaskSwitchedInTime. Note that there is no overflow
* protection here so count values are only valid until the timer
* overflows. The guard against negative values is to protect
* against suspect run time stat counter implementations - which
* are provided by the application, not the kernel. */
if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] )
{
pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ];
}
#endif /* configGENERATE_RUN_TIME_STATS */
/* Check for stack overflow, if configured. */
taskCHECK_FOR_STACK_OVERFLOW();
/* Before the currently running task is switched out, save its errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
}
#endif
/* Select a new task to run using either the generic C or port
* optimised asm code. */
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
taskSELECT_HIGHEST_PRIORITY_TASK();
traceTASK_SWITCHED_IN();
/* Macro to inject port specific behaviour immediately after
* switching tasks, such as setting an end of stack watchpoint
* or reconfiguring the MPU. */
portTASK_SWITCH_HOOK( pxCurrentTCB );
/* After the new task is switched in, update the global errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
}
#endif
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
{
/* Switch C-Runtime's TLS Block to point to the TLS
* Block specific to this task. */
configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock );
}
#endif
}
traceRETURN_vTaskSwitchContext();
}
#else /* if ( configNUMBER_OF_CORES == 1 ) */
void vTaskSwitchContext( BaseType_t xCoreID )
{
traceENTER_vTaskSwitchContext();
/* Acquire both locks:
* - The ISR lock protects the ready list from simultaneous access by
* both other ISRs and tasks.
* - We also take the task lock to pause here in case another core has
* suspended the scheduler. We don't want to simply set xYieldPending
* and move on if another core suspended the scheduler. We should only
* do that if the current core has suspended the scheduler. */
portGET_TASK_LOCK(); /* Must always acquire the task lock first. */
portGET_ISR_LOCK();
{
/* vTaskSwitchContext() must never be called from within a critical section.
* This is not necessarily true for single core FreeRTOS, but it is for this
* SMP port. */
configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 );
if( uxSchedulerSuspended != ( UBaseType_t ) 0U )
{
/* The scheduler is currently suspended - do not allow a context
* switch. */
xYieldPendings[ xCoreID ] = pdTRUE;
}
else
{
xYieldPendings[ xCoreID ] = pdFALSE;
traceTASK_SWITCHED_OUT();
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] );
#else
ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE();
#endif
/* Add the amount of time the task has been running to the
* accumulated time so far. The time the task started running was
* stored in ulTaskSwitchedInTime. Note that there is no overflow
* protection here so count values are only valid until the timer
* overflows. The guard against negative values is to protect
* against suspect run time stat counter implementations - which
* are provided by the application, not the kernel. */
if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] )
{
pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ];
}
#endif /* configGENERATE_RUN_TIME_STATS */
/* Check for stack overflow, if configured. */
taskCHECK_FOR_STACK_OVERFLOW();
/* Before the currently running task is switched out, save its errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno;
}
#endif
/* Select a new task to run. */
taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID );
traceTASK_SWITCHED_IN();
/* Macro to inject port specific behaviour immediately after
* switching tasks, such as setting an end of stack watchpoint
* or reconfiguring the MPU. */
portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] );
/* After the new task is switched in, update the global errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno;
}
#endif
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
{
/* Switch C-Runtime's TLS Block to point to the TLS
* Block specific to this task. */
configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock );
}
#endif
}
}
portRELEASE_ISR_LOCK();
portRELEASE_TASK_LOCK();
traceRETURN_vTaskSwitchContext();
}
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
void vTaskPlaceOnEventList( List_t * const pxEventList,
const TickType_t xTicksToWait )
{
traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait );
configASSERT( pxEventList );
/* THIS FUNCTION MUST BE CALLED WITH THE
* SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
/* Place the event list item of the TCB in the appropriate event list.
* This is placed in the list in priority order so the highest priority task
* is the first to be woken by the event.
*
* Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
* Normally, the xItemValue of a TCB's ListItem_t members is:
* xItemValue = ( configMAX_PRIORITIES - uxPriority )
* Therefore, the event list is sorted in descending priority order.
*
* The queue that contains the event list is locked, preventing
* simultaneous access from interrupts. */
vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
traceRETURN_vTaskPlaceOnEventList();
}
/*-----------------------------------------------------------*/
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
const TickType_t xItemValue,
const TickType_t xTicksToWait )
{
traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait );
configASSERT( pxEventList );
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
* the event groups implementation. */
configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
/* Store the item value in the event list item. It is safe to access the
* event list item here as interrupts won't access the event list item of a
* task that is not in the Blocked state. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
/* Place the event list item of the TCB at the end of the appropriate event
* list. It is safe to access the event list here because it is part of an
* event group implementation - and interrupts don't access event groups
* directly (instead they access them indirectly by pending function calls to
* the task level). */
listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
traceRETURN_vTaskPlaceOnUnorderedEventList();
}
/*-----------------------------------------------------------*/
#if ( configUSE_TIMERS == 1 )
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
TickType_t xTicksToWait,
const BaseType_t xWaitIndefinitely )
{
traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely );
configASSERT( pxEventList );
/* This function should not be called by application code hence the
* 'Restricted' in its name. It is not part of the public API. It is
* designed for use by kernel code, and has special calling requirements -
* it should be called with the scheduler suspended. */
/* Place the event list item of the TCB in the appropriate event list.
* In this case it is assume that this is the only task that is going to
* be waiting on this event list, so the faster vListInsertEnd() function
* can be used in place of vListInsert. */
listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
/* If the task should block indefinitely then set the block time to a
* value that will be recognised as an indefinite delay inside the
* prvAddCurrentTaskToDelayedList() function. */
if( xWaitIndefinitely != pdFALSE )
{
xTicksToWait = portMAX_DELAY;
}
traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
traceRETURN_vTaskPlaceOnEventListRestricted();
}
#endif /* configUSE_TIMERS */
/*-----------------------------------------------------------*/
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
{
TCB_t * pxUnblockedTCB;
BaseType_t xReturn;
traceENTER_xTaskRemoveFromEventList( pxEventList );
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
* called from a critical section within an ISR. */
/* The event list is sorted in priority order, so the first in the list can
* be removed as it is known to be the highest priority. Remove the TCB from
* the delayed list, and add it to the ready list.
*
* If an event is for a queue that is locked then this function will never
* get called - the lock count on the queue will get modified instead. This
* means exclusive access to the event list is guaranteed here.
*
* This function assumes that a check has already been made to ensure that
* pxEventList is not empty. */
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
}
else
{
/* The delayed and ready lists cannot be accessed, so hold this task
* pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
}
#if ( configNUMBER_OF_CORES == 1 )
{
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* Return true if the task removed from the event list has a higher
* priority than the calling task. This allows the calling task to know if
* it should force a context switch now. */
xReturn = pdTRUE;
/* Mark that a yield is pending in case the user is not using the
* "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
xReturn = pdFALSE;
#if ( configUSE_PREEMPTION == 1 )
{
prvYieldForTask( pxUnblockedTCB );
if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
{
xReturn = pdTRUE;
}
}
#endif /* #if ( configUSE_PREEMPTION == 1 ) */
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_xTaskRemoveFromEventList( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
const TickType_t xItemValue )
{
TCB_t * pxUnblockedTCB;
traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue );
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
* the event flags implementation. */
configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U );
/* Store the new item value in the event list. */
listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
/* Remove the event list form the event flag. Interrupts do not access
* event flags. */
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem );
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( pxEventListItem );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
/* Remove the task from the delayed list and add it to the ready list. The
* scheduler is suspended so interrupts will not be accessing the ready
* lists. */
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
#if ( configNUMBER_OF_CORES == 1 )
{
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The unblocked task has a priority above that of the calling task, so
* a context switch is required. This function is called with the
* scheduler suspended so xYieldPending is set so the context switch
* occurs immediately that the scheduler is resumed (unsuspended). */
xYieldPendings[ 0 ] = pdTRUE;
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
#if ( configUSE_PREEMPTION == 1 )
{
taskENTER_CRITICAL();
{
prvYieldForTask( pxUnblockedTCB );
}
taskEXIT_CRITICAL();
}
#endif
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_vTaskRemoveFromUnorderedEventList();
}
/*-----------------------------------------------------------*/
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
{
traceENTER_vTaskSetTimeOutState( pxTimeOut );
configASSERT( pxTimeOut );
taskENTER_CRITICAL();
{
pxTimeOut->xOverflowCount = xNumOfOverflows;
pxTimeOut->xTimeOnEntering = xTickCount;
}
taskEXIT_CRITICAL();
traceRETURN_vTaskSetTimeOutState();
}
/*-----------------------------------------------------------*/
void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
{
traceENTER_vTaskInternalSetTimeOutState( pxTimeOut );
/* For internal use only as it does not use a critical section. */
pxTimeOut->xOverflowCount = xNumOfOverflows;
pxTimeOut->xTimeOnEntering = xTickCount;
traceRETURN_vTaskInternalSetTimeOutState();
}
/*-----------------------------------------------------------*/
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
TickType_t * const pxTicksToWait )
{
BaseType_t xReturn;
traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait );
configASSERT( pxTimeOut );
configASSERT( pxTicksToWait );
taskENTER_CRITICAL();
{
/* Minor optimisation. The tick count cannot change in this block. */
const TickType_t xConstTickCount = xTickCount;
const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
#if ( INCLUDE_xTaskAbortDelay == 1 )
if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
{
/* The delay was aborted, which is not the same as a time out,
* but has the same result. */
pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
xReturn = pdTRUE;
}
else
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
if( *pxTicksToWait == portMAX_DELAY )
{
/* If INCLUDE_vTaskSuspend is set to 1 and the block time
* specified is the maximum block time then the task should block
* indefinitely, and therefore never time out. */
xReturn = pdFALSE;
}
else
#endif
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) )
{
/* The tick count is greater than the time at which
* vTaskSetTimeout() was called, but has also overflowed since
* vTaskSetTimeOut() was called. It must have wrapped all the way
* around and gone past again. This passed since vTaskSetTimeout()
* was called. */
xReturn = pdTRUE;
*pxTicksToWait = ( TickType_t ) 0;
}
else if( xElapsedTime < *pxTicksToWait )
{
/* Not a genuine timeout. Adjust parameters for time remaining. */
*pxTicksToWait -= xElapsedTime;
vTaskInternalSetTimeOutState( pxTimeOut );
xReturn = pdFALSE;
}
else
{
*pxTicksToWait = ( TickType_t ) 0;
xReturn = pdTRUE;
}
}
taskEXIT_CRITICAL();
traceRETURN_xTaskCheckForTimeOut( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskMissedYield( void )
{
traceENTER_vTaskMissedYield();
/* Must be called from within a critical section. */
xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
traceRETURN_vTaskMissedYield();
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
{
UBaseType_t uxReturn;
TCB_t const * pxTCB;
traceENTER_uxTaskGetTaskNumber( xTask );
if( xTask != NULL )
{
pxTCB = xTask;
uxReturn = pxTCB->uxTaskNumber;
}
else
{
uxReturn = 0U;
}
traceRETURN_uxTaskGetTaskNumber( uxReturn );
return uxReturn;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vTaskSetTaskNumber( TaskHandle_t xTask,
const UBaseType_t uxHandle )
{
TCB_t * pxTCB;
traceENTER_vTaskSetTaskNumber( xTask, uxHandle );
if( xTask != NULL )
{
pxTCB = xTask;
pxTCB->uxTaskNumber = uxHandle;
}
traceRETURN_vTaskSetTaskNumber();
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
/*
* -----------------------------------------------------------
* The passive idle task.
* ----------------------------------------------------------
*
* The passive idle task is used for all the additional cores in a SMP
* system. There must be only 1 active idle task and the rest are passive
* idle tasks.
*
* The portTASK_FUNCTION() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for this function is:
*
* void prvPassiveIdleTask( void *pvParameters );
*/
#if ( configNUMBER_OF_CORES > 1 )
static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters )
{
( void ) pvParameters;
taskYIELD();
for( ; configCONTROL_INFINITE_LOOP(); )
{
#if ( configUSE_PREEMPTION == 0 )
{
/* If we are not using preemption we keep forcing a task switch to
* see if any other task has become available. If we are using
* preemption we don't need to do this as any task becoming available
* will automatically get the processor anyway. */
taskYIELD();
}
#endif /* configUSE_PREEMPTION */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
{
/* When using preemption tasks of equal priority will be
* timesliced. If a task that is sharing the idle priority is ready
* to run then the idle task should yield before the end of the
* timeslice.
*
* A critical region is not required here as we are just reading from
* the list, and an occasional incorrect value will not matter. If
* the ready list at the idle priority contains one more task than the
* number of idle tasks, which is equal to the configured numbers of cores
* then a task other than the idle task is ready to execute. */
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
{
taskYIELD();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
#if ( configUSE_PASSIVE_IDLE_HOOK == 1 )
{
/* Call the user defined function from within the idle task. This
* allows the application designer to add background functionality
* without the overhead of a separate task.
*
* This hook is intended to manage core activity such as disabling cores that go idle.
*
* NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
* CALL A FUNCTION THAT MIGHT BLOCK. */
vApplicationPassiveIdleHook();
}
#endif /* configUSE_PASSIVE_IDLE_HOOK */
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*
* -----------------------------------------------------------
* The idle task.
* ----------------------------------------------------------
*
* The portTASK_FUNCTION() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for this function is:
*
* void prvIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION( prvIdleTask, pvParameters )
{
/* Stop warnings. */
( void ) pvParameters;
/** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
* SCHEDULER IS STARTED. **/
/* In case a task that has a secure context deletes itself, in which case
* the idle task is responsible for deleting the task's secure context, if
* any. */
portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
#if ( configNUMBER_OF_CORES > 1 )
{
/* SMP all cores start up in the idle task. This initial yield gets the application
* tasks started. */
taskYIELD();
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
for( ; configCONTROL_INFINITE_LOOP(); )
{
/* See if any tasks have deleted themselves - if so then the idle task
* is responsible for freeing the deleted task's TCB and stack. */
prvCheckTasksWaitingTermination();
#if ( configUSE_PREEMPTION == 0 )
{
/* If we are not using preemption we keep forcing a task switch to
* see if any other task has become available. If we are using
* preemption we don't need to do this as any task becoming available
* will automatically get the processor anyway. */
taskYIELD();
}
#endif /* configUSE_PREEMPTION */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
{
/* When using preemption tasks of equal priority will be
* timesliced. If a task that is sharing the idle priority is ready
* to run then the idle task should yield before the end of the
* timeslice.
*
* A critical region is not required here as we are just reading from
* the list, and an occasional incorrect value will not matter. If
* the ready list at the idle priority contains one more task than the
* number of idle tasks, which is equal to the configured numbers of cores
* then a task other than the idle task is ready to execute. */
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES )
{
taskYIELD();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
#if ( configUSE_IDLE_HOOK == 1 )
{
/* Call the user defined function from within the idle task. */
vApplicationIdleHook();
}
#endif /* configUSE_IDLE_HOOK */
/* This conditional compilation should use inequality to 0, not equality
* to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
* user defined low power mode implementations require
* configUSE_TICKLESS_IDLE to be set to a value other than 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )
{
TickType_t xExpectedIdleTime;
/* It is not desirable to suspend then resume the scheduler on
* each iteration of the idle task. Therefore, a preliminary
* test of the expected idle time is performed without the
* scheduler suspended. The result here is not necessarily
* valid. */
xExpectedIdleTime = prvGetExpectedIdleTime();
if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
{
vTaskSuspendAll();
{
/* Now the scheduler is suspended, the expected idle
* time can be sampled again, and this time its value can
* be used. */
configASSERT( xNextTaskUnblockTime >= xTickCount );
xExpectedIdleTime = prvGetExpectedIdleTime();
/* Define the following macro to set xExpectedIdleTime to 0
* if the application does not want
* portSUPPRESS_TICKS_AND_SLEEP() to be called. */
configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
{
traceLOW_POWER_IDLE_BEGIN();
portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
traceLOW_POWER_IDLE_END();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
( void ) xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICKLESS_IDLE */
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) )
{
/* Call the user defined function from within the idle task. This
* allows the application designer to add background functionality
* without the overhead of a separate task.
*
* This hook is intended to manage core activity such as disabling cores that go idle.
*
* NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
* CALL A FUNCTION THAT MIGHT BLOCK. */
vApplicationPassiveIdleHook();
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */
}
}
/*-----------------------------------------------------------*/
#if ( configUSE_TICKLESS_IDLE != 0 )
eSleepModeStatus eTaskConfirmSleepModeStatus( void )
{
#if ( INCLUDE_vTaskSuspend == 1 )
/* The idle task exists in addition to the application tasks. */
const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES;
#endif /* INCLUDE_vTaskSuspend */
eSleepModeStatus eReturn = eStandardSleep;
traceENTER_eTaskConfirmSleepModeStatus();
/* This function must be called from a critical section. */
if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U )
{
/* A task was made ready while the scheduler was suspended. */
eReturn = eAbortSleep;
}
else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
{
/* A yield was pended while the scheduler was suspended. */
eReturn = eAbortSleep;
}
else if( xPendedTicks != 0U )
{
/* A tick interrupt has already occurred but was held pending
* because the scheduler is suspended. */
eReturn = eAbortSleep;
}
#if ( INCLUDE_vTaskSuspend == 1 )
else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
{
/* If all the tasks are in the suspended list (which might mean they
* have an infinite block time rather than actually being suspended)
* then it is safe to turn all clocks off and just wait for external
* interrupts. */
eReturn = eNoTasksWaitingTimeout;
}
#endif /* INCLUDE_vTaskSuspend */
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_eTaskConfirmSleepModeStatus( eReturn );
return eReturn;
}
#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
BaseType_t xIndex,
void * pvValue )
{
TCB_t * pxTCB;
traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue );
if( ( xIndex >= 0 ) &&
( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
{
pxTCB = prvGetTCBFromHandle( xTaskToSet );
configASSERT( pxTCB != NULL );
pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
}
traceRETURN_vTaskSetThreadLocalStoragePointer();
}
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
BaseType_t xIndex )
{
void * pvReturn = NULL;
TCB_t * pxTCB;
traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex );
if( ( xIndex >= 0 ) &&
( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
{
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
}
else
{
pvReturn = NULL;
}
traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn );
return pvReturn;
}
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/
#if ( portUSING_MPU_WRAPPERS == 1 )
void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
const MemoryRegion_t * const pxRegions )
{
TCB_t * pxTCB;
traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions );
/* If null is passed in here then we are modifying the MPU settings of
* the calling task. */
pxTCB = prvGetTCBFromHandle( xTaskToModify );
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 );
traceRETURN_vTaskAllocateMPURegions();
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
static void prvInitialiseTaskLists( void )
{
UBaseType_t uxPriority;
for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
{
vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
}
vListInitialise( &xDelayedTaskList1 );
vListInitialise( &xDelayedTaskList2 );
vListInitialise( &xPendingReadyList );
#if ( INCLUDE_vTaskDelete == 1 )
{
vListInitialise( &xTasksWaitingTermination );
}
#endif /* INCLUDE_vTaskDelete */
#if ( INCLUDE_vTaskSuspend == 1 )
{
vListInitialise( &xSuspendedTaskList );
}
#endif /* INCLUDE_vTaskSuspend */
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
* using list2. */
pxDelayedTaskList = &xDelayedTaskList1;
pxOverflowDelayedTaskList = &xDelayedTaskList2;
}
/*-----------------------------------------------------------*/
static void prvCheckTasksWaitingTermination( void )
{
/** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
#if ( INCLUDE_vTaskDelete == 1 )
{
TCB_t * pxTCB;
/* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
* being called too often in the idle task. */
while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
{
#if ( configNUMBER_OF_CORES == 1 )
{
taskENTER_CRITICAL();
{
{
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
--uxCurrentNumberOfTasks;
--uxDeletedTasksWaitingCleanUp;
}
}
taskEXIT_CRITICAL();
prvDeleteTCB( pxTCB );
}
#else /* #if( configNUMBER_OF_CORES == 1 ) */
{
pxTCB = NULL;
taskENTER_CRITICAL();
{
/* For SMP, multiple idles can be running simultaneously
* and we need to check that other idles did not cleanup while we were
* waiting to enter the critical section. */
if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
{
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
{
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
--uxCurrentNumberOfTasks;
--uxDeletedTasksWaitingCleanUp;
}
else
{
/* The TCB to be deleted still has not yet been switched out
* by the scheduler, so we will just exit this loop early and
* try again next time. */
taskEXIT_CRITICAL();
break;
}
}
}
taskEXIT_CRITICAL();
if( pxTCB != NULL )
{
prvDeleteTCB( pxTCB );
}
}
#endif /* #if( configNUMBER_OF_CORES == 1 ) */
}
}
#endif /* INCLUDE_vTaskDelete */
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vTaskGetInfo( TaskHandle_t xTask,
TaskStatus_t * pxTaskStatus,
BaseType_t xGetFreeStackSpace,
eTaskState eState )
{
TCB_t * pxTCB;
traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState );
/* xTask is NULL then get the state of the calling task. */
pxTCB = prvGetTCBFromHandle( xTask );
pxTaskStatus->xHandle = pxTCB;
pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
pxTaskStatus->pxStackBase = pxTCB->pxStack;
#if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack;
pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
#endif
pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
#if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
{
pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
}
#endif
#if ( configUSE_MUTEXES == 1 )
{
pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
}
#else
{
pxTaskStatus->uxBasePriority = 0;
}
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
}
#else
{
pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
}
#endif
/* Obtaining the task state is a little fiddly, so is only done if the
* value of eState passed into this function is eInvalid - otherwise the
* state is just set to whatever is passed in. */
if( eState != eInvalid )
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
pxTaskStatus->eCurrentState = eRunning;
}
else
{
pxTaskStatus->eCurrentState = eState;
#if ( INCLUDE_vTaskSuspend == 1 )
{
/* If the task is in the suspended list then there is a
* chance it is actually just blocked indefinitely - so really
* it should be reported as being in the Blocked state. */
if( eState == eSuspended )
{
vTaskSuspendAll();
{
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
pxTaskStatus->eCurrentState = eBlocked;
}
else
{
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
/* The task does not appear on the event list item of
* and of the RTOS objects, but could still be in the
* blocked state if it is waiting on its notification
* rather than waiting on an object. If not, is
* suspended. */
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
pxTaskStatus->eCurrentState = eBlocked;
break;
}
}
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
}
( void ) xTaskResumeAll();
}
}
#endif /* INCLUDE_vTaskSuspend */
/* Tasks can be in pending ready list and other state list at the
* same time. These tasks are in ready state no matter what state
* list the task is in. */
taskENTER_CRITICAL();
{
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE )
{
pxTaskStatus->eCurrentState = eReady;
}
}
taskEXIT_CRITICAL();
}
}
else
{
pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
}
/* Obtaining the stack space takes some time, so the xGetFreeStackSpace
* parameter is provided to allow it to be skipped. */
if( xGetFreeStackSpace != pdFALSE )
{
#if ( portSTACK_GROWTH > 0 )
{
pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
}
#else
{
pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
}
#endif
}
else
{
pxTaskStatus->usStackHighWaterMark = 0;
}
traceRETURN_vTaskGetInfo();
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState )
{
UBaseType_t uxTask = 0;
const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList );
ListItem_t * pxIterator;
TCB_t * pxTCB = NULL;
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
/* Populate an TaskStatus_t structure within the
* pxTaskStatusArray array for each task that is referenced from
* pxList. See the definition of TaskStatus_t in task.h for the
* meaning of each TaskStatus_t structure member. */
for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
{
/* MISRA Ref 11.5.3 [Void pointer assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTCB = listGET_LIST_ITEM_OWNER( pxIterator );
vTaskGetInfo( ( TaskHandle_t ) pxTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
uxTask++;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return uxTask;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
{
configSTACK_DEPTH_TYPE uxCount = 0U;
while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
{
pucStackByte -= portSTACK_GROWTH;
uxCount++;
}
uxCount /= ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t );
return uxCount;
}
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
* same except for their return type. Using configSTACK_DEPTH_TYPE allows the
* user to determine the return type. It gets around the problem of the value
* overflowing on 8-bit types without breaking backward compatibility for
* applications that expect an 8-bit return type. */
configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * pucEndOfStack;
configSTACK_DEPTH_TYPE uxReturn;
traceENTER_uxTaskGetStackHighWaterMark2( xTask );
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
* the same except for their return type. Using configSTACK_DEPTH_TYPE
* allows the user to determine the return type. It gets around the
* problem of the value overflowing on 8-bit types without breaking
* backward compatibility for applications that expect an 8-bit return
* type. */
pxTCB = prvGetTCBFromHandle( xTask );
#if portSTACK_GROWTH < 0
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
}
#else
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
}
#endif
uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn );
return uxReturn;
}
#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * pucEndOfStack;
UBaseType_t uxReturn;
traceENTER_uxTaskGetStackHighWaterMark( xTask );
pxTCB = prvGetTCBFromHandle( xTask );
#if portSTACK_GROWTH < 0
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
}
#else
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
}
#endif
uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
traceRETURN_uxTaskGetStackHighWaterMark( uxReturn );
return uxReturn;
}
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB )
{
/* This call is required specifically for the TriCore port. It must be
* above the vPortFree() calls. The call is also used by ports/demos that
* want to allocate and clean RAM statically. */
portCLEAN_UP_TCB( pxTCB );
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
{
/* Free up the memory allocated for the task's TLS Block. */
configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
}
#endif
#if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
{
/* The task can only have been allocated dynamically - free both
* the stack and TCB. */
vPortFreeStack( pxTCB->pxStack );
vPortFree( pxTCB );
}
#elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* The task could have been allocated statically or dynamically, so
* check what was statically allocated before trying to free the
* memory. */
if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
{
/* Both the stack and TCB were allocated dynamically, so both
* must be freed. */
vPortFreeStack( pxTCB->pxStack );
vPortFree( pxTCB );
}
else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
{
/* Only the stack was statically allocated, so the TCB is the
* only memory that must be freed. */
vPortFree( pxTCB );
}
else
{
/* Neither the stack nor the TCB were allocated dynamically, so
* nothing needs to be freed. */
configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
static void prvResetNextTaskUnblockTime( void )
{
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
{
/* The new current delayed list is empty. Set xNextTaskUnblockTime to
* the maximum possible value so it is extremely unlikely that the
* if( xTickCount >= xNextTaskUnblockTime ) test will pass until
* there is an item in the delayed list. */
xNextTaskUnblockTime = portMAX_DELAY;
}
else
{
/* The new current delayed list is not empty, get the value of
* the item at the head of the delayed list. This is the time at
* which the task at the head of the delayed list should be removed
* from the Blocked state. */
xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
}
}
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 )
#if ( configNUMBER_OF_CORES == 1 )
TaskHandle_t xTaskGetCurrentTaskHandle( void )
{
TaskHandle_t xReturn;
traceENTER_xTaskGetCurrentTaskHandle();
/* A critical section is not required as this is not called from
* an interrupt and the current TCB will always be the same for any
* individual execution thread. */
xReturn = pxCurrentTCB;
traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
return xReturn;
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
TaskHandle_t xTaskGetCurrentTaskHandle( void )
{
TaskHandle_t xReturn;
UBaseType_t uxSavedInterruptStatus;
traceENTER_xTaskGetCurrentTaskHandle();
uxSavedInterruptStatus = portSET_INTERRUPT_MASK();
{
xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
}
portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus );
traceRETURN_xTaskGetCurrentTaskHandle( xReturn );
return xReturn;
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID )
{
TaskHandle_t xReturn = NULL;
traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID );
if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
{
#if ( configNUMBER_OF_CORES == 1 )
xReturn = pxCurrentTCB;
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
xReturn = pxCurrentTCBs[ xCoreID ];
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn );
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
BaseType_t xTaskGetSchedulerState( void )
{
BaseType_t xReturn;
traceENTER_xTaskGetSchedulerState();
if( xSchedulerRunning == pdFALSE )
{
xReturn = taskSCHEDULER_NOT_STARTED;
}
else
{
#if ( configNUMBER_OF_CORES > 1 )
taskENTER_CRITICAL();
#endif
{
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
xReturn = taskSCHEDULER_RUNNING;
}
else
{
xReturn = taskSCHEDULER_SUSPENDED;
}
}
#if ( configNUMBER_OF_CORES > 1 )
taskEXIT_CRITICAL();
#endif
}
traceRETURN_xTaskGetSchedulerState( xReturn );
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
{
TCB_t * const pxMutexHolderTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
traceENTER_xTaskPriorityInherit( pxMutexHolder );
/* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority
* inheritance is not applied in this scenario. */
if( pxMutexHolder != NULL )
{
/* If the holder of the mutex has a priority below the priority of
* the task attempting to obtain the mutex then it will temporarily
* inherit the priority of the task attempting to obtain the mutex. */
if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
{
/* Adjust the mutex holder state to account for its new
* priority. Only reset the event list item value if the value is
* not being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
{
listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task being modified is in the ready state it will need
* to be moved into a new list. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
{
if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Inherit the priority before being moved into the new list. */
pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
prvAddTaskToReadyList( pxMutexHolderTCB );
#if ( configNUMBER_OF_CORES > 1 )
{
/* The priority of the task is raised. Yield for this task
* if it is not running. */
if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE )
{
prvYieldForTask( pxMutexHolderTCB );
}
}
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
}
else
{
/* Just inherit the priority. */
pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
}
traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
/* Inheritance occurred. */
xReturn = pdTRUE;
}
else
{
if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
{
/* The base priority of the mutex holder is lower than the
* priority of the task attempting to take the mutex, but the
* current priority of the mutex holder is not lower than the
* priority of the task attempting to take the mutex.
* Therefore the mutex holder must have already inherited a
* priority, but inheritance would have occurred if that had
* not been the case. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_xTaskPriorityInherit( xReturn );
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
{
TCB_t * const pxTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
traceENTER_xTaskPriorityDisinherit( pxMutexHolder );
if( pxMutexHolder != NULL )
{
/* A task can only have an inherited priority if it holds the mutex.
* If the mutex is held by a task then it cannot be given from an
* interrupt, and if a mutex is given by the holding task then it must
* be the running state task. */
configASSERT( pxTCB == pxCurrentTCB );
configASSERT( pxTCB->uxMutexesHeld );
( pxTCB->uxMutexesHeld )--;
/* Has the holder of the mutex inherited the priority of another
* task? */
if( pxTCB->uxPriority != pxTCB->uxBasePriority )
{
/* Only disinherit if no other mutexes are held. */
if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
{
/* A task can only have an inherited priority if it holds
* the mutex. If the mutex is held by a task then it cannot be
* given from an interrupt, and if a mutex is given by the
* holding task then it must be the running state task. Remove
* the holding task from the ready list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Disinherit the priority before adding the task into the
* new ready list. */
traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
pxTCB->uxPriority = pxTCB->uxBasePriority;
/* Reset the event list item value. It cannot be in use for
* any other purpose if this task is running, and it must be
* running to give back the mutex. */
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority );
prvAddTaskToReadyList( pxTCB );
#if ( configNUMBER_OF_CORES > 1 )
{
/* The priority of the task is dropped. Yield the core on
* which the task is running. */
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
prvYieldCore( pxTCB->xTaskRunState );
}
}
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
/* Return true to indicate that a context switch is required.
* This is only actually required in the corner case whereby
* multiple mutexes were held and the mutexes were given back
* in an order different to that in which they were taken.
* If a context switch did not occur when the first mutex was
* returned, even if a task was waiting on it, then a context
* switch should occur when the last mutex is returned whether
* a task is waiting on it or not. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_xTaskPriorityDisinherit( xReturn );
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
UBaseType_t uxHighestPriorityWaitingTask )
{
TCB_t * const pxTCB = pxMutexHolder;
UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask );
if( pxMutexHolder != NULL )
{
/* If pxMutexHolder is not NULL then the holder must hold at least
* one mutex. */
configASSERT( pxTCB->uxMutexesHeld );
/* Determine the priority to which the priority of the task that
* holds the mutex should be set. This will be the greater of the
* holding task's base priority and the priority of the highest
* priority task that is waiting to obtain the mutex. */
if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
{
uxPriorityToUse = uxHighestPriorityWaitingTask;
}
else
{
uxPriorityToUse = pxTCB->uxBasePriority;
}
/* Does the priority need to change? */
if( pxTCB->uxPriority != uxPriorityToUse )
{
/* Only disinherit if no other mutexes are held. This is a
* simplification in the priority inheritance implementation. If
* the task that holds the mutex is also holding other mutexes then
* the other mutexes may have caused the priority inheritance. */
if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
{
/* If a task has timed out because it already holds the
* mutex it was trying to obtain then it cannot of inherited
* its own priority. */
configASSERT( pxTCB != pxCurrentTCB );
/* Disinherit the priority, remembering the previous
* priority to facilitate determining the subject task's
* state. */
traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
uxPriorityUsedOnEntry = pxTCB->uxPriority;
pxTCB->uxPriority = uxPriorityToUse;
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0U ) )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the running task is not the task that holds the mutex
* then the task that holds the mutex could be in either the
* Ready, Blocked or Suspended states. Only remove the task
* from its current state list if it is in the Ready state as
* the task's priority is going to change and there is one
* Ready list per priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
#if ( configNUMBER_OF_CORES > 1 )
{
/* The priority of the task is dropped. Yield the core on
* which the task is running. */
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
prvYieldCore( pxTCB->xTaskRunState );
}
}
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskPriorityDisinheritAfterTimeout();
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
/* If not in a critical section then yield immediately.
* Otherwise set xYieldPendings to true to wait to
* yield until exiting the critical section.
*/
void vTaskYieldWithinAPI( void )
{
traceENTER_vTaskYieldWithinAPI();
if( portGET_CRITICAL_NESTING_COUNT() == 0U )
{
portYIELD();
}
else
{
xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
}
traceRETURN_vTaskYieldWithinAPI();
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
void vTaskEnterCritical( void )
{
traceENTER_vTaskEnterCritical();
portDISABLE_INTERRUPTS();
if( xSchedulerRunning != pdFALSE )
{
( pxCurrentTCB->uxCriticalNesting )++;
/* This is not the interrupt safe version of the enter critical
* function so assert() if it is being called from an interrupt
* context. Only API functions that end in "FromISR" can be used in an
* interrupt. Only assert if the critical nesting count is 1 to
* protect against recursive calls if the assert function also uses a
* critical section. */
if( pxCurrentTCB->uxCriticalNesting == 1U )
{
portASSERT_IF_IN_ISR();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskEnterCritical();
}
#endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
void vTaskEnterCritical( void )
{
traceENTER_vTaskEnterCritical();
portDISABLE_INTERRUPTS();
if( xSchedulerRunning != pdFALSE )
{
if( portGET_CRITICAL_NESTING_COUNT() == 0U )
{
portGET_TASK_LOCK();
portGET_ISR_LOCK();
}
portINCREMENT_CRITICAL_NESTING_COUNT();
/* This is not the interrupt safe version of the enter critical
* function so assert() if it is being called from an interrupt
* context. Only API functions that end in "FromISR" can be used in an
* interrupt. Only assert if the critical nesting count is 1 to
* protect against recursive calls if the assert function also uses a
* critical section. */
if( portGET_CRITICAL_NESTING_COUNT() == 1U )
{
portASSERT_IF_IN_ISR();
if( uxSchedulerSuspended == 0U )
{
/* The only time there would be a problem is if this is called
* before a context switch and vTaskExitCritical() is called
* after pxCurrentTCB changes. Therefore this should not be
* used within vTaskSwitchContext(). */
prvCheckForRunStateChange();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskEnterCritical();
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
UBaseType_t vTaskEnterCriticalFromISR( void )
{
UBaseType_t uxSavedInterruptStatus = 0;
traceENTER_vTaskEnterCriticalFromISR();
if( xSchedulerRunning != pdFALSE )
{
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
if( portGET_CRITICAL_NESTING_COUNT() == 0U )
{
portGET_ISR_LOCK();
}
portINCREMENT_CRITICAL_NESTING_COUNT();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus );
return uxSavedInterruptStatus;
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) )
void vTaskExitCritical( void )
{
traceENTER_vTaskExitCritical();
if( xSchedulerRunning != pdFALSE )
{
/* If pxCurrentTCB->uxCriticalNesting is zero then this function
* does not match a previous call to vTaskEnterCritical(). */
configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );
/* This function should not be called in ISR. Use vTaskExitCriticalFromISR
* to exit critical section from ISR. */
portASSERT_IF_IN_ISR();
if( pxCurrentTCB->uxCriticalNesting > 0U )
{
( pxCurrentTCB->uxCriticalNesting )--;
if( pxCurrentTCB->uxCriticalNesting == 0U )
{
portENABLE_INTERRUPTS();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskExitCritical();
}
#endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
void vTaskExitCritical( void )
{
traceENTER_vTaskExitCritical();
if( xSchedulerRunning != pdFALSE )
{
/* If critical nesting count is zero then this function
* does not match a previous call to vTaskEnterCritical(). */
configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
/* This function should not be called in ISR. Use vTaskExitCriticalFromISR
* to exit critical section from ISR. */
portASSERT_IF_IN_ISR();
if( portGET_CRITICAL_NESTING_COUNT() > 0U )
{
portDECREMENT_CRITICAL_NESTING_COUNT();
if( portGET_CRITICAL_NESTING_COUNT() == 0U )
{
BaseType_t xYieldCurrentTask;
/* Get the xYieldPending stats inside the critical section. */
xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ];
portRELEASE_ISR_LOCK();
portRELEASE_TASK_LOCK();
portENABLE_INTERRUPTS();
/* When a task yields in a critical section it just sets
* xYieldPending to true. So now that we have exited the
* critical section check if xYieldPending is true, and
* if so yield. */
if( xYieldCurrentTask != pdFALSE )
{
portYIELD();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskExitCritical();
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus )
{
traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus );
if( xSchedulerRunning != pdFALSE )
{
/* If critical nesting count is zero then this function
* does not match a previous call to vTaskEnterCritical(). */
configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
if( portGET_CRITICAL_NESTING_COUNT() > 0U )
{
portDECREMENT_CRITICAL_NESTING_COUNT();
if( portGET_CRITICAL_NESTING_COUNT() == 0U )
{
portRELEASE_ISR_LOCK();
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskExitCriticalFromISR();
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName )
{
size_t x;
/* Start by copying the entire string. */
( void ) strcpy( pcBuffer, pcTaskName );
/* Pad the end of the string with spaces to ensure columns line up when
* printed out. */
for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ )
{
pcBuffer[ x ] = ' ';
}
/* Terminate. */
pcBuffer[ x ] = ( char ) 0x00;
/* Return the new end of string. */
return &( pcBuffer[ x ] );
}
#endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
void vTaskListTasks( char * pcWriteBuffer,
size_t uxBufferLength )
{
TaskStatus_t * pxTaskStatusArray;
size_t uxConsumedBufferLength = 0;
size_t uxCharsWrittenBySnprintf;
int iSnprintfReturnValue;
BaseType_t xOutputBufferFull = pdFALSE;
UBaseType_t uxArraySize, x;
char cStatus;
traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength );
/*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many
* of the demo applications. Do not consider it to be part of the
* scheduler.
*
* vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the
* uxTaskGetSystemState() output into a human readable table that
* displays task: names, states, priority, stack usage and task number.
* Stack usage specified as the number of unused StackType_t words stack can hold
* on top of stack - not the number of bytes.
*
* vTaskListTasks() has a dependency on the snprintf() C library function that
* might bloat the code size, use a lot of stack, and provide different
* results on different platforms. An alternative, tiny, third party,
* and limited functionality implementation of snprintf() is provided in
* many of the FreeRTOS/Demo sub-directories in a file called
* printf-stdarg.c (note printf-stdarg.c does not provide a full
* snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly
* through a call to vTaskListTasks().
*/
/* Make sure the write buffer does not contain a string. */
*pcWriteBuffer = ( char ) 0x00;
/* Take a snapshot of the number of tasks in case it changes while this
* function is executing. */
uxArraySize = uxCurrentNumberOfTasks;
/* Allocate an array index for each task. NOTE! if
* configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
* equate to NULL. */
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
if( pxTaskStatusArray != NULL )
{
/* Generate the (binary) data. */
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
/* Create a human readable table from the binary data. */
for( x = 0; x < uxArraySize; x++ )
{
switch( pxTaskStatusArray[ x ].eCurrentState )
{
case eRunning:
cStatus = tskRUNNING_CHAR;
break;
case eReady:
cStatus = tskREADY_CHAR;
break;
case eBlocked:
cStatus = tskBLOCKED_CHAR;
break;
case eSuspended:
cStatus = tskSUSPENDED_CHAR;
break;
case eDeleted:
cStatus = tskDELETED_CHAR;
break;
case eInvalid: /* Fall through. */
default: /* Should not get here, but it is included
* to prevent static checking errors. */
cStatus = ( char ) 0x00;
break;
}
/* Is there enough space in the buffer to hold task name? */
if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
{
/* Write the task name to the string, padding with spaces so it
* can be printed in tabular form more easily. */
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
/* Do not count the terminating null character. */
uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
/* Is there space left in the buffer? -1 is done because snprintf
* writes a terminating null character. So we are essentially
* checking if the buffer has space to write at least one non-null
* character. */
if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
{
/* Write the rest of the string. */
#if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) )
/* MISRA Ref 21.6.1 [snprintf for utility] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
/* coverity[misra_c_2012_rule_21_6_violation] */
iSnprintfReturnValue = snprintf( pcWriteBuffer,
uxBufferLength - uxConsumedBufferLength,
"\t%c\t%u\t%u\t%u\t0x%x\r\n",
cStatus,
( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber,
( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask );
#else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
/* MISRA Ref 21.6.1 [snprintf for utility] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
/* coverity[misra_c_2012_rule_21_6_violation] */
iSnprintfReturnValue = snprintf( pcWriteBuffer,
uxBufferLength - uxConsumedBufferLength,
"\t%c\t%u\t%u\t%u\r\n",
cStatus,
( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority,
( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark,
( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
#endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */
uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
uxConsumedBufferLength += uxCharsWrittenBySnprintf;
pcWriteBuffer += uxCharsWrittenBySnprintf;
}
else
{
xOutputBufferFull = pdTRUE;
}
}
else
{
xOutputBufferFull = pdTRUE;
}
if( xOutputBufferFull == pdTRUE )
{
break;
}
}
/* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
* is 0 then vPortFree() will be #defined to nothing. */
vPortFree( pxTaskStatusArray );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskListTasks();
}
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
void vTaskGetRunTimeStatistics( char * pcWriteBuffer,
size_t uxBufferLength )
{
TaskStatus_t * pxTaskStatusArray;
size_t uxConsumedBufferLength = 0;
size_t uxCharsWrittenBySnprintf;
int iSnprintfReturnValue;
BaseType_t xOutputBufferFull = pdFALSE;
UBaseType_t uxArraySize, x;
configRUN_TIME_COUNTER_TYPE ulTotalTime = 0;
configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage;
traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength );
/*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many
* of the demo applications. Do not consider it to be part of the
* scheduler.
*
* vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part
* of the uxTaskGetSystemState() output into a human readable table that
* displays the amount of time each task has spent in the Running state
* in both absolute and percentage terms.
*
* vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library
* function that might bloat the code size, use a lot of stack, and
* provide different results on different platforms. An alternative,
* tiny, third party, and limited functionality implementation of
* snprintf() is provided in many of the FreeRTOS/Demo sub-directories in
* a file called printf-stdarg.c (note printf-stdarg.c does not provide
* a full snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly
* through a call to vTaskGetRunTimeStatistics().
*/
/* Make sure the write buffer does not contain a string. */
*pcWriteBuffer = ( char ) 0x00;
/* Take a snapshot of the number of tasks in case it changes while this
* function is executing. */
uxArraySize = uxCurrentNumberOfTasks;
/* Allocate an array index for each task. NOTE! If
* configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
* equate to NULL. */
/* MISRA Ref 11.5.1 [Malloc memory assignment] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */
/* coverity[misra_c_2012_rule_11_5_violation] */
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
if( pxTaskStatusArray != NULL )
{
/* Generate the (binary) data. */
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
/* For percentage calculations. */
ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100U );
/* Avoid divide by zero errors. */
if( ulTotalTime > 0U )
{
/* Create a human readable table from the binary data. */
for( x = 0; x < uxArraySize; x++ )
{
/* What percentage of the total run time has the task used?
* This will always be rounded down to the nearest integer.
* ulTotalRunTime has already been divided by 100. */
ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
/* Is there enough space in the buffer to hold task name? */
if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength )
{
/* Write the task name to the string, padding with
* spaces so it can be printed in tabular form more
* easily. */
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
/* Do not count the terminating null character. */
uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U );
/* Is there space left in the buffer? -1 is done because snprintf
* writes a terminating null character. So we are essentially
* checking if the buffer has space to write at least one non-null
* character. */
if( uxConsumedBufferLength < ( uxBufferLength - 1U ) )
{
if( ulStatsAsPercentage > 0U )
{
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
{
/* MISRA Ref 21.6.1 [snprintf for utility] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
/* coverity[misra_c_2012_rule_21_6_violation] */
iSnprintfReturnValue = snprintf( pcWriteBuffer,
uxBufferLength - uxConsumedBufferLength,
"\t%lu\t\t%lu%%\r\n",
pxTaskStatusArray[ x ].ulRunTimeCounter,
ulStatsAsPercentage );
}
#else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
{
/* sizeof( int ) == sizeof( long ) so a smaller
* printf() library can be used. */
/* MISRA Ref 21.6.1 [snprintf for utility] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
/* coverity[misra_c_2012_rule_21_6_violation] */
iSnprintfReturnValue = snprintf( pcWriteBuffer,
uxBufferLength - uxConsumedBufferLength,
"\t%u\t\t%u%%\r\n",
( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter,
( unsigned int ) ulStatsAsPercentage );
}
#endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
}
else
{
/* If the percentage is zero here then the task has
* consumed less than 1% of the total run time. */
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
{
/* MISRA Ref 21.6.1 [snprintf for utility] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
/* coverity[misra_c_2012_rule_21_6_violation] */
iSnprintfReturnValue = snprintf( pcWriteBuffer,
uxBufferLength - uxConsumedBufferLength,
"\t%lu\t\t<1%%\r\n",
pxTaskStatusArray[ x ].ulRunTimeCounter );
}
#else
{
/* sizeof( int ) == sizeof( long ) so a smaller
* printf() library can be used. */
/* MISRA Ref 21.6.1 [snprintf for utility] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */
/* coverity[misra_c_2012_rule_21_6_violation] */
iSnprintfReturnValue = snprintf( pcWriteBuffer,
uxBufferLength - uxConsumedBufferLength,
"\t%u\t\t<1%%\r\n",
( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
}
#endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */
}
uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength );
uxConsumedBufferLength += uxCharsWrittenBySnprintf;
pcWriteBuffer += uxCharsWrittenBySnprintf;
}
else
{
xOutputBufferFull = pdTRUE;
}
}
else
{
xOutputBufferFull = pdTRUE;
}
if( xOutputBufferFull == pdTRUE )
{
break;
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
* is 0 then vPortFree() will be #defined to nothing. */
vPortFree( pxTaskStatusArray );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskGetRunTimeStatistics();
}
#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/
TickType_t uxTaskResetEventItemValue( void )
{
TickType_t uxReturn;
traceENTER_uxTaskResetEventItemValue();
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
/* Reset the event list item to its normal value - so it can be used with
* queues and semaphores. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) );
traceRETURN_uxTaskResetEventItemValue( uxReturn );
return uxReturn;
}
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
TaskHandle_t pvTaskIncrementMutexHeldCount( void )
{
TCB_t * pxTCB;
traceENTER_pvTaskIncrementMutexHeldCount();
pxTCB = pxCurrentTCB;
/* If xSemaphoreCreateMutex() is called before any tasks have been created
* then pxCurrentTCB will be NULL. */
if( pxTCB != NULL )
{
( pxTCB->uxMutexesHeld )++;
}
traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB );
return pxTCB;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn,
BaseType_t xClearCountOnExit,
TickType_t xTicksToWait )
{
uint32_t ulReturn;
BaseType_t xAlreadyYielded, xShouldBlock = pdFALSE;
traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait );
configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
* non-deterministic operation. */
vTaskSuspendAll();
{
/* We MUST enter a critical section to atomically check if a notification
* has occurred and set the flag to indicate that we are waiting for
* a notification. If we do not do so, a notification sent from an ISR
* will get lost. */
taskENTER_CRITICAL();
{
/* Only block if the notification count is not already non-zero. */
if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0U )
{
/* Mark this task as waiting for a notification. */
pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
if( xTicksToWait > ( TickType_t ) 0 )
{
xShouldBlock = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
/* We are now out of the critical section but the scheduler is still
* suspended, so we are safe to do non-deterministic operations such
* as prvAddCurrentTaskToDelayedList. */
if( xShouldBlock == pdTRUE )
{
traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
xAlreadyYielded = xTaskResumeAll();
/* Force a reschedule if xTaskResumeAll has not already done so. */
if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
{
taskYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskENTER_CRITICAL();
{
traceTASK_NOTIFY_TAKE( uxIndexToWaitOn );
ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
if( ulReturn != 0U )
{
if( xClearCountOnExit != pdFALSE )
{
pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0U;
}
else
{
pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
}
taskEXIT_CRITICAL();
traceRETURN_ulTaskGenericNotifyTake( ulReturn );
return ulReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn,
uint32_t ulBitsToClearOnEntry,
uint32_t ulBitsToClearOnExit,
uint32_t * pulNotificationValue,
TickType_t xTicksToWait )
{
BaseType_t xReturn, xAlreadyYielded, xShouldBlock = pdFALSE;
traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* We suspend the scheduler here as prvAddCurrentTaskToDelayedList is a
* non-deterministic operation. */
vTaskSuspendAll();
{
/* We MUST enter a critical section to atomically check and update the
* task notification value. If we do not do so, a notification from
* an ISR will get lost. */
taskENTER_CRITICAL();
{
/* Only block if a notification is not already pending. */
if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
{
/* Clear bits in the task's notification value as bits may get
* set by the notifying task or interrupt. This can be used
* to clear the value to zero. */
pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry;
/* Mark this task as waiting for a notification. */
pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION;
if( xTicksToWait > ( TickType_t ) 0 )
{
xShouldBlock = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
/* We are now out of the critical section but the scheduler is still
* suspended, so we are safe to do non-deterministic operations such
* as prvAddCurrentTaskToDelayedList. */
if( xShouldBlock == pdTRUE )
{
traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
xAlreadyYielded = xTaskResumeAll();
/* Force a reschedule if xTaskResumeAll has not already done so. */
if( ( xShouldBlock == pdTRUE ) && ( xAlreadyYielded == pdFALSE ) )
{
taskYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskENTER_CRITICAL();
{
traceTASK_NOTIFY_WAIT( uxIndexToWaitOn );
if( pulNotificationValue != NULL )
{
/* Output the current notification value, which may or may not
* have changed. */
*pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ];
}
/* If ucNotifyValue is set then either the task never entered the
* blocked state (because a notification was already pending) or the
* task unblocked because of a notification. Otherwise the task
* unblocked because of a timeout. */
if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED )
{
/* A notification was not received. */
xReturn = pdFALSE;
}
else
{
/* A notification was already pending or a notification was
* received while the task was waiting. */
pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit;
xReturn = pdTRUE;
}
pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION;
}
taskEXIT_CRITICAL();
traceRETURN_xTaskGenericNotifyWait( xReturn );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
uint32_t ulValue,
eNotifyAction eAction,
uint32_t * pulPreviousNotificationValue )
{
TCB_t * pxTCB;
BaseType_t xReturn = pdPASS;
uint8_t ucOriginalNotifyState;
traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
configASSERT( xTaskToNotify );
pxTCB = xTaskToNotify;
taskENTER_CRITICAL();
{
if( pulPreviousNotificationValue != NULL )
{
*pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
}
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
switch( eAction )
{
case eSetBits:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
break;
case eIncrement:
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
break;
case eSetValueWithOverwrite:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
break;
case eSetValueWithoutOverwrite:
if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
{
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
}
else
{
/* The value could not be written to the task. */
xReturn = pdFAIL;
}
break;
case eNoAction:
/* The task is being notified without its notify value being
* updated. */
break;
default:
/* Should not get here if all enums are handled.
* Artificially force an assert by testing a value the
* compiler can't assume is const. */
configASSERT( xTickCount == ( TickType_t ) 0 );
break;
}
traceTASK_NOTIFY( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked waiting for a notification then
* xNextTaskUnblockTime might be set to the blocked task's time
* out time. If the task is unblocked for a reason other than
* a timeout xNextTaskUnblockTime is normally left unchanged,
* because it will automatically get reset to a new value when
* the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter
* sleep mode at the earliest possible time - so reset
* xNextTaskUnblockTime here to ensure it is updated at the
* earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
/* Check if the notified task has a priority above the currently
* executing task. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
traceRETURN_xTaskGenericNotify( xReturn );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
uint32_t ulValue,
eNotifyAction eAction,
uint32_t * pulPreviousNotificationValue,
BaseType_t * pxHigherPriorityTaskWoken )
{
TCB_t * pxTCB;
uint8_t ucOriginalNotifyState;
BaseType_t xReturn = pdPASS;
UBaseType_t uxSavedInterruptStatus;
traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken );
configASSERT( xTaskToNotify );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
pxTCB = xTaskToNotify;
/* MISRA Ref 4.7.1 [Return value shall be checked] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
/* coverity[misra_c_2012_directive_4_7_violation] */
uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
{
if( pulPreviousNotificationValue != NULL )
{
*pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
}
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
switch( eAction )
{
case eSetBits:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
break;
case eIncrement:
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
break;
case eSetValueWithOverwrite:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
break;
case eSetValueWithoutOverwrite:
if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
{
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
}
else
{
/* The value could not be written to the task. */
xReturn = pdFAIL;
}
break;
case eNoAction:
/* The task is being notified without its notify value being
* updated. */
break;
default:
/* Should not get here if all enums are handled.
* Artificially force an assert by testing a value the
* compiler can't assume is const. */
configASSERT( xTickCount == ( TickType_t ) 0 );
break;
}
traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed and ready lists cannot be accessed, so hold
* this task pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
#if ( configNUMBER_OF_CORES == 1 )
{
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
/* Mark that a yield is pending in case the user is not
* using the "xHigherPriorityTaskWoken" parameter to an ISR
* safe FreeRTOS function. */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
#if ( configUSE_PREEMPTION == 1 )
{
prvYieldForTask( pxTCB );
if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
{
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
}
}
#endif /* if ( configUSE_PREEMPTION == 1 ) */
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_xTaskGenericNotifyFromISR( xReturn );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
BaseType_t * pxHigherPriorityTaskWoken )
{
TCB_t * pxTCB;
uint8_t ucOriginalNotifyState;
UBaseType_t uxSavedInterruptStatus;
traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken );
configASSERT( xTaskToNotify );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
pxTCB = xTaskToNotify;
/* MISRA Ref 4.7.1 [Return value shall be checked] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#dir-47 */
/* coverity[misra_c_2012_directive_4_7_violation] */
uxSavedInterruptStatus = ( UBaseType_t ) taskENTER_CRITICAL_FROM_ISR();
{
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
/* 'Giving' is equivalent to incrementing a count in a counting
* semaphore. */
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed and ready lists cannot be accessed, so hold
* this task pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
#if ( configNUMBER_OF_CORES == 1 )
{
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
/* Mark that a yield is pending in case the user is not
* using the "xHigherPriorityTaskWoken" parameter in an ISR
* safe FreeRTOS function. */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
#if ( configUSE_PREEMPTION == 1 )
{
prvYieldForTask( pxTCB );
if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
{
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
}
}
#endif /* #if ( configUSE_PREEMPTION == 1 ) */
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_vTaskGenericNotifyGiveFromISR();
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
UBaseType_t uxIndexToClear )
{
TCB_t * pxTCB;
BaseType_t xReturn;
traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear );
configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* If null is passed in here then it is the calling task that is having
* its notification state cleared. */
pxTCB = prvGetTCBFromHandle( xTask );
taskENTER_CRITICAL();
{
if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
{
pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
taskEXIT_CRITICAL();
traceRETURN_xTaskGenericNotifyStateClear( xReturn );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
UBaseType_t uxIndexToClear,
uint32_t ulBitsToClear )
{
TCB_t * pxTCB;
uint32_t ulReturn;
traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear );
configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* If null is passed in here then it is the calling task that is having
* its notification state cleared. */
pxTCB = prvGetTCBFromHandle( xTask );
taskENTER_CRITICAL();
{
/* Return the notification as it was before the bits were cleared,
* then clear the bit mask. */
ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
}
taskEXIT_CRITICAL();
traceRETURN_ulTaskGenericNotifyValueClear( ulReturn );
return ulReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configGENERATE_RUN_TIME_STATS == 1 )
configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask )
{
TCB_t * pxTCB;
traceENTER_ulTaskGetRunTimeCounter( xTask );
pxTCB = prvGetTCBFromHandle( xTask );
traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter );
return pxTCB->ulRunTimeCounter;
}
#endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
/*-----------------------------------------------------------*/
#if ( configGENERATE_RUN_TIME_STATS == 1 )
configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask )
{
TCB_t * pxTCB;
configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
traceENTER_ulTaskGetRunTimePercent( xTask );
ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE();
/* For percentage calculations. */
ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
/* Avoid divide by zero errors. */
if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
{
pxTCB = prvGetTCBFromHandle( xTask );
ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime;
}
else
{
ulReturn = 0;
}
traceRETURN_ulTaskGetRunTimePercent( ulReturn );
return ulReturn;
}
#endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
{
configRUN_TIME_COUNTER_TYPE ulReturn = 0;
BaseType_t i;
traceENTER_ulTaskGetIdleRunTimeCounter();
for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
{
ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter;
}
traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn );
return ulReturn;
}
#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
{
configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn;
configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0;
BaseType_t i;
traceENTER_ulTaskGetIdleRunTimePercent();
ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES;
/* For percentage calculations. */
ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100;
/* Avoid divide by zero errors. */
if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 )
{
for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ )
{
ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter;
}
ulReturn = ulRunTimeCounter / ulTotalTime;
}
else
{
ulReturn = 0;
}
traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn );
return ulReturn;
}
#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*-----------------------------------------------------------*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely )
{
TickType_t xTimeToWake;
const TickType_t xConstTickCount = xTickCount;
List_t * const pxDelayedList = pxDelayedTaskList;
List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList;
#if ( INCLUDE_xTaskAbortDelay == 1 )
{
/* About to enter a delayed list, so ensure the ucDelayAborted flag is
* reset to pdFALSE so it can be detected as having been set to pdTRUE
* when the task leaves the Blocked state. */
pxCurrentTCB->ucDelayAborted = ( uint8_t ) pdFALSE;
}
#endif
/* Remove the task from the ready list before adding it to the blocked list
* as the same list item is used for both lists. */
if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* The current task must be in a ready list, so there is no need to
* check, and the port reset macro can be called directly. */
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
#if ( INCLUDE_vTaskSuspend == 1 )
{
if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
{
/* Add the task to the suspended task list instead of a delayed task
* list to ensure it is not woken by a timing event. It will block
* indefinitely. */
listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
}
else
{
/* Calculate the time at which the task should be woken if the event
* does not occur. This may overflow but this doesn't matter, the
* kernel will manage it correctly. */
xTimeToWake = xConstTickCount + xTicksToWait;
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
if( xTimeToWake < xConstTickCount )
{
/* Wake time has overflowed. Place this item in the overflow
* list. */
traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
}
else
{
/* The wake time has not overflowed, so the current block list
* is used. */
traceMOVED_TASK_TO_DELAYED_LIST();
vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
/* If the task entering the blocked state was placed at the
* head of the list of blocked tasks then xNextTaskUnblockTime
* needs to be updated too. */
if( xTimeToWake < xNextTaskUnblockTime )
{
xNextTaskUnblockTime = xTimeToWake;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
}
#else /* INCLUDE_vTaskSuspend */
{
/* Calculate the time at which the task should be woken if the event
* does not occur. This may overflow but this doesn't matter, the kernel
* will manage it correctly. */
xTimeToWake = xConstTickCount + xTicksToWait;
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
if( xTimeToWake < xConstTickCount )
{
traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
/* Wake time has overflowed. Place this item in the overflow list. */
vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) );
}
else
{
traceMOVED_TASK_TO_DELAYED_LIST();
/* The wake time has not overflowed, so the current block list is used. */
vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) );
/* If the task entering the blocked state was placed at the head of the
* list of blocked tasks then xNextTaskUnblockTime needs to be updated
* too. */
if( xTimeToWake < xNextTaskUnblockTime )
{
xNextTaskUnblockTime = xTimeToWake;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
( void ) xCanBlockIndefinitely;
}
#endif /* INCLUDE_vTaskSuspend */
}
/*-----------------------------------------------------------*/
#if ( portUSING_MPU_WRAPPERS == 1 )
xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask )
{
TCB_t * pxTCB;
traceENTER_xTaskGetMPUSettings( xTask );
pxTCB = prvGetTCBFromHandle( xTask );
traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) );
return &( pxTCB->xMPUSettings );
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
/* Code below here allows additional code to be inserted into this source file,
* especially where access to file scope functions and data is needed (for example
* when performing module tests). */
#ifdef FREERTOS_MODULE_TEST
#include "tasks_test_access_functions.h"
#endif
#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
#include "freertos_tasks_c_additions.h"
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void )
{
FREERTOS_TASKS_C_ADDITIONS_INIT();
}
#endif
#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
/*
* This is the kernel provided implementation of vApplicationGetIdleTaskMemory()
* to provide the memory that is used by the Idle task. It is used when
* configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
* it's own implementation of vApplicationGetIdleTaskMemory by setting
* configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
*/
void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
StackType_t ** ppxIdleTaskStackBuffer,
configSTACK_DEPTH_TYPE * puxIdleTaskStackSize )
{
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
*ppxIdleTaskTCBBuffer = &( xIdleTaskTCB );
*ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] );
*puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
#if ( configNUMBER_OF_CORES > 1 )
void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
StackType_t ** ppxIdleTaskStackBuffer,
configSTACK_DEPTH_TYPE * puxIdleTaskStackSize,
BaseType_t xPassiveIdleTaskIndex )
{
static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ];
static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
*ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] );
*ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] );
*puxIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
#endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
/*-----------------------------------------------------------*/
#if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
/*
* This is the kernel provided implementation of vApplicationGetTimerTaskMemory()
* to provide the memory that is used by the Timer service task. It is used when
* configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide
* it's own implementation of vApplicationGetTimerTaskMemory by setting
* configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined.
*/
void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
StackType_t ** ppxTimerTaskStackBuffer,
configSTACK_DEPTH_TYPE * puxTimerTaskStackSize )
{
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
*ppxTimerTaskTCBBuffer = &( xTimerTaskTCB );
*ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] );
*puxTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
#endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */
/*-----------------------------------------------------------*/
/*
* Reset the state in this file. This state is normally initialized at start up.
* This function must be called by the application before restarting the
* scheduler.
*/
void vTaskResetState( void )
{
BaseType_t xCoreID;
/* Task control block. */
#if ( configNUMBER_OF_CORES == 1 )
{
pxCurrentTCB = NULL;
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
#if ( INCLUDE_vTaskDelete == 1 )
{
uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
}
#endif /* #if ( INCLUDE_vTaskDelete == 1 ) */
#if ( configUSE_POSIX_ERRNO == 1 )
{
FreeRTOS_errno = 0;
}
#endif /* #if ( configUSE_POSIX_ERRNO == 1 ) */
/* Other file private variables. */
uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
uxTopReadyPriority = tskIDLE_PRIORITY;
xSchedulerRunning = pdFALSE;
xPendedTicks = ( TickType_t ) 0U;
for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
{
xYieldPendings[ xCoreID ] = pdFALSE;
}
xNumOfOverflows = ( BaseType_t ) 0;
uxTaskNumber = ( UBaseType_t ) 0U;
xNextTaskUnblockTime = ( TickType_t ) 0U;
uxSchedulerSuspended = ( UBaseType_t ) 0U;
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
for( xCoreID = 0; xCoreID < configNUMBER_OF_CORES; xCoreID++ )
{
ulTaskSwitchedInTime[ xCoreID ] = 0U;
ulTotalRunTime[ xCoreID ] = 0U;
}
}
#endif /* #if ( configGENERATE_RUN_TIME_STATS == 1 ) */
}
/*-----------------------------------------------------------*/