mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
3c87f47ba2
Replace 0xE9 by ESP_IMAGE_HEADER_MAGIC.
578 lines
21 KiB
C
578 lines
21 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
|
|
#include "esp_err.h"
|
|
#include "esp_partition.h"
|
|
#include "esp_spi_flash.h"
|
|
#include "esp_image_format.h"
|
|
#include "esp_secure_boot.h"
|
|
#include "esp_flash_encrypt.h"
|
|
#include "esp_spi_flash.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#include "esp_ota_ops.h"
|
|
#include "rom/queue.h"
|
|
#include "rom/crc.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "esp_log.h"
|
|
|
|
|
|
#define OTA_MAX(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define OTA_MIN(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define SUB_TYPE_ID(i) (i & 0x0F)
|
|
|
|
typedef struct ota_ops_entry_ {
|
|
uint32_t handle;
|
|
const esp_partition_t *part;
|
|
uint32_t erased_size;
|
|
uint32_t wrote_size;
|
|
uint8_t partial_bytes;
|
|
uint8_t partial_data[16];
|
|
LIST_ENTRY(ota_ops_entry_) entries;
|
|
} ota_ops_entry_t;
|
|
|
|
/* OTA selection structure (two copies in the OTA data partition.)
|
|
Size of 32 bytes is friendly to flash encryption */
|
|
typedef struct {
|
|
uint32_t ota_seq;
|
|
uint8_t seq_label[24];
|
|
uint32_t crc; /* CRC32 of ota_seq field only */
|
|
} ota_select;
|
|
|
|
static LIST_HEAD(ota_ops_entries_head, ota_ops_entry_) s_ota_ops_entries_head =
|
|
LIST_HEAD_INITIALIZER(s_ota_ops_entries_head);
|
|
|
|
static uint32_t s_ota_ops_last_handle = 0;
|
|
static ota_select s_ota_select[2];
|
|
|
|
const static char *TAG = "esp_ota_ops";
|
|
|
|
/* Return true if this is an OTA app partition */
|
|
static bool is_ota_partition(const esp_partition_t *p)
|
|
{
|
|
return (p != NULL
|
|
&& p->type == ESP_PARTITION_TYPE_APP
|
|
&& p->subtype >= ESP_PARTITION_SUBTYPE_APP_OTA_0
|
|
&& p->subtype < ESP_PARTITION_SUBTYPE_APP_OTA_MAX);
|
|
}
|
|
|
|
esp_err_t esp_ota_begin(const esp_partition_t *partition, size_t image_size, esp_ota_handle_t *out_handle)
|
|
{
|
|
ota_ops_entry_t *new_entry;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
if ((partition == NULL) || (out_handle == NULL)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
partition = esp_partition_verify(partition);
|
|
if (partition == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
if (!is_ota_partition(partition)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (partition == esp_ota_get_running_partition()) {
|
|
return ESP_ERR_OTA_PARTITION_CONFLICT;
|
|
}
|
|
|
|
// If input image size is 0 or OTA_SIZE_UNKNOWN, erase entire partition
|
|
if ((image_size == 0) || (image_size == OTA_SIZE_UNKNOWN)) {
|
|
ret = esp_partition_erase_range(partition, 0, partition->size);
|
|
} else {
|
|
ret = esp_partition_erase_range(partition, 0, (image_size / SPI_FLASH_SEC_SIZE + 1) * SPI_FLASH_SEC_SIZE);
|
|
}
|
|
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
new_entry = (ota_ops_entry_t *) calloc(sizeof(ota_ops_entry_t), 1);
|
|
if (new_entry == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
LIST_INSERT_HEAD(&s_ota_ops_entries_head, new_entry, entries);
|
|
|
|
if ((image_size == 0) || (image_size == OTA_SIZE_UNKNOWN)) {
|
|
new_entry->erased_size = partition->size;
|
|
} else {
|
|
new_entry->erased_size = image_size;
|
|
}
|
|
|
|
new_entry->part = partition;
|
|
new_entry->handle = ++s_ota_ops_last_handle;
|
|
*out_handle = new_entry->handle;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_ota_write(esp_ota_handle_t handle, const void *data, size_t size)
|
|
{
|
|
const uint8_t *data_bytes = (const uint8_t *)data;
|
|
esp_err_t ret;
|
|
ota_ops_entry_t *it;
|
|
|
|
if (data == NULL) {
|
|
ESP_LOGE(TAG, "write data is invalid");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
// find ota handle in linked list
|
|
for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
if (it->handle == handle) {
|
|
// must erase the partition before writing to it
|
|
assert(it->erased_size > 0 && "must erase the partition before writing to it");
|
|
if (it->wrote_size == 0 && it->partial_bytes == 0 && size > 0 && data_bytes[0] != ESP_IMAGE_HEADER_MAGIC) {
|
|
ESP_LOGE(TAG, "OTA image has invalid magic byte (expected 0xE9, saw 0x%02x", data_bytes[0]);
|
|
return ESP_ERR_OTA_VALIDATE_FAILED;
|
|
}
|
|
|
|
if (esp_flash_encryption_enabled()) {
|
|
/* Can only write 16 byte blocks to flash, so need to cache anything else */
|
|
size_t copy_len;
|
|
|
|
/* check if we have partially written data from earlier */
|
|
if (it->partial_bytes != 0) {
|
|
copy_len = OTA_MIN(16 - it->partial_bytes, size);
|
|
memcpy(it->partial_data + it->partial_bytes, data_bytes, copy_len);
|
|
it->partial_bytes += copy_len;
|
|
if (it->partial_bytes != 16) {
|
|
return ESP_OK; /* nothing to write yet, just filling buffer */
|
|
}
|
|
/* write 16 byte to partition */
|
|
ret = esp_partition_write(it->part, it->wrote_size, it->partial_data, 16);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
it->partial_bytes = 0;
|
|
memset(it->partial_data, 0xFF, 16);
|
|
it->wrote_size += 16;
|
|
data_bytes += copy_len;
|
|
size -= copy_len;
|
|
}
|
|
|
|
/* check if we need to save trailing data that we're about to write */
|
|
it->partial_bytes = size % 16;
|
|
if (it->partial_bytes != 0) {
|
|
size -= it->partial_bytes;
|
|
memcpy(it->partial_data, data_bytes + size, it->partial_bytes);
|
|
}
|
|
}
|
|
|
|
ret = esp_partition_write(it->part, it->wrote_size, data_bytes, size);
|
|
if(ret == ESP_OK){
|
|
it->wrote_size += size;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
//if go to here ,means don't find the handle
|
|
ESP_LOGE(TAG,"not found the handle");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
esp_err_t esp_ota_end(esp_ota_handle_t handle)
|
|
{
|
|
ota_ops_entry_t *it;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
if (it->handle == handle) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (it == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
/* 'it' holds the ota_ops_entry_t for 'handle' */
|
|
|
|
// esp_ota_end() is only valid if some data was written to this handle
|
|
if ((it->erased_size == 0) || (it->wrote_size == 0)) {
|
|
ret = ESP_ERR_INVALID_ARG;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (it->partial_bytes > 0) {
|
|
/* Write out last 16 bytes, if necessary */
|
|
ret = esp_partition_write(it->part, it->wrote_size, it->partial_data, 16);
|
|
if (ret != ESP_OK) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto cleanup;
|
|
}
|
|
it->wrote_size += 16;
|
|
it->partial_bytes = 0;
|
|
}
|
|
|
|
esp_image_metadata_t data;
|
|
const esp_partition_pos_t part_pos = {
|
|
.offset = it->part->address,
|
|
.size = it->part->size,
|
|
};
|
|
|
|
if (esp_image_load(ESP_IMAGE_VERIFY, &part_pos, &data) != ESP_OK) {
|
|
ret = ESP_ERR_OTA_VALIDATE_FAILED;
|
|
goto cleanup;
|
|
}
|
|
|
|
cleanup:
|
|
LIST_REMOVE(it, entries);
|
|
free(it);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t ota_select_crc(const ota_select *s)
|
|
{
|
|
return crc32_le(UINT32_MAX, (uint8_t *)&s->ota_seq, 4);
|
|
}
|
|
|
|
static bool ota_select_valid(const ota_select *s)
|
|
{
|
|
return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
|
|
}
|
|
|
|
static esp_err_t rewrite_ota_seq(uint32_t seq, uint8_t sec_id, const esp_partition_t *ota_data_partition)
|
|
{
|
|
esp_err_t ret;
|
|
|
|
if (sec_id == 0 || sec_id == 1) {
|
|
s_ota_select[sec_id].ota_seq = seq;
|
|
s_ota_select[sec_id].crc = ota_select_crc(&s_ota_select[sec_id]);
|
|
ret = esp_partition_erase_range(ota_data_partition, sec_id * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
} else {
|
|
return esp_partition_write(ota_data_partition, SPI_FLASH_SEC_SIZE * sec_id, &s_ota_select[sec_id].ota_seq, sizeof(ota_select));
|
|
}
|
|
} else {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
|
|
static uint8_t get_ota_partition_count(void)
|
|
{
|
|
uint16_t ota_app_count = 0;
|
|
while (esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_app_count, NULL) != NULL) {
|
|
assert(ota_app_count < 16 && "must erase the partition before writing to it");
|
|
ota_app_count++;
|
|
}
|
|
return ota_app_count;
|
|
}
|
|
|
|
static esp_err_t esp_rewrite_ota_data(esp_partition_subtype_t subtype)
|
|
{
|
|
esp_err_t ret;
|
|
const esp_partition_t *find_partition = NULL;
|
|
uint16_t ota_app_count = 0;
|
|
uint32_t i = 0;
|
|
uint32_t seq;
|
|
spi_flash_mmap_handle_t ota_data_map;
|
|
const void *result = NULL;
|
|
|
|
find_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
|
|
if (find_partition != NULL) {
|
|
ota_app_count = get_ota_partition_count();
|
|
//esp32_idf use two sector for store information about which partition is running
|
|
//it defined the two sector as ota data partition,two structure ota_select is saved in the two sector
|
|
//named data in first sector as s_ota_select[0], second sector data as s_ota_select[1]
|
|
//e.g.
|
|
//if s_ota_select[0].ota_seq == s_ota_select[1].ota_seq == 0xFFFFFFFF,means ota info partition is in init status
|
|
//so it will boot factory application(if there is),if there's no factory application,it will boot ota[0] application
|
|
//if s_ota_select[0].ota_seq != 0 and s_ota_select[1].ota_seq != 0,it will choose a max seq ,and get value of max_seq%max_ota_app_number
|
|
//and boot a subtype (mask 0x0F) value is (max_seq - 1)%max_ota_app_number,so if want switch to run ota[x],can use next formulas.
|
|
//for example, if s_ota_select[0].ota_seq = 4, s_ota_select[1].ota_seq = 5, and there are 8 ota application,
|
|
//current running is (5-1)%8 = 4,running ota[4],so if we want to switch to run ota[7],
|
|
//we should add s_ota_select[0].ota_seq (is 4) to 4 ,(8-1)%8=7,then it will boot ota[7]
|
|
//if A=(B - C)%D
|
|
//then B=(A + C)%D + D*n ,n= (0,1,2...)
|
|
//so current ota app sub type id is x , dest bin subtype is y,total ota app count is n
|
|
//seq will add (x + n*1 + 1 - seq)%n
|
|
if (SUB_TYPE_ID(subtype) >= ota_app_count) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
ret = esp_partition_mmap(find_partition, 0, find_partition->size, SPI_FLASH_MMAP_DATA, &result, &ota_data_map);
|
|
if (ret != ESP_OK) {
|
|
result = NULL;
|
|
return ret;
|
|
} else {
|
|
memcpy(&s_ota_select[0], result, sizeof(ota_select));
|
|
memcpy(&s_ota_select[1], result + SPI_FLASH_SEC_SIZE, sizeof(ota_select));
|
|
spi_flash_munmap(ota_data_map);
|
|
}
|
|
|
|
if (ota_select_valid(&s_ota_select[0]) && ota_select_valid(&s_ota_select[1])) {
|
|
seq = OTA_MAX(s_ota_select[0].ota_seq, s_ota_select[1].ota_seq);
|
|
while (seq > (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count) {
|
|
i++;
|
|
}
|
|
|
|
if (s_ota_select[0].ota_seq >= s_ota_select[1].ota_seq) {
|
|
return rewrite_ota_seq((SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count, 1, find_partition);
|
|
} else {
|
|
return rewrite_ota_seq((SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count, 0, find_partition);
|
|
}
|
|
|
|
} else if (ota_select_valid(&s_ota_select[0])) {
|
|
while (s_ota_select[0].ota_seq > (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count) {
|
|
i++;
|
|
}
|
|
return rewrite_ota_seq((SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count, 1, find_partition);
|
|
|
|
} else if (ota_select_valid(&s_ota_select[1])) {
|
|
while (s_ota_select[1].ota_seq > (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count) {
|
|
i++;
|
|
}
|
|
return rewrite_ota_seq((SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count, 0, find_partition);
|
|
|
|
} else {
|
|
/* Both OTA slots are invalid, probably because unformatted... */
|
|
return rewrite_ota_seq(SUB_TYPE_ID(subtype) + 1, 0, find_partition);
|
|
}
|
|
|
|
} else {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
}
|
|
|
|
esp_err_t esp_ota_set_boot_partition(const esp_partition_t *partition)
|
|
{
|
|
const esp_partition_t *find_partition = NULL;
|
|
if (partition == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
esp_image_metadata_t data;
|
|
const esp_partition_pos_t part_pos = {
|
|
.offset = partition->address,
|
|
.size = partition->size,
|
|
};
|
|
if (esp_image_load(ESP_IMAGE_VERIFY, &part_pos, &data) != ESP_OK) {
|
|
return ESP_ERR_OTA_VALIDATE_FAILED;
|
|
}
|
|
|
|
#ifdef CONFIG_SECURE_SIGNED_ON_UPDATE
|
|
esp_err_t ret = esp_secure_boot_verify_signature(partition->address, data.image_len);
|
|
if (ret != ESP_OK) {
|
|
return ESP_ERR_OTA_VALIDATE_FAILED;
|
|
}
|
|
#endif
|
|
// if set boot partition to factory bin ,just format ota info partition
|
|
if (partition->type == ESP_PARTITION_TYPE_APP) {
|
|
if (partition->subtype == ESP_PARTITION_SUBTYPE_APP_FACTORY) {
|
|
find_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
|
|
if (find_partition != NULL) {
|
|
return esp_partition_erase_range(find_partition, 0, find_partition->size);
|
|
} else {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
} else {
|
|
// try to find this partition in flash,if not find it ,return error
|
|
find_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
|
|
if (find_partition != NULL) {
|
|
return esp_rewrite_ota_data(partition->subtype);
|
|
} else {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
}
|
|
} else {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
|
|
static const esp_partition_t *find_default_boot_partition(void)
|
|
{
|
|
// This logic matches the logic of bootloader get_selected_boot_partition() & load_boot_image().
|
|
|
|
// Default to factory if present
|
|
const esp_partition_t *result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// Try first OTA slot if no factory partition
|
|
for (esp_partition_subtype_t s = ESP_PARTITION_SUBTYPE_APP_OTA_MIN; s != ESP_PARTITION_SUBTYPE_APP_OTA_MAX; s++) {
|
|
result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, s, NULL);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Test app slot if present
|
|
result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_TEST, NULL);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
ESP_LOGE(TAG, "invalid partition table, no app partitions");
|
|
return NULL;
|
|
}
|
|
|
|
const esp_partition_t *esp_ota_get_boot_partition(void)
|
|
{
|
|
esp_err_t ret;
|
|
const esp_partition_t *find_partition = NULL;
|
|
spi_flash_mmap_handle_t ota_data_map;
|
|
const void *result = NULL;
|
|
uint16_t ota_app_count = 0;
|
|
find_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
|
|
|
|
if (find_partition == NULL) {
|
|
ESP_LOGE(TAG, "not found ota data");
|
|
return NULL;
|
|
}
|
|
|
|
ret = esp_partition_mmap(find_partition, 0, find_partition->size, SPI_FLASH_MMAP_DATA, &result, &ota_data_map);
|
|
if (ret != ESP_OK) {
|
|
spi_flash_munmap(ota_data_map);
|
|
ESP_LOGE(TAG, "mmap ota data filed");
|
|
return NULL;
|
|
} else {
|
|
memcpy(&s_ota_select[0], result, sizeof(ota_select));
|
|
memcpy(&s_ota_select[1], result + 0x1000, sizeof(ota_select));
|
|
spi_flash_munmap(ota_data_map);
|
|
}
|
|
ota_app_count = get_ota_partition_count();
|
|
|
|
ESP_LOGD(TAG, "found ota app max = %d", ota_app_count);
|
|
|
|
if (s_ota_select[0].ota_seq == 0xFFFFFFFF && s_ota_select[1].ota_seq == 0xFFFFFFFF) {
|
|
ESP_LOGD(TAG, "finding factory app......");
|
|
return find_default_boot_partition();
|
|
} else if (ota_select_valid(&s_ota_select[0]) && ota_select_valid(&s_ota_select[1])) {
|
|
ESP_LOGD(TAG, "finding ota_%d app......", \
|
|
ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ((OTA_MAX(s_ota_select[0].ota_seq, s_ota_select[1].ota_seq) - 1) % ota_app_count));
|
|
|
|
return esp_partition_find_first(ESP_PARTITION_TYPE_APP, \
|
|
ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ((OTA_MAX(s_ota_select[0].ota_seq, s_ota_select[1].ota_seq) - 1) % ota_app_count), NULL);
|
|
} else if (ota_select_valid(&s_ota_select[0])) {
|
|
ESP_LOGD(TAG, "finding ota_%d app......", \
|
|
ESP_PARTITION_SUBTYPE_APP_OTA_MIN + (s_ota_select[0].ota_seq - 1) % ota_app_count);
|
|
|
|
return esp_partition_find_first(ESP_PARTITION_TYPE_APP, \
|
|
ESP_PARTITION_SUBTYPE_APP_OTA_MIN + (s_ota_select[0].ota_seq - 1) % ota_app_count, NULL);
|
|
|
|
} else if (ota_select_valid(&s_ota_select[1])) {
|
|
ESP_LOGD(TAG, "finding ota_%d app......", \
|
|
ESP_PARTITION_SUBTYPE_APP_OTA_MIN + (s_ota_select[1].ota_seq - 1) % ota_app_count);
|
|
|
|
return esp_partition_find_first(ESP_PARTITION_TYPE_APP, \
|
|
ESP_PARTITION_SUBTYPE_APP_OTA_MIN + (s_ota_select[1].ota_seq - 1) % ota_app_count, NULL);
|
|
|
|
} else {
|
|
ESP_LOGE(TAG, "ota data invalid, no current app. Assuming factory");
|
|
return find_default_boot_partition();
|
|
}
|
|
}
|
|
|
|
|
|
const esp_partition_t* esp_ota_get_running_partition(void)
|
|
{
|
|
static const esp_partition_t *curr_partition = NULL;
|
|
|
|
/*
|
|
* Currently running partition is unlikely to change across reset cycle,
|
|
* so it can be cached here, and avoid lookup on every flash write operation.
|
|
*/
|
|
if (curr_partition != NULL) {
|
|
return curr_partition;
|
|
}
|
|
|
|
/* Find the flash address of this exact function. By definition that is part
|
|
of the currently running firmware. Then find the enclosing partition. */
|
|
size_t phys_offs = spi_flash_cache2phys(esp_ota_get_running_partition);
|
|
|
|
assert (phys_offs != SPI_FLASH_CACHE2PHYS_FAIL); /* indicates cache2phys lookup is buggy */
|
|
|
|
esp_partition_iterator_t it = esp_partition_find(ESP_PARTITION_TYPE_APP,
|
|
ESP_PARTITION_SUBTYPE_ANY,
|
|
NULL);
|
|
assert(it != NULL); /* has to be at least one app partition */
|
|
|
|
while (it != NULL) {
|
|
const esp_partition_t *p = esp_partition_get(it);
|
|
if (p->address <= phys_offs && p->address + p->size > phys_offs) {
|
|
esp_partition_iterator_release(it);
|
|
curr_partition = p;
|
|
return p;
|
|
}
|
|
it = esp_partition_next(it);
|
|
}
|
|
|
|
abort(); /* Partition table is invalid or corrupt */
|
|
}
|
|
|
|
|
|
const esp_partition_t* esp_ota_get_next_update_partition(const esp_partition_t *start_from)
|
|
{
|
|
const esp_partition_t *default_ota = NULL;
|
|
bool next_is_result = false;
|
|
if (start_from == NULL) {
|
|
start_from = esp_ota_get_running_partition();
|
|
} else {
|
|
start_from = esp_partition_verify(start_from);
|
|
}
|
|
assert (start_from != NULL);
|
|
/* at this point, 'start_from' points to actual partition table data in flash */
|
|
|
|
|
|
/* Two possibilities: either we want the OTA partition immediately after the current running OTA partition, or we
|
|
want the first OTA partition in the table (for the case when the last OTA partition is the running partition, or
|
|
if the current running partition is not OTA.)
|
|
|
|
This loop iterates subtypes instead of using esp_partition_find, so we
|
|
get all OTA partitions in a known order (low slot to high slot).
|
|
*/
|
|
|
|
for (esp_partition_subtype_t t = ESP_PARTITION_SUBTYPE_APP_OTA_0;
|
|
t != ESP_PARTITION_SUBTYPE_APP_OTA_MAX;
|
|
t++) {
|
|
const esp_partition_t *p = esp_partition_find_first(ESP_PARTITION_TYPE_APP, t, NULL);
|
|
if (p == NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (default_ota == NULL) {
|
|
/* Default to first OTA partition we find,
|
|
will be used if nothing else matches */
|
|
default_ota = p;
|
|
}
|
|
|
|
if (p == start_from) {
|
|
/* Next OTA partition is the one to use */
|
|
next_is_result = true;
|
|
}
|
|
else if (next_is_result) {
|
|
return p;
|
|
}
|
|
}
|
|
|
|
return default_ota;
|
|
|
|
}
|