mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
4536 lines
144 KiB
C
4536 lines
144 KiB
C
/*
|
|
FreeRTOS V8.2.0 - Copyright (C) 2015 Real Time Engineers Ltd.
|
|
All rights reserved
|
|
|
|
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
|
|
|
This file is part of the FreeRTOS distribution.
|
|
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License (version 2) as published by the
|
|
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
|
|
|
***************************************************************************
|
|
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
|
>>! distribute a combined work that includes FreeRTOS without being !<<
|
|
>>! obliged to provide the source code for proprietary components !<<
|
|
>>! outside of the FreeRTOS kernel. !<<
|
|
***************************************************************************
|
|
|
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. Full license text is available on the following
|
|
link: http://www.freertos.org/a00114.html
|
|
|
|
***************************************************************************
|
|
* *
|
|
* FreeRTOS provides completely free yet professionally developed, *
|
|
* robust, strictly quality controlled, supported, and cross *
|
|
* platform software that is more than just the market leader, it *
|
|
* is the industry's de facto standard. *
|
|
* *
|
|
* Help yourself get started quickly while simultaneously helping *
|
|
* to support the FreeRTOS project by purchasing a FreeRTOS *
|
|
* tutorial book, reference manual, or both: *
|
|
* http://www.FreeRTOS.org/Documentation *
|
|
* *
|
|
***************************************************************************
|
|
|
|
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
|
|
the FAQ page "My application does not run, what could be wrong?". Have you
|
|
defined configASSERT()?
|
|
|
|
http://www.FreeRTOS.org/support - In return for receiving this top quality
|
|
embedded software for free we request you assist our global community by
|
|
participating in the support forum.
|
|
|
|
http://www.FreeRTOS.org/training - Investing in training allows your team to
|
|
be as productive as possible as early as possible. Now you can receive
|
|
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
|
|
Ltd, and the world's leading authority on the world's leading RTOS.
|
|
|
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
|
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
|
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
|
|
|
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
|
|
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
|
|
|
|
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
|
|
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
|
|
licenses offer ticketed support, indemnification and commercial middleware.
|
|
|
|
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
|
engineered and independently SIL3 certified version for use in safety and
|
|
mission critical applications that require provable dependability.
|
|
|
|
1 tab == 4 spaces!
|
|
*/
|
|
|
|
/* Standard includes. */
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
all the API functions to use the MPU wrappers. That should only be done when
|
|
task.h is included from an application file. */
|
|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
#include "rom/ets_sys.h"
|
|
|
|
/* FreeRTOS includes. */
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
#include "timers.h"
|
|
#include "StackMacros.h"
|
|
#include "portmacro.h"
|
|
|
|
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
|
|
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
|
|
header files above, but not in this file, in order to generate the correct
|
|
privileged Vs unprivileged linkage and placement. */
|
|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
|
|
|
|
/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
|
|
functions but without including stdio.h here. */
|
|
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
|
|
/* At the bottom of this file are two optional functions that can be used
|
|
to generate human readable text from the raw data generated by the
|
|
uxTaskGetSystemState() function. Note the formatting functions are provided
|
|
for convenience only, and are NOT considered part of the kernel. */
|
|
#include <stdio.h>
|
|
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
|
|
|
|
/* Sanity check the configuration. */
|
|
#if configUSE_TICKLESS_IDLE != 0
|
|
#if INCLUDE_vTaskSuspend != 1
|
|
#error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
|
|
/*
|
|
* Defines the size, in words, of the stack allocated to the idle task.
|
|
*/
|
|
#define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE
|
|
|
|
#if( configUSE_PREEMPTION == 0 )
|
|
/* If the cooperative scheduler is being used then a yield should not be
|
|
performed just because a higher priority task has been woken. */
|
|
#define taskYIELD_IF_USING_PREEMPTION()
|
|
#define queueYIELD_IF_USING_PREEMPTION_MUX(mux)
|
|
#else
|
|
#define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
|
#define taskYIELD_IF_USING_PREEMPTION_MUX(mux) { \
|
|
taskEXIT_CRITICAL(mux); \
|
|
portYIELD_WITHIN_API(); \
|
|
taskENTER_CRITICAL(mux); \
|
|
} while(0)
|
|
#endif
|
|
|
|
/* Value that can be assigned to the eNotifyState member of the TCB. */
|
|
typedef enum
|
|
{
|
|
eNotWaitingNotification = 0,
|
|
eWaitingNotification,
|
|
eNotified
|
|
} eNotifyValue;
|
|
|
|
/*
|
|
* Task control block. A task control block (TCB) is allocated for each task,
|
|
* and stores task state information, including a pointer to the task's context
|
|
* (the task's run time environment, including register values)
|
|
*/
|
|
typedef struct tskTaskControlBlock
|
|
{
|
|
volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
|
|
|
|
#if ( portUSING_MPU_WRAPPERS == 1 )
|
|
xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
|
|
BaseType_t xUsingStaticallyAllocatedStack; /* Set to pdTRUE if the stack is a statically allocated array, and pdFALSE if the stack is dynamically allocated. */
|
|
#endif
|
|
|
|
ListItem_t xGenericListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
|
|
ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
|
|
UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
|
|
StackType_t *pxStack; /*< Points to the start of the stack. */
|
|
char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
BaseType_t xCoreID; /*< Core this task is pinned to */
|
|
|
|
#if ( portSTACK_GROWTH > 0 )
|
|
StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
|
|
#endif
|
|
|
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
|
|
#endif
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
|
|
UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
|
|
#endif
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
|
|
UBaseType_t uxMutexesHeld;
|
|
#endif
|
|
|
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
TaskHookFunction_t pxTaskTag;
|
|
#endif
|
|
|
|
#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
|
|
void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
|
|
#endif
|
|
|
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
|
|
#endif
|
|
|
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
/* Allocate a Newlib reent structure that is specific to this task.
|
|
Note Newlib support has been included by popular demand, but is not
|
|
used by the FreeRTOS maintainers themselves. FreeRTOS is not
|
|
responsible for resulting newlib operation. User must be familiar with
|
|
newlib and must provide system-wide implementations of the necessary
|
|
stubs. Be warned that (at the time of writing) the current newlib design
|
|
implements a system-wide malloc() that must be provided with locks. */
|
|
struct _reent xNewLib_reent;
|
|
#endif
|
|
|
|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
volatile uint32_t ulNotifiedValue;
|
|
volatile eNotifyValue eNotifyState;
|
|
#endif
|
|
|
|
} tskTCB;
|
|
|
|
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
|
|
below to enable the use of older kernel aware debuggers. */
|
|
typedef tskTCB TCB_t;
|
|
|
|
/*
|
|
* Some kernel aware debuggers require the data the debugger needs access to to
|
|
* be global, rather than file scope.
|
|
*/
|
|
#ifdef portREMOVE_STATIC_QUALIFIER
|
|
#define static
|
|
#endif
|
|
|
|
/*lint -e956 A manual analysis and inspection has been used to determine which
|
|
static variables must be declared volatile. */
|
|
|
|
PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB[ portNUM_PROCESSORS ] = { NULL };
|
|
|
|
/* Lists for ready and blocked tasks. --------------------*/
|
|
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
|
|
PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
|
|
PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
|
|
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
|
|
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
|
|
PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
|
|
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
|
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. Protected by xTaskQueueMutex.*/
|
|
PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U;
|
|
|
|
#endif
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
|
PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
|
|
|
|
#endif
|
|
|
|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
|
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
|
|
|
|
#endif
|
|
|
|
/* Other file private variables. --------------------------------*/
|
|
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
|
|
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U;
|
|
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
|
|
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
|
|
PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U;
|
|
PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
|
|
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
|
|
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
|
|
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
|
/* Context switches are held pending while the scheduler is suspended. Also,
|
|
interrupts must not manipulate the xGenericListItem of a TCB, or any of the
|
|
lists the xGenericListItem can be referenced from, if the scheduler is suspended.
|
|
If an interrupt needs to unblock a task while the scheduler is suspended then it
|
|
moves the task's event list item into the xPendingReadyList, ready for the
|
|
kernel to move the task from the pending ready list into the real ready list
|
|
when the scheduler is unsuspended. The pending ready list itself can only be
|
|
accessed from a critical section. */
|
|
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[ portNUM_PROCESSORS ] = { ( UBaseType_t ) pdFALSE };
|
|
|
|
/* Muxes used in the task code */
|
|
PRIVILEGED_DATA static portBASE_TYPE xMutexesInitialised = pdFALSE;
|
|
/* For now, we use just one mux for all the critical sections. ToDo: give evrything a bit more granularity;
|
|
that could improve performance by not needlessly spinning in spinlocks for unrelated resources. */
|
|
PRIVILEGED_DATA static portMUX_TYPE xTaskQueueMutex = portMUX_INITIALIZER_UNLOCKED;
|
|
PRIVILEGED_DATA static portMUX_TYPE xTickCountMutex = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
|
PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
|
|
PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
|
|
|
|
#endif
|
|
|
|
/*lint +e956 */
|
|
|
|
/* Debugging and trace facilities private variables and macros. ------------*/
|
|
|
|
/*
|
|
* The value used to fill the stack of a task when the task is created. This
|
|
* is used purely for checking the high water mark for tasks.
|
|
*/
|
|
#define tskSTACK_FILL_BYTE ( 0xa5U )
|
|
|
|
/*
|
|
* Macros used by vListTask to indicate which state a task is in.
|
|
*/
|
|
#define tskBLOCKED_CHAR ( 'B' )
|
|
#define tskREADY_CHAR ( 'R' )
|
|
#define tskDELETED_CHAR ( 'D' )
|
|
#define tskSUSPENDED_CHAR ( 'S' )
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
|
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
|
|
performed in a generic way that is not optimised to any particular
|
|
microcontroller architecture. */
|
|
|
|
/* uxTopReadyPriority holds the priority of the highest priority ready
|
|
state task. */
|
|
#define taskRECORD_READY_PRIORITY( uxPriority ) \
|
|
{ \
|
|
if( ( uxPriority ) > uxTopReadyPriority ) \
|
|
{ \
|
|
uxTopReadyPriority = ( uxPriority ); \
|
|
} \
|
|
} /* taskRECORD_READY_PRIORITY */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
{ \
|
|
/* Find the highest priority queue that contains ready tasks. */ \
|
|
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) \
|
|
{ \
|
|
configASSERT( uxTopReadyPriority ); \
|
|
--uxTopReadyPriority; \
|
|
} \
|
|
\
|
|
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
|
|
the same priority get an equal share of the processor time. */ \
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ xPortGetCoreID() ], &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); \
|
|
} /* taskSELECT_HIGHEST_PRIORITY_TASK */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
|
|
they are only required when a port optimised method of task selection is
|
|
being used. */
|
|
#define taskRESET_READY_PRIORITY( uxPriority )
|
|
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
|
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
|
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
|
|
performed in a way that is tailored to the particular microcontroller
|
|
architecture being used. */
|
|
|
|
/* A port optimised version is provided. Call the port defined macros. */
|
|
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
{ \
|
|
UBaseType_t uxTopPriority; \
|
|
\
|
|
/* Find the highest priority queue that contains ready tasks. */ \
|
|
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
|
|
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ xPortGetCoreID() ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
} /* taskSELECT_HIGHEST_PRIORITY_TASK() */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* A port optimised version is provided, call it only if the TCB being reset
|
|
is being referenced from a ready list. If it is referenced from a delayed
|
|
or suspended list then it won't be in a ready list. */
|
|
#define taskRESET_READY_PRIORITY( uxPriority ) \
|
|
{ \
|
|
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
|
|
{ \
|
|
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
|
|
} \
|
|
}
|
|
|
|
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
|
|
count overflows. */
|
|
#define taskSWITCH_DELAYED_LISTS() \
|
|
{ \
|
|
List_t *pxTemp; \
|
|
\
|
|
/* The delayed tasks list should be empty when the lists are switched. */ \
|
|
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
|
|
\
|
|
pxTemp = pxDelayedTaskList; \
|
|
pxDelayedTaskList = pxOverflowDelayedTaskList; \
|
|
pxOverflowDelayedTaskList = pxTemp; \
|
|
xNumOfOverflows++; \
|
|
prvResetNextTaskUnblockTime(); \
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* Place the task represented by pxTCB into the appropriate ready list for
|
|
* the task. It is inserted at the end of the list.
|
|
*/
|
|
#define prvAddTaskToReadyList( pxTCB ) \
|
|
traceMOVED_TASK_TO_READY_STATE( pxTCB ) \
|
|
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
|
|
vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* Several functions take an TaskHandle_t parameter that can optionally be NULL,
|
|
* where NULL is used to indicate that the handle of the currently executing
|
|
* task should be used in place of the parameter. This macro simply checks to
|
|
* see if the parameter is NULL and returns a pointer to the appropriate TCB.
|
|
*/
|
|
/* ToDo: See if this still works for multicore. */
|
|
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ] : ( TCB_t * ) ( pxHandle ) )
|
|
|
|
/* The item value of the event list item is normally used to hold the priority
|
|
of the task to which it belongs (coded to allow it to be held in reverse
|
|
priority order). However, it is occasionally borrowed for other purposes. It
|
|
is important its value is not updated due to a task priority change while it is
|
|
being used for another purpose. The following bit definition is used to inform
|
|
the scheduler that the value should not be changed - in which case it is the
|
|
responsibility of whichever module is using the value to ensure it gets set back
|
|
to its original value when it is released. */
|
|
#if configUSE_16_BIT_TICKS == 1
|
|
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
|
|
#else
|
|
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
|
|
#endif
|
|
|
|
/* Callback function prototypes. --------------------------*/
|
|
#if configCHECK_FOR_STACK_OVERFLOW > 0
|
|
extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
|
|
#endif
|
|
|
|
#if configUSE_TICK_HOOK > 0
|
|
extern void vApplicationTickHook( void );
|
|
#endif
|
|
|
|
/* File private functions. --------------------------------*/
|
|
|
|
/*
|
|
* Utility to ready a TCB for a given task. Mainly just copies the parameters
|
|
* into the TCB structure.
|
|
*/
|
|
static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth, const BaseType_t xCoreID ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
|
/**
|
|
* Utility task that simply returns pdTRUE if the task referenced by xTask is
|
|
* currently in the Suspended state, or pdFALSE if the task referenced by xTask
|
|
* is in any other state.
|
|
*/
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
/*
|
|
* Utility to ready all the lists used by the scheduler. This is called
|
|
* automatically upon the creation of the first task.
|
|
*/
|
|
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* The idle task, which as all tasks is implemented as a never ending loop.
|
|
* The idle task is automatically created and added to the ready lists upon
|
|
* creation of the first user task.
|
|
*
|
|
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
|
|
* language extensions. The equivalent prototype for this function is:
|
|
*
|
|
* void prvIdleTask( void *pvParameters );
|
|
*
|
|
*/
|
|
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
|
|
|
|
/*
|
|
* Utility to free all memory allocated by the scheduler to hold a TCB,
|
|
* including the stack pointed to by the TCB.
|
|
*
|
|
* This does not free memory allocated by the task itself (i.e. memory
|
|
* allocated by calls to pvPortMalloc from within the tasks application code).
|
|
*/
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
|
static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Used only by the idle task. This checks to see if anything has been placed
|
|
* in the list of tasks waiting to be deleted. If so the task is cleaned up
|
|
* and its TCB deleted.
|
|
*/
|
|
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* The currently executing task is entering the Blocked state. Add the task to
|
|
* either the current or the overflow delayed task list.
|
|
*/
|
|
static void prvAddCurrentTaskToDelayedList( const portBASE_TYPE xCoreID, const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Allocates memory from the heap for a TCB and associated stack. Checks the
|
|
* allocation was successful.
|
|
*/
|
|
static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Fills an TaskStatus_t structure with information on each task that is
|
|
* referenced from the pxList list (which may be a ready list, a delayed list,
|
|
* a suspended list, etc.).
|
|
*
|
|
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
|
|
* NORMAL APPLICATION CODE.
|
|
*/
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif
|
|
|
|
/*
|
|
* When a task is created, the stack of the task is filled with a known value.
|
|
* This function determines the 'high water mark' of the task stack by
|
|
* determining how much of the stack remains at the original preset value.
|
|
*/
|
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
|
|
|
static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Return the amount of time, in ticks, that will pass before the kernel will
|
|
* next move a task from the Blocked state to the Running state.
|
|
*
|
|
* This conditional compilation should use inequality to 0, not equality to 1.
|
|
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
|
|
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be
|
|
* set to a value other than 1.
|
|
*/
|
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
|
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Set xNextTaskUnblockTime to the time at which the next Blocked state task
|
|
* will exit the Blocked state.
|
|
*/
|
|
static void prvResetNextTaskUnblockTime( void );
|
|
|
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
|
/*
|
|
* Helper function used to pad task names with spaces when printing out
|
|
* human readable tables of task information.
|
|
*/
|
|
static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName );
|
|
|
|
#endif
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
static void vTaskInitializeLocalMuxes( void )
|
|
{
|
|
vPortCPUInitializeMutex(&xTaskQueueMutex);
|
|
vPortCPUInitializeMutex(&xTickCountMutex);
|
|
xMutexesInitialised = pdTRUE;
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions, const BaseType_t xCoreID) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
{
|
|
BaseType_t xReturn;
|
|
TCB_t * pxNewTCB;
|
|
StackType_t *pxTopOfStack;
|
|
BaseType_t i;
|
|
|
|
/* Initialize mutexes, if they're not already initialized. */
|
|
if (xMutexesInitialised == pdFALSE) vTaskInitializeLocalMuxes();
|
|
|
|
configASSERT( pxTaskCode );
|
|
configASSERT( ( ( uxPriority & ( ~portPRIVILEGE_BIT ) ) < configMAX_PRIORITIES ) );
|
|
configASSERT( (xCoreID>=0 && xCoreID<portNUM_PROCESSORS) || (xCoreID==tskNO_AFFINITY) );
|
|
|
|
/* Allocate the memory required by the TCB and stack for the new task,
|
|
checking that the allocation was successful. */
|
|
pxNewTCB = prvAllocateTCBAndStack( usStackDepth, puxStackBuffer );
|
|
|
|
if( pxNewTCB != NULL )
|
|
{
|
|
#if( portUSING_MPU_WRAPPERS == 1 )
|
|
/* Should the task be created in privileged mode? */
|
|
BaseType_t xRunPrivileged;
|
|
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
|
|
{
|
|
xRunPrivileged = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xRunPrivileged = pdFALSE;
|
|
}
|
|
uxPriority &= ~portPRIVILEGE_BIT;
|
|
|
|
if( puxStackBuffer != NULL )
|
|
{
|
|
/* The application provided its own stack. Note this so no
|
|
attempt is made to delete the stack should that task be
|
|
deleted. */
|
|
pxNewTCB->xUsingStaticallyAllocatedStack = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
/* The stack was allocated dynamically. Note this so it can be
|
|
deleted again if the task is deleted. */
|
|
pxNewTCB->xUsingStaticallyAllocatedStack = pdFALSE;
|
|
}
|
|
#endif /* portUSING_MPU_WRAPPERS == 1 */
|
|
|
|
/* Calculate the top of stack address. This depends on whether the
|
|
stack grows from high memory to low (as per the 80x86) or vice versa.
|
|
portSTACK_GROWTH is used to make the result positive or negative as
|
|
required by the port. */
|
|
#if( portSTACK_GROWTH < 0 )
|
|
{
|
|
pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - ( uint16_t ) 1 );
|
|
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */
|
|
|
|
/* Check the alignment of the calculated top of stack is correct. */
|
|
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
}
|
|
#else /* portSTACK_GROWTH */
|
|
{
|
|
pxTopOfStack = pxNewTCB->pxStack;
|
|
|
|
/* Check the alignment of the stack buffer is correct. */
|
|
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
|
/* If we want to use stack checking on architectures that use
|
|
a positive stack growth direction then we also need to store the
|
|
other extreme of the stack space. */
|
|
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 );
|
|
}
|
|
#endif /* portSTACK_GROWTH */
|
|
|
|
/* Setup the newly allocated TCB with the initial state of the task. */
|
|
prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth, xCoreID );
|
|
|
|
/* Initialize the TCB stack to look as if the task was already running,
|
|
but had been interrupted by the scheduler. The return address is set
|
|
to the start of the task function. Once the stack has been initialised
|
|
the top of stack variable is updated. */
|
|
#if( portUSING_MPU_WRAPPERS == 1 )
|
|
{
|
|
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
}
|
|
#else /* portUSING_MPU_WRAPPERS */
|
|
{
|
|
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
|
|
}
|
|
#endif /* portUSING_MPU_WRAPPERS */
|
|
|
|
if( ( void * ) pxCreatedTask != NULL )
|
|
{
|
|
/* Pass the TCB out - in an anonymous way. The calling function/
|
|
task can use this as a handle to delete the task later if
|
|
required.*/
|
|
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Ensure interrupts don't access the task lists while they are being
|
|
updated. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
uxCurrentNumberOfTasks++;
|
|
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
|
|
{
|
|
/* This is the first task to be created so do the preliminary
|
|
initialisation required. We will not recover if this call
|
|
fails, but we will report the failure. */
|
|
prvInitialiseTaskLists();
|
|
}
|
|
if( xSchedulerRunning == pdFALSE )
|
|
{
|
|
/* Scheduler isn't running yet. We need to determine on which CPU to run this task. */
|
|
for ( i=0; i<portNUM_PROCESSORS; i++ )
|
|
{
|
|
/* Can we schedule this task on core i? */
|
|
if (xCoreID == tskNO_AFFINITY || xCoreID == i)
|
|
{
|
|
/* Schedule if nothing is scheduled yet, or overwrite a task of lower prio. */
|
|
if ( pxCurrentTCB[i] == NULL || pxCurrentTCB[i]->uxPriority <= uxPriority )
|
|
{
|
|
pxCurrentTCB[i] = pxNewTCB;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
uxTaskNumber++;
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
{
|
|
/* Add a counter into the TCB for tracing only. */
|
|
pxNewTCB->uxTCBNumber = uxTaskNumber;
|
|
}
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
traceTASK_CREATE( pxNewTCB );
|
|
|
|
prvAddTaskToReadyList( pxNewTCB );
|
|
|
|
xReturn = pdPASS;
|
|
portSETUP_TCB( pxNewTCB );
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
traceTASK_CREATE_FAILED();
|
|
}
|
|
|
|
if( xReturn == pdPASS )
|
|
{
|
|
if( xSchedulerRunning != pdFALSE )
|
|
{
|
|
/* Scheduler is running. If the created task is of a higher priority than an executing task
|
|
then it should run now.
|
|
ToDo: This only works for the current core. If a task is scheduled on an other processor,
|
|
the other processor will keep running the task it's working on, and only switch to the newer
|
|
task on a timer interrupt. */
|
|
//No mux here, uxPriority is mostly atomic and there's not really any harm if this check misfires.
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority < uxPriority )
|
|
{
|
|
taskYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
void vTaskDelete( TaskHandle_t xTaskToDelete )
|
|
{
|
|
TCB_t *pxTCB;
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* If null is passed in here then it is the calling task that is
|
|
being deleted. */
|
|
pxTCB = prvGetTCBFromHandle( xTaskToDelete );
|
|
|
|
/* Remove task from the ready list and place in the termination list.
|
|
This will stop the task from be scheduled. The idle task will check
|
|
the termination list and free up any memory allocated by the
|
|
scheduler for the TCB and stack. */
|
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Is the task waiting on an event also? */
|
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
{
|
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) );
|
|
|
|
/* Increment the ucTasksDeleted variable so the idle task knows
|
|
there is a task that has been deleted and that it should therefore
|
|
check the xTasksWaitingTermination list. */
|
|
++uxTasksDeleted;
|
|
|
|
/* Increment the uxTaskNumberVariable also so kernel aware debuggers
|
|
can detect that the task lists need re-generating. */
|
|
uxTaskNumber++;
|
|
|
|
traceTASK_DELETE( pxTCB );
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
/* Force a reschedule if it is the currently running task that has just
|
|
been deleted. */
|
|
if( xSchedulerRunning != pdFALSE )
|
|
{
|
|
//No mux; no harm done if this misfires. The deleted task won't get scheduled anyway.
|
|
if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
|
|
{
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == 0 );
|
|
|
|
/* The pre-delete hook is primarily for the Windows simulator,
|
|
in which Windows specific clean up operations are performed,
|
|
after which it is not possible to yield away from this task -
|
|
hence xYieldPending is used to latch that a context switch is
|
|
required. */
|
|
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
/* Reset the next expected unblock time in case it referred to
|
|
the task that has just been deleted. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
prvResetNextTaskUnblockTime();
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskDelete */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskDelayUntil == 1 )
|
|
|
|
/* ToDo: Make this multicore-compatible. */
|
|
void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
BaseType_t xAlreadyYielded=pdFALSE, xShouldDelay = pdFALSE;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
configASSERT( pxPreviousWakeTime );
|
|
configASSERT( ( xTimeIncrement > 0U ) );
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == 0 );
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
// vTaskSuspendAll();
|
|
{
|
|
/* Minor optimisation. The tick count cannot change in this
|
|
block. */
|
|
// portTICK_TYPE_ENTER_CRITICAL( &xTickCountMutex );
|
|
const TickType_t xConstTickCount = xTickCount;
|
|
// portTICK_TYPE_EXIT_CRITICAL( &xTickCountMutex );
|
|
|
|
/* Generate the tick time at which the task wants to wake. */
|
|
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
|
|
|
|
if( xConstTickCount < *pxPreviousWakeTime )
|
|
{
|
|
/* The tick count has overflowed since this function was
|
|
lasted called. In this case the only time we should ever
|
|
actually delay is if the wake time has also overflowed,
|
|
and the wake time is greater than the tick time. When this
|
|
is the case it is as if neither time had overflowed. */
|
|
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
|
|
{
|
|
xShouldDelay = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The tick time has not overflowed. In this case we will
|
|
delay if either the wake time has overflowed, and/or the
|
|
tick time is less than the wake time. */
|
|
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
|
|
{
|
|
xShouldDelay = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
/* Update the wake time ready for the next call. */
|
|
*pxPreviousWakeTime = xTimeToWake;
|
|
|
|
if( xShouldDelay != pdFALSE )
|
|
{
|
|
traceTASK_DELAY_UNTIL();
|
|
|
|
/* Remove the task from the ready list before adding it to the
|
|
blocked list as the same list item is used for both lists. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is
|
|
no need to check, and the port reset macro can be called
|
|
directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
// xAlreadyYielded = xTaskResumeAll();
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
/* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
have put ourselves to sleep. */
|
|
if( xAlreadyYielded == pdFALSE )
|
|
{
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskDelayUntil */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskDelay == 1 )
|
|
void vTaskDelay( const TickType_t xTicksToDelay )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
|
/* A delay time of zero just forces a reschedule. */
|
|
if( xTicksToDelay > ( TickType_t ) 0U )
|
|
{
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == 0 );
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
// vTaskSuspendAll();
|
|
{
|
|
traceTASK_DELAY();
|
|
|
|
/* A task that is removed from the event list while the
|
|
scheduler is suspended will not get placed in the ready
|
|
list or removed from the blocked list until the scheduler
|
|
is resumed.
|
|
|
|
This task cannot be in an event list as it is the currently
|
|
executing task. */
|
|
|
|
/* Calculate the time to wake - this may overflow but this is
|
|
not a problem. */
|
|
// portTICK_TYPE_ENTER_CRITICAL( &xTickCountMutex );
|
|
xTimeToWake = xTickCount + xTicksToDelay;
|
|
// portTICK_TYPE_EXIT_CRITICAL( &xTickCountMutex );
|
|
|
|
/* We must remove ourselves from the ready list before adding
|
|
ourselves to the blocked list as the same list item is used for
|
|
both lists. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is
|
|
no need to check, and the port reset macro can be called
|
|
directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
}
|
|
// xAlreadyYielded = xTaskResumeAll();
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
have put ourselves to sleep. */
|
|
if( xAlreadyYielded == pdFALSE )
|
|
{
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskDelay */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_eTaskGetState == 1 )
|
|
/* ToDo: Make this multicore-compatible. */
|
|
eTaskState eTaskGetState( TaskHandle_t xTask )
|
|
{
|
|
eTaskState eReturn;
|
|
List_t *pxStateList;
|
|
const TCB_t * const pxTCB = ( TCB_t * ) xTask;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
configASSERT( pxTCB );
|
|
|
|
if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
|
|
{
|
|
/* The task calling this function is querying its own state. */
|
|
eReturn = eRunning;
|
|
}
|
|
else
|
|
{
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) );
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
|
|
{
|
|
/* The task being queried is referenced from one of the Blocked
|
|
lists. */
|
|
eReturn = eBlocked;
|
|
}
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
else if( pxStateList == &xSuspendedTaskList )
|
|
{
|
|
/* The task being queried is referenced from the suspended
|
|
list. Is it genuinely suspended or is it block
|
|
indefinitely? */
|
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
|
|
{
|
|
eReturn = eSuspended;
|
|
}
|
|
else
|
|
{
|
|
eReturn = eBlocked;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
else if( pxStateList == &xTasksWaitingTermination )
|
|
{
|
|
/* The task being queried is referenced from the deleted
|
|
tasks list. */
|
|
eReturn = eDeleted;
|
|
}
|
|
#endif
|
|
|
|
else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
|
|
{
|
|
/* If the task is not in any other state, it must be in the
|
|
Ready (including pending ready) state. */
|
|
eReturn = eReady;
|
|
}
|
|
}
|
|
|
|
return eReturn;
|
|
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
|
#endif /* INCLUDE_eTaskGetState */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
/* ToDo: Make this multicore-compatible. */
|
|
UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
|
|
{
|
|
TCB_t *pxTCB;
|
|
UBaseType_t uxReturn;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* If null is passed in here then we are changing the
|
|
priority of the calling function. */
|
|
pxTCB = prvGetTCBFromHandle( xTask );
|
|
uxReturn = pxTCB->uxPriority;
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return uxReturn;
|
|
}
|
|
|
|
#endif /* INCLUDE_uxTaskPriorityGet */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
/* ToDo: Make this multicore-compatible. */
|
|
UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask )
|
|
{
|
|
TCB_t *pxTCB;
|
|
UBaseType_t uxReturn;
|
|
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
{
|
|
/* If null is passed in here then it is the priority of the calling
|
|
task that is being queried. */
|
|
pxTCB = prvGetTCBFromHandle( xTask );
|
|
uxReturn = pxTCB->uxPriority;
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
return uxReturn;
|
|
}
|
|
|
|
#endif /* INCLUDE_uxTaskPriorityGet */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskPrioritySet == 1 )
|
|
|
|
void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
|
|
{
|
|
TCB_t *pxTCB;
|
|
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
|
|
BaseType_t xYieldRequired = pdFALSE;
|
|
|
|
configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
|
|
|
|
/* Ensure the new priority is valid. */
|
|
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
{
|
|
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* If null is passed in here then it is the priority of the calling
|
|
task that is being changed. */
|
|
pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
|
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
uxCurrentBasePriority = pxTCB->uxBasePriority;
|
|
}
|
|
#else
|
|
{
|
|
uxCurrentBasePriority = pxTCB->uxPriority;
|
|
}
|
|
#endif
|
|
|
|
if( uxCurrentBasePriority != uxNewPriority )
|
|
{
|
|
/* The priority change may have readied a task of higher
|
|
priority than the calling task. */
|
|
if( uxNewPriority > uxCurrentBasePriority )
|
|
{
|
|
if( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] )
|
|
{
|
|
/* The priority of a task other than the currently
|
|
running task is being raised. Is the priority being
|
|
raised above that of the running task? */
|
|
if( uxNewPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
xYieldRequired = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The priority of the running task is being raised,
|
|
but the running task must already be the highest
|
|
priority task able to run so no yield is required. */
|
|
}
|
|
}
|
|
else if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
|
|
{
|
|
/* Setting the priority of the running task down means
|
|
there may now be another task of higher priority that
|
|
is ready to execute. */
|
|
xYieldRequired = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
/* Setting the priority of any other task down does not
|
|
require a yield as the running task must be above the
|
|
new priority of the task being modified. */
|
|
}
|
|
|
|
/* Remember the ready list the task might be referenced from
|
|
before its uxPriority member is changed so the
|
|
taskRESET_READY_PRIORITY() macro can function correctly. */
|
|
uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
/* Only change the priority being used if the task is not
|
|
currently using an inherited priority. */
|
|
if( pxTCB->uxBasePriority == pxTCB->uxPriority )
|
|
{
|
|
pxTCB->uxPriority = uxNewPriority;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* The base priority gets set whatever. */
|
|
pxTCB->uxBasePriority = uxNewPriority;
|
|
}
|
|
#else
|
|
{
|
|
pxTCB->uxPriority = uxNewPriority;
|
|
}
|
|
#endif
|
|
|
|
/* Only reset the event list item value if the value is not
|
|
being used for anything else. */
|
|
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
{
|
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* If the task is in the blocked or suspended list we need do
|
|
nothing more than change it's priority variable. However, if
|
|
the task is in a ready list it needs to be removed and placed
|
|
in the list appropriate to its new priority. */
|
|
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
|
{
|
|
/* The task is currently in its ready list - remove before adding
|
|
it to it's new ready list. As we are in a critical section we
|
|
can do this even if the scheduler is suspended. */
|
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* It is known that the task is in its ready list so
|
|
there is no need to check again and the port level
|
|
reset macro can be called directly. */
|
|
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
prvAddTaskToReadyList( pxTCB );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
if( xYieldRequired == pdTRUE )
|
|
{
|
|
taskYIELD_IF_USING_PREEMPTION_MUX(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Remove compiler warning about unused variables when the port
|
|
optimised task selection is not being used. */
|
|
( void ) uxPriorityUsedOnEntry;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskPrioritySet */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
/* ToDo: Make this multicore-compatible. */
|
|
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* If null is passed in here then it is the running task that is
|
|
being suspended. */
|
|
pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
|
|
|
|
traceTASK_SUSPEND( pxTCB );
|
|
|
|
/* Remove task from the ready/delayed list and place in the
|
|
suspended list. */
|
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Is the task waiting on an event also? */
|
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
{
|
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) );
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
|
|
{
|
|
if( xSchedulerRunning != pdFALSE )
|
|
{
|
|
/* The current task has just been suspended. */
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == 0 );
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
/* The scheduler is not running, but the task that was pointed
|
|
to by pxCurrentTCB has just been suspended and pxCurrentTCB
|
|
must be adjusted to point to a different task. */
|
|
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
|
|
{
|
|
/* No other tasks are ready, so set pxCurrentTCB back to
|
|
NULL so when the next task is created pxCurrentTCB will
|
|
be set to point to it no matter what its relative priority
|
|
is. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
pxCurrentTCB[ xPortGetCoreID() ] = NULL;
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
vTaskSwitchContext();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( xSchedulerRunning != pdFALSE )
|
|
{
|
|
/* A task other than the currently running task was suspended,
|
|
reset the next expected unblock time in case it referred to the
|
|
task that is now in the Suspended state. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
prvResetNextTaskUnblockTime();
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
|
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
|
|
{
|
|
BaseType_t xReturn = pdFALSE;
|
|
const TCB_t * const pxTCB = ( TCB_t * ) xTask;
|
|
|
|
/* Accesses xPendingReadyList so must be called from a critical
|
|
section. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
|
|
/* It does not make sense to check if the calling task is suspended. */
|
|
configASSERT( xTask );
|
|
|
|
/* Is the task being resumed actually in the suspended list? */
|
|
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
|
{
|
|
/* Has the task already been resumed from within an ISR? */
|
|
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
|
|
{
|
|
/* Is it in the suspended list because it is in the Suspended
|
|
state, or because is is blocked with no timeout? */
|
|
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
|
/* ToDo: Make this multicore-compatible. */
|
|
void vTaskResume( TaskHandle_t xTaskToResume )
|
|
{
|
|
TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
/* It does not make sense to resume the calling task. */
|
|
configASSERT( xTaskToResume );
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
/* The parameter cannot be NULL as it is impossible to resume the
|
|
currently executing task. */
|
|
if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] ) )
|
|
{
|
|
{
|
|
if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
|
|
{
|
|
traceTASK_RESUME( pxTCB );
|
|
|
|
/* As we are in a critical section we can access the ready
|
|
lists even if the scheduler is suspended. */
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxTCB );
|
|
|
|
/* We may have just resumed a higher priority task. */
|
|
if( pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* This yield may not cause the task just resumed to run,
|
|
but will leave the lists in the correct state for the
|
|
next yield. */
|
|
taskYIELD_IF_USING_PREEMPTION_MUX(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
|
|
|
|
/* ToDo: Make this multicore-compatible. */
|
|
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
|
|
{
|
|
BaseType_t xYieldRequired = pdFALSE;
|
|
TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
|
|
|
|
configASSERT( xTaskToResume );
|
|
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
{
|
|
if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
|
|
{
|
|
traceTASK_RESUME_FROM_ISR( pxTCB );
|
|
|
|
/* Check the ready lists can be accessed. */
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
/* Ready lists can be accessed so move the task from the
|
|
suspended list to the ready list directly. */
|
|
if( pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
xYieldRequired = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxTCB );
|
|
}
|
|
else
|
|
{
|
|
/* The delayed or ready lists cannot be accessed so the task
|
|
is held in the pending ready list until the scheduler is
|
|
unsuspended. */
|
|
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
return xYieldRequired;
|
|
}
|
|
|
|
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskStartScheduler( void )
|
|
{
|
|
BaseType_t xReturn;
|
|
BaseType_t i;
|
|
|
|
/* Add the per-core idle tasks at the lowest priority. */
|
|
for ( i=0; i<portNUM_PROCESSORS; i++) {
|
|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
{
|
|
/* Create the idle task, storing its handle in xIdleTaskHandle so it can
|
|
be returned by the xTaskGetIdleTaskHandle() function. */
|
|
xReturn = xTaskCreatePinnedToCore( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle[i], i ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
}
|
|
#else
|
|
{
|
|
/* Create the idle task without storing its handle. */
|
|
xReturn = xTaskCreatePinnedToCore( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL, i); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
}
|
|
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
|
}
|
|
|
|
#if ( configUSE_TIMERS == 1 )
|
|
{
|
|
if( xReturn == pdPASS )
|
|
{
|
|
xReturn = xTimerCreateTimerTask();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_TIMERS */
|
|
|
|
if( xReturn == pdPASS )
|
|
{
|
|
/* Interrupts are turned off here, to ensure a tick does not occur
|
|
before or during the call to xPortStartScheduler(). The stacks of
|
|
the created tasks contain a status word with interrupts switched on
|
|
so interrupts will automatically get re-enabled when the first task
|
|
starts to run. */
|
|
portDISABLE_INTERRUPTS();
|
|
|
|
|
|
xTickCount = ( TickType_t ) 0U;
|
|
|
|
/* If configGENERATE_RUN_TIME_STATS is defined then the following
|
|
macro must be defined to configure the timer/counter used to generate
|
|
the run time counter time base. */
|
|
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
|
|
xSchedulerRunning = pdTRUE;
|
|
|
|
/* Setting up the timer tick is hardware specific and thus in the
|
|
portable interface. */
|
|
if( xPortStartScheduler() != pdFALSE )
|
|
{
|
|
/* Should not reach here as if the scheduler is running the
|
|
function will not return. */
|
|
}
|
|
else
|
|
{
|
|
/* Should only reach here if a task calls xTaskEndScheduler(). */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* This line will only be reached if the kernel could not be started,
|
|
because there was not enough FreeRTOS heap to create the idle task
|
|
or the timer task. */
|
|
configASSERT( xReturn );
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskEndScheduler( void )
|
|
{
|
|
/* Stop the scheduler interrupts and call the portable scheduler end
|
|
routine so the original ISRs can be restored if necessary. The port
|
|
layer must ensure interrupts enable bit is left in the correct state. */
|
|
portDISABLE_INTERRUPTS();
|
|
xSchedulerRunning = pdFALSE;
|
|
vPortEndScheduler();
|
|
}
|
|
/*----------------------------------------------------------*/
|
|
|
|
|
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
//Return global reent struct if FreeRTOS isn't running,
|
|
struct _reent* __getreent() {
|
|
//No lock needed because if this changes, we won't be running anymore.
|
|
TCB_t *currTask=pxCurrentTCB[ xPortGetCoreID() ];
|
|
if (currTask==NULL) {
|
|
//No task running. Return global struct.
|
|
return _GLOBAL_REENT;
|
|
} else {
|
|
//We have a task; return its reentrant struct.
|
|
return &currTask->xNewLib_reent;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
void vTaskSuspendAll( void )
|
|
{
|
|
/* A critical section is not required as the variable is of type
|
|
BaseType_t. Please read Richard Barry's reply in the following link to a
|
|
post in the FreeRTOS support forum before reporting this as a bug! -
|
|
http://goo.gl/wu4acr */
|
|
++uxSchedulerSuspended[ xPortGetCoreID() ];
|
|
}
|
|
/*----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
|
static TickType_t prvGetExpectedIdleTime( void )
|
|
{
|
|
TickType_t xReturn;
|
|
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY )
|
|
{
|
|
xReturn = 0;
|
|
}
|
|
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
|
|
{
|
|
/* There are other idle priority tasks in the ready state. If
|
|
time slicing is used then the very next tick interrupt must be
|
|
processed. */
|
|
xReturn = 0;
|
|
}
|
|
else
|
|
{
|
|
portTICK_TYPE_ENTER_CRITICAL( &xTickCountMutex );
|
|
xReturn = xNextTaskUnblockTime - xTickCount;
|
|
portTICK_TYPE_EXIT_CRITICAL( &xTickCountMutex );
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
/*----------------------------------------------------------*/
|
|
|
|
BaseType_t xTaskResumeAll( void )
|
|
{
|
|
TCB_t *pxTCB;
|
|
BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
|
/* If uxSchedulerSuspended[ xPortGetCoreID() ] is zero then this function does not match a
|
|
previous call to vTaskSuspendAll(). */
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] );
|
|
/* It is possible that an ISR caused a task to be removed from an event
|
|
list while the scheduler was suspended. If this was the case then the
|
|
removed task will have been added to the xPendingReadyList. Once the
|
|
scheduler has been resumed it is safe to move all the pending ready
|
|
tasks from this list into their appropriate ready list. */
|
|
|
|
//This uses a mux, but can be called before tasks are scheduled. Make sure muxes are inited.
|
|
/* Initialize mutexes, if they're not already initialized. */
|
|
if (xMutexesInitialised == pdFALSE) vTaskInitializeLocalMuxes();
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
--uxSchedulerSuspended[ xPortGetCoreID() ];
|
|
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
|
|
{
|
|
/* Move any readied tasks from the pending list into the
|
|
appropriate ready list. */
|
|
while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
|
|
{
|
|
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
|
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxTCB );
|
|
|
|
/* If the moved task has a priority higher than the current
|
|
task then a yield must be performed. */
|
|
if( pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
xYieldPending = pdTRUE;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
/* If any ticks occurred while the scheduler was suspended then
|
|
they should be processed now. This ensures the tick count does
|
|
not slip, and that any delayed tasks are resumed at the correct
|
|
time. */
|
|
if( uxPendedTicks > ( UBaseType_t ) 0U )
|
|
{
|
|
while( uxPendedTicks > ( UBaseType_t ) 0U )
|
|
{
|
|
if( xTaskIncrementTick() != pdFALSE )
|
|
{
|
|
xYieldPending = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
--uxPendedTicks;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
if( xYieldPending == pdTRUE )
|
|
{
|
|
#if( configUSE_PREEMPTION != 0 )
|
|
{
|
|
xAlreadyYielded = pdTRUE;
|
|
}
|
|
#endif
|
|
taskYIELD_IF_USING_PREEMPTION_MUX(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xAlreadyYielded;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
TickType_t xTaskGetTickCount( void )
|
|
{
|
|
TickType_t xTicks;
|
|
|
|
/* Critical section required if running on a 16 bit processor. */
|
|
portTICK_TYPE_ENTER_CRITICAL( &xTickCountMutex );
|
|
{
|
|
xTicks = xTickCount;
|
|
}
|
|
portTICK_TYPE_EXIT_CRITICAL( &xTickCountMutex );
|
|
|
|
return xTicks;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
TickType_t xTaskGetTickCountFromISR( void )
|
|
{
|
|
TickType_t xReturn;
|
|
|
|
taskENTER_CRITICAL_ISR(&xTickCountMutex);
|
|
{
|
|
xReturn = xTickCount;
|
|
// vPortCPUReleaseMutex( &xTickCountMutex );
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTickCountMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxTaskGetNumberOfTasks( void )
|
|
{
|
|
/* A critical section is not required because the variables are of type
|
|
BaseType_t. */
|
|
return uxCurrentNumberOfTasks;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_pcTaskGetTaskName == 1 )
|
|
|
|
char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
/* If null is passed in here then the name of the calling task is being queried. */
|
|
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
configASSERT( pxTCB );
|
|
return &( pxTCB->pcTaskName[ 0 ] );
|
|
}
|
|
|
|
#endif /* INCLUDE_pcTaskGetTaskName */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
|
|
{
|
|
UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
vTaskSuspendAll(); //WARNING: This only suspends one CPU. ToDo: suspend others as well. Mux using taskQueueMutex maybe?
|
|
{
|
|
/* Is there a space in the array for each task in the system? */
|
|
if( uxArraySize >= uxCurrentNumberOfTasks )
|
|
{
|
|
/* Fill in an TaskStatus_t structure with information on each
|
|
task in the Ready state. */
|
|
do
|
|
{
|
|
uxQueue--;
|
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
|
|
|
|
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
|
/* Fill in an TaskStatus_t structure with information on each
|
|
task in the Blocked state. */
|
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
|
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
|
|
|
|
#if( INCLUDE_vTaskDelete == 1 )
|
|
{
|
|
/* Fill in an TaskStatus_t structure with information on
|
|
each task that has been deleted but not yet cleaned up. */
|
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
|
|
}
|
|
#endif
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
/* Fill in an TaskStatus_t structure with information on
|
|
each task in the Suspended state. */
|
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
|
|
}
|
|
#endif
|
|
|
|
#if ( configGENERATE_RUN_TIME_STATS == 1)
|
|
{
|
|
if( pulTotalRunTime != NULL )
|
|
{
|
|
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
|
|
#else
|
|
*pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
#endif
|
|
}
|
|
}
|
|
#else
|
|
{
|
|
if( pulTotalRunTime != NULL )
|
|
{
|
|
*pulTotalRunTime = 0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
( void ) xTaskResumeAll();
|
|
|
|
return uxTask;
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
|
TaskHandle_t xTaskGetIdleTaskHandle( void )
|
|
{
|
|
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
|
|
started, then xIdleTaskHandle will be NULL. */
|
|
configASSERT( ( xIdleTaskHandle != NULL ) );
|
|
return xIdleTaskHandle;
|
|
}
|
|
|
|
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
|
/*----------------------------------------------------------*/
|
|
|
|
/* This conditional compilation should use inequality to 0, not equality to 1.
|
|
This is to ensure vTaskStepTick() is available when user defined low power mode
|
|
implementations require configUSE_TICKLESS_IDLE to be set to a value other than
|
|
1. */
|
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
|
void vTaskStepTick( const TickType_t xTicksToJump )
|
|
{
|
|
/* Correct the tick count value after a period during which the tick
|
|
was suppressed. Note this does *not* call the tick hook function for
|
|
each stepped tick. */
|
|
portTICK_TYPE_ENTER_CRITICAL( &xTickCountMutex );
|
|
configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
|
|
xTickCount += xTicksToJump;
|
|
portTICK_TYPE_EXIT_CRITICAL( &xTickCountMutex );
|
|
traceINCREASE_TICK_COUNT( xTicksToJump );
|
|
}
|
|
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
/*----------------------------------------------------------*/
|
|
|
|
BaseType_t xTaskIncrementTick( void )
|
|
{
|
|
TCB_t * pxTCB;
|
|
TickType_t xItemValue;
|
|
BaseType_t xSwitchRequired = pdFALSE;
|
|
|
|
/* Called by the portable layer each time a tick interrupt occurs.
|
|
Increments the tick then checks to see if the new tick value will cause any
|
|
tasks to be unblocked. */
|
|
|
|
/* Only let core 0 increase the tick count, to keep accurate track of time. */
|
|
/* ToDo: This doesn't really play nice with the logic below: it means when core 1 is
|
|
running a low-priority task, it will keep running it until there is a context
|
|
switch, even when this routine (running on core 0) unblocks a bunch of high-priority
|
|
tasks... this is less than optimal -- JD. */
|
|
if ( xPortGetCoreID()!=0 ) {
|
|
/*
|
|
We can't really calculate what we need, that's done on core 0... just assume we need a switch.
|
|
ToDo: Make this more intelligent? -- JD
|
|
*/
|
|
return pdTRUE;
|
|
}
|
|
|
|
|
|
traceTASK_INCREMENT_TICK( xTickCount );
|
|
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
portTICK_TYPE_ENTER_CRITICAL( &xTickCountMutex );
|
|
/* Increment the RTOS tick, switching the delayed and overflowed
|
|
delayed lists if it wraps to 0. */
|
|
++xTickCount;
|
|
portTICK_TYPE_EXIT_CRITICAL( &xTickCountMutex );
|
|
|
|
//The other CPU may decide to mess with the task queues, so this needs a mux.
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
{
|
|
/* Minor optimisation. The tick count cannot change in this
|
|
block. */
|
|
const TickType_t xConstTickCount = xTickCount;
|
|
|
|
if( xConstTickCount == ( TickType_t ) 0U )
|
|
{
|
|
taskSWITCH_DELAYED_LISTS();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* See if this tick has made a timeout expire. Tasks are stored in
|
|
the queue in the order of their wake time - meaning once one task
|
|
has been found whose block time has not expired there is no need to
|
|
look any further down the list. */
|
|
if( xConstTickCount >= xNextTaskUnblockTime )
|
|
{
|
|
for( ;; )
|
|
{
|
|
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
{
|
|
/* The delayed list is empty. Set xNextTaskUnblockTime
|
|
to the maximum possible value so it is extremely
|
|
unlikely that the
|
|
if( xTickCount >= xNextTaskUnblockTime ) test will pass
|
|
next time through. */
|
|
xNextTaskUnblockTime = portMAX_DELAY;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* The delayed list is not empty, get the value of the
|
|
item at the head of the delayed list. This is the time
|
|
at which the task at the head of the delayed list must
|
|
be removed from the Blocked state. */
|
|
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
|
|
xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) );
|
|
|
|
if( xConstTickCount < xItemValue )
|
|
{
|
|
/* It is not time to unblock this item yet, but the
|
|
item value is the time at which the task at the head
|
|
of the blocked list must be removed from the Blocked
|
|
state - so record the item value in
|
|
xNextTaskUnblockTime. */
|
|
xNextTaskUnblockTime = xItemValue;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* It is time to remove the item from the Blocked state. */
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
|
|
/* Is the task waiting on an event also? If so remove
|
|
it from the event list. */
|
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
{
|
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Place the unblocked task into the appropriate ready
|
|
list. */
|
|
prvAddTaskToReadyList( pxTCB );
|
|
|
|
/* A task being unblocked cannot cause an immediate
|
|
context switch if preemption is turned off. */
|
|
#if ( configUSE_PREEMPTION == 1 )
|
|
{
|
|
/* Preemption is on, but a context switch should
|
|
only be performed if the unblocked task has a
|
|
priority that is equal to or higher than the
|
|
currently executing task. */
|
|
if( pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
xSwitchRequired = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_PREEMPTION */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Tasks of equal priority to the currently running task will share
|
|
processing time (time slice) if preemption is on, and the application
|
|
writer has not explicitly turned time slicing off. */
|
|
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
|
|
{
|
|
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
|
|
{
|
|
xSwitchRequired = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
|
|
|
|
#if ( configUSE_TICK_HOOK == 1 )
|
|
{
|
|
/* Guard against the tick hook being called when the pended tick
|
|
count is being unwound (when the scheduler is being unlocked). */
|
|
if( uxPendedTicks == ( UBaseType_t ) 0U )
|
|
{
|
|
vApplicationTickHook();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_TICK_HOOK */
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
}
|
|
else
|
|
{
|
|
++uxPendedTicks;
|
|
|
|
/* The tick hook gets called at regular intervals, even if the
|
|
scheduler is locked. */
|
|
#if ( configUSE_TICK_HOOK == 1 )
|
|
{
|
|
vApplicationTickHook();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ( configUSE_PREEMPTION == 1 )
|
|
{
|
|
if( xYieldPending != pdFALSE )
|
|
{
|
|
xSwitchRequired = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_PREEMPTION */
|
|
|
|
return xSwitchRequired;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
|
void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
|
|
{
|
|
TCB_t *xTCB;
|
|
|
|
/* If xTask is NULL then it is the task hook of the calling task that is
|
|
getting set. */
|
|
if( xTask == NULL )
|
|
{
|
|
xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ];
|
|
}
|
|
else
|
|
{
|
|
xTCB = ( TCB_t * ) xTask;
|
|
}
|
|
|
|
/* Save the hook function in the TCB. A critical section is required as
|
|
the value can be accessed from an interrupt. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
xTCB->pxTaskTag = pxHookFunction;
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
|
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
|
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
|
|
{
|
|
TCB_t *xTCB;
|
|
TaskHookFunction_t xReturn;
|
|
|
|
/* If xTask is NULL then we are setting our own task hook. */
|
|
if( xTask == NULL )
|
|
{
|
|
xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ];
|
|
}
|
|
else
|
|
{
|
|
xTCB = ( TCB_t * ) xTask;
|
|
}
|
|
|
|
/* Save the hook function in the TCB. A critical section is required as
|
|
the value can be accessed from an interrupt. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
xReturn = xTCB->pxTaskTag;
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
|
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
|
|
{
|
|
TCB_t *xTCB;
|
|
BaseType_t xReturn;
|
|
|
|
/* If xTask is NULL then we are calling our own task hook. */
|
|
if( xTask == NULL )
|
|
{
|
|
xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ];
|
|
}
|
|
else
|
|
{
|
|
xTCB = ( TCB_t * ) xTask;
|
|
}
|
|
|
|
if( xTCB->pxTaskTag != NULL )
|
|
{
|
|
xReturn = xTCB->pxTaskTag( pvParameter );
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFAIL;
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskSwitchContext( void )
|
|
{
|
|
tskTCB * pxTCB;
|
|
//This can be called both from IRQ as well as normal context, so we can't
|
|
//use taskENTER_CRITICAL() here. Instead, save the irq status and disable
|
|
//IRQs, so we can use taskENTER_CRITICAL_ISR and friends.
|
|
int irqstate=portENTER_CRITICAL_NESTED();
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) pdFALSE )
|
|
{
|
|
/* The scheduler is currently suspended - do not allow a context
|
|
switch. */
|
|
xYieldPending = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xYieldPending = pdFALSE;
|
|
traceTASK_SWITCHED_OUT();
|
|
|
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
{
|
|
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
|
|
#else
|
|
ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
#endif
|
|
|
|
/* Add the amount of time the task has been running to the
|
|
accumulated time so far. The time the task started running was
|
|
stored in ulTaskSwitchedInTime. Note that there is no overflow
|
|
protection here so count values are only valid until the timer
|
|
overflows. The guard against negative values is to protect
|
|
against suspect run time stat counter implementations - which
|
|
are provided by the application, not the kernel. */
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
if( ulTotalRunTime > ulTaskSwitchedInTime )
|
|
{
|
|
pxCurrentTCB[ xPortGetCoreID() ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
ulTaskSwitchedInTime = ulTotalRunTime;
|
|
}
|
|
#endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
|
/* Check for stack overflow, if configured. */
|
|
taskFIRST_CHECK_FOR_STACK_OVERFLOW();
|
|
taskSECOND_CHECK_FOR_STACK_OVERFLOW();
|
|
|
|
/* Select a new task to run using either the generic C or port
|
|
optimised asm code. */
|
|
/* ToDo: either get rid of port-changable task switching stuff, or put all this inside the
|
|
taskSELECT_HIGHEST_PRIORITY_TASK macro, then replace this all with a taskSELECT_HIGHEST_PRIORITY_TASK();
|
|
call */
|
|
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
unsigned portBASE_TYPE foundNonExecutingWaiter = pdFALSE, ableToSchedule = pdFALSE, resetListHead;
|
|
unsigned portBASE_TYPE uxDynamicTopReady = uxTopReadyPriority;
|
|
unsigned portBASE_TYPE holdTop=pdFALSE;
|
|
|
|
/*
|
|
* ToDo: This scheduler doesn't correctly implement the round-robin scheduling as done in the single-core
|
|
* FreeRTOS stack when multiple tasks have the same priority and are all ready; it just keeps grabbing the
|
|
* first one. ToDo: fix this.
|
|
* (Is this still true? if any, there's the issue with one core skipping over the processes for the other
|
|
* core, potentially not giving the skipped-over processes any time.)
|
|
*/
|
|
|
|
while ( ableToSchedule == pdFALSE && uxDynamicTopReady >= 0 )
|
|
{
|
|
configASSERT( uxTopReadyPriority>=0 );
|
|
configASSERT( uxDynamicTopReady>=0 );
|
|
resetListHead = pdFALSE;
|
|
// Nothing to do for empty lists
|
|
if (!listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxDynamicTopReady ] ) )) {
|
|
|
|
ableToSchedule = pdFALSE;
|
|
tskTCB * pxRefTCB;
|
|
|
|
/* Remember the current list item so that we
|
|
can detect if all items have been inspected.
|
|
Once this happens, we move on to a lower
|
|
priority list (assuming nothing is suitable
|
|
for scheduling). Note: This can return NULL if
|
|
the list index is at the listItem */
|
|
pxRefTCB = pxReadyTasksLists[ uxDynamicTopReady ].pxIndex->pvOwner;
|
|
|
|
if ((void*)pxReadyTasksLists[ uxDynamicTopReady ].pxIndex==(void*)&pxReadyTasksLists[ uxDynamicTopReady ].xListEnd) {
|
|
//pxIndex points to the list end marker. Skip that and just get the next item.
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxRefTCB, &( pxReadyTasksLists[ uxDynamicTopReady ] ) );
|
|
}
|
|
|
|
do {
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxTCB, &( pxReadyTasksLists[ uxDynamicTopReady ] ) );
|
|
/* Find out if the next task in the list is
|
|
already being executed by another core */
|
|
foundNonExecutingWaiter = pdTRUE;
|
|
portBASE_TYPE i = 0;
|
|
for ( i=0; i<portNUM_PROCESSORS; i++ ) {
|
|
if (i == xPortGetCoreID()) {
|
|
continue;
|
|
} else if (pxCurrentTCB[i] == pxTCB) {
|
|
holdTop=pdTRUE; //keep this as the top prio, for the other CPU
|
|
foundNonExecutingWaiter = pdFALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (foundNonExecutingWaiter == pdTRUE) {
|
|
/* If the task is not being executed
|
|
by another core and its affinity is
|
|
compatible with the current one,
|
|
prepare it to be swapped in */
|
|
if (pxTCB->xCoreID == tskNO_AFFINITY) {
|
|
pxCurrentTCB[xPortGetCoreID()] = pxTCB;
|
|
ableToSchedule = pdTRUE;
|
|
} else if (pxTCB->xCoreID == xPortGetCoreID()) {
|
|
pxCurrentTCB[xPortGetCoreID()] = pxTCB;
|
|
ableToSchedule = pdTRUE;
|
|
} else {
|
|
ableToSchedule = pdFALSE;
|
|
holdTop=pdTRUE; //keep this as the top prio, for the other CPU
|
|
}
|
|
} else {
|
|
ableToSchedule = pdFALSE;
|
|
}
|
|
|
|
if (ableToSchedule == pdFALSE) {
|
|
resetListHead = pdTRUE;
|
|
} else if ((ableToSchedule == pdTRUE) && (resetListHead == pdTRUE)) {
|
|
tskTCB * pxResetTCB;
|
|
do {
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxResetTCB, &( pxReadyTasksLists[ uxDynamicTopReady ] ) );
|
|
} while(pxResetTCB != pxRefTCB);
|
|
}
|
|
} while ((ableToSchedule == pdFALSE) && (pxTCB != pxRefTCB));
|
|
} else {
|
|
if (!holdTop) --uxTopReadyPriority;
|
|
}
|
|
--uxDynamicTopReady;
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
/* ToDo: taskSELECT_HIGHEST_PRIORITY_TASK replacement code ends here. */
|
|
|
|
traceTASK_SWITCHED_IN();
|
|
|
|
}
|
|
portEXIT_CRITICAL_NESTED(irqstate);
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
|
|
configASSERT( pxEventList );
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
|
|
/* Place the event list item of the TCB in the appropriate event list.
|
|
This is placed in the list in priority order so the highest priority task
|
|
is the first to be woken by the event. The queue that contains the event
|
|
list is locked, preventing simultaneous access from interrupts. */
|
|
vListInsert( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
|
/* The task must be removed from from the ready list before it is added to
|
|
the blocked list as the same list item is used for both lists. Exclusive
|
|
access to the ready lists guaranteed because the scheduler is locked. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is no need to
|
|
check, and the port reset macro can be called directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
if( xTicksToWait == portMAX_DELAY )
|
|
{
|
|
/* Add the task to the suspended task list instead of a delayed task
|
|
list to ensure the task is not woken by a timing event. It will
|
|
block indefinitely. */
|
|
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
|
|
}
|
|
else
|
|
{
|
|
/* Calculate the time at which the task should be woken if the event
|
|
does not occur. This may overflow but this doesn't matter, the
|
|
scheduler will handle it. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
}
|
|
}
|
|
#else /* INCLUDE_vTaskSuspend */
|
|
{
|
|
/* Calculate the time at which the task should be woken if the event does
|
|
not occur. This may overflow but this doesn't matter, the scheduler
|
|
will handle it. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
|
}
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
|
|
configASSERT( pxEventList );
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
|
|
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
the event groups implementation. */
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] != 0 );
|
|
|
|
/* Store the item value in the event list item. It is safe to access the
|
|
event list item here as interrupts won't access the event list item of a
|
|
task that is not in the Blocked state. */
|
|
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
|
/* Place the event list item of the TCB at the end of the appropriate event
|
|
list. It is safe to access the event list here because it is part of an
|
|
event group implementation - and interrupts don't access event groups
|
|
directly (instead they access them indirectly by pending function calls to
|
|
the task level). */
|
|
vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
|
/* The task must be removed from the ready list before it is added to the
|
|
blocked list. Exclusive access can be assured to the ready list as the
|
|
scheduler is locked. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is no need to
|
|
check, and the port reset macro can be called directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
if( xTicksToWait == portMAX_DELAY )
|
|
{
|
|
/* Add the task to the suspended task list instead of a delayed task
|
|
list to ensure it is not woken by a timing event. It will block
|
|
indefinitely. */
|
|
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
|
|
}
|
|
else
|
|
{
|
|
/* Calculate the time at which the task should be woken if the event
|
|
does not occur. This may overflow but this doesn't matter, the
|
|
kernel will manage it correctly. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
}
|
|
}
|
|
#else /* INCLUDE_vTaskSuspend */
|
|
{
|
|
/* Calculate the time at which the task should be woken if the event does
|
|
not occur. This may overflow but this doesn't matter, the kernel
|
|
will manage it correctly. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
|
}
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if configUSE_TIMERS == 1
|
|
|
|
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
configASSERT( pxEventList );
|
|
|
|
/* This function should not be called by application code hence the
|
|
'Restricted' in its name. It is not part of the public API. It is
|
|
designed for use by kernel code, and has special calling requirements -
|
|
it should be called from a critical section. */
|
|
|
|
|
|
/* Place the event list item of the TCB in the appropriate event list.
|
|
In this case it is assume that this is the only task that is going to
|
|
be waiting on this event list, so the faster vListInsertEnd() function
|
|
can be used in place of vListInsert. */
|
|
vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
|
/* We must remove this task from the ready list before adding it to the
|
|
blocked list as the same list item is used for both lists. This
|
|
function is called form a critical section. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is no need to
|
|
check, and the port reset macro can be called directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Calculate the time at which the task should be woken if the event does
|
|
not occur. This may overflow but this doesn't matter. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
|
|
traceTASK_DELAY_UNTIL();
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
}
|
|
|
|
#endif /* configUSE_TIMERS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
|
{
|
|
TCB_t *pxUnblockedTCB;
|
|
BaseType_t xReturn;
|
|
|
|
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
|
called from a critical section within an ISR. */
|
|
//That makes the taskENTER_CRITICALs here unnecessary, right? -JD
|
|
// taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
/* The event list is sorted in priority order, so the first in the list can
|
|
be removed as it is known to be the highest priority. Remove the TCB from
|
|
the delayed list, and add it to the ready list.
|
|
|
|
If an event is for a queue that is locked then this function will never
|
|
get called - the lock count on the queue will get modified instead. This
|
|
means exclusive access to the event list is guaranteed here.
|
|
|
|
This function assumes that a check has already been made to ensure that
|
|
pxEventList is not empty. */
|
|
pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
|
|
configASSERT( pxUnblockedTCB );
|
|
( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
|
|
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxUnblockedTCB );
|
|
}
|
|
else
|
|
{
|
|
/* The delayed and ready lists cannot be accessed, so hold this task
|
|
pending until the scheduler is resumed. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
}
|
|
|
|
if( pxUnblockedTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* Return true if the task removed from the event list has a higher
|
|
priority than the calling task. This allows the calling task to know if
|
|
it should force a context switch now. */
|
|
xReturn = pdTRUE;
|
|
|
|
/* Mark that a yield is pending in case the user is not using the
|
|
"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
|
xYieldPending = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
#if( configUSE_TICKLESS_IDLE == 1 )
|
|
{
|
|
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
might be set to the blocked task's time out time. If the task is
|
|
unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
normally left unchanged, because it is automatically get reset to a new
|
|
value when the tick count equals xNextTaskUnblockTime. However if
|
|
tickless idling is used it might be more important to enter sleep mode
|
|
at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
ensure it is updated at the earliest possible time. */
|
|
prvResetNextTaskUnblockTime();
|
|
}
|
|
#endif
|
|
// taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
|
|
{
|
|
TCB_t *pxUnblockedTCB;
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
the event flags implementation. */
|
|
configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] != pdFALSE );
|
|
|
|
/* Store the new item value in the event list. */
|
|
listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
|
/* Remove the event list form the event flag. Interrupts do not access
|
|
event flags. */
|
|
pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
|
|
configASSERT( pxUnblockedTCB );
|
|
( void ) uxListRemove( pxEventListItem );
|
|
|
|
/* Remove the task from the delayed list and add it to the ready list. The
|
|
scheduler is suspended so interrupts will not be accessing the ready
|
|
lists. */
|
|
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
|
if( pxUnblockedTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* Return true if the task removed from the event list has
|
|
a higher priority than the calling task. This allows
|
|
the calling task to know if it should force a context
|
|
switch now. */
|
|
xReturn = pdTRUE;
|
|
|
|
/* Mark that a yield is pending in case the user is not using the
|
|
"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
|
xYieldPending = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
{
|
|
configASSERT( pxTimeOut );
|
|
pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
pxTimeOut->xTimeOnEntering = xTickCount;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
configASSERT( pxTimeOut );
|
|
configASSERT( pxTicksToWait );
|
|
|
|
taskENTER_CRITICAL(&xTickCountMutex);
|
|
{
|
|
/* Minor optimisation. The tick count cannot change in this block. */
|
|
const TickType_t xConstTickCount = xTickCount;
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
/* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is
|
|
the maximum block time then the task should block indefinitely, and
|
|
therefore never time out. */
|
|
if( *pxTicksToWait == portMAX_DELAY )
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
else /* We are not blocking indefinitely, perform the checks below. */
|
|
#endif
|
|
|
|
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
|
|
{
|
|
/* The tick count is greater than the time at which vTaskSetTimeout()
|
|
was called, but has also overflowed since vTaskSetTimeOut() was called.
|
|
It must have wrapped all the way around and gone past us again. This
|
|
passed since vTaskSetTimeout() was called. */
|
|
xReturn = pdTRUE;
|
|
}
|
|
else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait )
|
|
{
|
|
/* Not a genuine timeout. Adjust parameters for time remaining. */
|
|
*pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering );
|
|
vTaskSetTimeOutState( pxTimeOut );
|
|
xReturn = pdFALSE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTickCountMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vTaskMissedYield( void )
|
|
{
|
|
xYieldPending = pdTRUE;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
|
|
{
|
|
UBaseType_t uxReturn;
|
|
TCB_t *pxTCB;
|
|
|
|
if( xTask != NULL )
|
|
{
|
|
pxTCB = ( TCB_t * ) xTask;
|
|
uxReturn = pxTCB->uxTaskNumber;
|
|
}
|
|
else
|
|
{
|
|
uxReturn = 0U;
|
|
}
|
|
|
|
return uxReturn;
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
if( xTask != NULL )
|
|
{
|
|
pxTCB = ( TCB_t * ) xTask;
|
|
pxTCB->uxTaskNumber = uxHandle;
|
|
}
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
|
|
/*
|
|
* -----------------------------------------------------------
|
|
* The Idle task.
|
|
* ----------------------------------------------------------
|
|
*
|
|
* The portTASK_FUNCTION() macro is used to allow port/compiler specific
|
|
* language extensions. The equivalent prototype for this function is:
|
|
*
|
|
* void prvIdleTask( void *pvParameters );
|
|
*
|
|
*/
|
|
static portTASK_FUNCTION( prvIdleTask, pvParameters )
|
|
{
|
|
/* Stop warnings. */
|
|
( void ) pvParameters;
|
|
|
|
for( ;; )
|
|
{
|
|
/* See if any tasks have been deleted. */
|
|
prvCheckTasksWaitingTermination();
|
|
|
|
#if ( configUSE_PREEMPTION == 0 )
|
|
{
|
|
/* If we are not using preemption we keep forcing a task switch to
|
|
see if any other task has become available. If we are using
|
|
preemption we don't need to do this as any task becoming available
|
|
will automatically get the processor anyway. */
|
|
taskYIELD();
|
|
}
|
|
#endif /* configUSE_PREEMPTION */
|
|
|
|
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
|
|
{
|
|
/* When using preemption tasks of equal priority will be
|
|
timesliced. If a task that is sharing the idle priority is ready
|
|
to run then the idle task should yield before the end of the
|
|
timeslice.
|
|
|
|
A critical region is not required here as we are just reading from
|
|
the list, and an occasional incorrect value will not matter. If
|
|
the ready list at the idle priority contains more than one task
|
|
then a task other than the idle task is ready to execute. */
|
|
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
|
|
{
|
|
taskYIELD();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
|
|
|
|
#if ( configUSE_IDLE_HOOK == 1 )
|
|
{
|
|
extern void vApplicationIdleHook( void );
|
|
|
|
/* Call the user defined function from within the idle task. This
|
|
allows the application designer to add background functionality
|
|
without the overhead of a separate task.
|
|
NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
|
|
CALL A FUNCTION THAT MIGHT BLOCK. */
|
|
vApplicationIdleHook();
|
|
}
|
|
#endif /* configUSE_IDLE_HOOK */
|
|
|
|
/* This conditional compilation should use inequality to 0, not equality
|
|
to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
|
|
user defined low power mode implementations require
|
|
configUSE_TICKLESS_IDLE to be set to a value other than 1. */
|
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
{
|
|
TickType_t xExpectedIdleTime;
|
|
|
|
/* It is not desirable to suspend then resume the scheduler on
|
|
each iteration of the idle task. Therefore, a preliminary
|
|
test of the expected idle time is performed without the
|
|
scheduler suspended. The result here is not necessarily
|
|
valid. */
|
|
xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
|
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
{
|
|
// vTaskSuspendAll();
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* Now the scheduler is suspended, the expected idle
|
|
time can be sampled again, and this time its value can
|
|
be used. */
|
|
configASSERT( xNextTaskUnblockTime >= xTickCount );
|
|
xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
|
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
{
|
|
traceLOW_POWER_IDLE_BEGIN();
|
|
portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
|
|
traceLOW_POWER_IDLE_END();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
// ( void ) xTaskResumeAll();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if configUSE_TICKLESS_IDLE != 0
|
|
|
|
eSleepModeStatus eTaskConfirmSleepModeStatus( void )
|
|
{
|
|
eSleepModeStatus eReturn = eStandardSleep;
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
|
|
if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
|
|
{
|
|
/* A task was made ready while the scheduler was suspended. */
|
|
eReturn = eAbortSleep;
|
|
}
|
|
else if( xYieldPending != pdFALSE )
|
|
{
|
|
/* A yield was pended while the scheduler was suspended. */
|
|
eReturn = eAbortSleep;
|
|
}
|
|
else
|
|
{
|
|
#if configUSE_TIMERS == 0
|
|
{
|
|
/* The idle task exists in addition to the application tasks. */
|
|
const UBaseType_t uxNonApplicationTasks = 1;
|
|
|
|
/* If timers are not being used and all the tasks are in the
|
|
suspended list (which might mean they have an infinite block
|
|
time rather than actually being suspended) then it is safe to
|
|
turn all clocks off and just wait for external interrupts. */
|
|
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
|
|
{
|
|
eReturn = eNoTasksWaitingTimeout;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_TIMERS */
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return eReturn;
|
|
}
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth, const BaseType_t xCoreID ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
{
|
|
UBaseType_t x;
|
|
|
|
/* Store the task name in the TCB. */
|
|
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
{
|
|
pxTCB->pcTaskName[ x ] = pcName[ x ];
|
|
|
|
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
|
configMAX_TASK_NAME_LEN characters just in case the memory after the
|
|
string is not accessible (extremely unlikely). */
|
|
if( pcName[ x ] == 0x00 )
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
/* Ensure the name string is terminated in the case that the string length
|
|
was greater or equal to configMAX_TASK_NAME_LEN. */
|
|
pxTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
|
|
|
|
/* This is used as an array index so must ensure it's not too large. First
|
|
remove the privilege bit if one is present. */
|
|
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
{
|
|
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
pxTCB->uxPriority = uxPriority;
|
|
pxTCB->xCoreID = xCoreID;
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
pxTCB->uxBasePriority = uxPriority;
|
|
pxTCB->uxMutexesHeld = 0;
|
|
}
|
|
#endif /* configUSE_MUTEXES */
|
|
|
|
vListInitialiseItem( &( pxTCB->xGenericListItem ) );
|
|
vListInitialiseItem( &( pxTCB->xEventListItem ) );
|
|
|
|
/* Set the pxTCB as a link back from the ListItem_t. This is so we can get
|
|
back to the containing TCB from a generic item in a list. */
|
|
listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB );
|
|
|
|
/* Event lists are always in priority order. */
|
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB );
|
|
|
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
{
|
|
pxTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
|
|
}
|
|
#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
{
|
|
pxTCB->pxTaskTag = NULL;
|
|
}
|
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
{
|
|
pxTCB->ulRunTimeCounter = 0UL;
|
|
}
|
|
#endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
|
#if ( portUSING_MPU_WRAPPERS == 1 )
|
|
{
|
|
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, pxTCB->pxStack, usStackDepth );
|
|
}
|
|
#else /* portUSING_MPU_WRAPPERS */
|
|
{
|
|
( void ) xRegions;
|
|
( void ) usStackDepth;
|
|
}
|
|
#endif /* portUSING_MPU_WRAPPERS */
|
|
|
|
#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
{
|
|
for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
|
|
{
|
|
pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
{
|
|
pxTCB->ulNotifiedValue = 0;
|
|
pxTCB->eNotifyState = eNotWaitingNotification;
|
|
}
|
|
#endif
|
|
|
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
{
|
|
/* Initialise this task's Newlib reent structure. */
|
|
_REENT_INIT_PTR( ( &( pxTCB->xNewLib_reent ) ) );
|
|
}
|
|
#endif /* configUSE_NEWLIB_REENTRANT */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
|
void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
{
|
|
pxTCB = prvGetTCBFromHandle( xTaskToSet );
|
|
pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
|
|
}
|
|
}
|
|
|
|
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
|
void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex )
|
|
{
|
|
void *pvReturn = NULL;
|
|
TCB_t *pxTCB;
|
|
|
|
if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
{
|
|
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
|
|
}
|
|
else
|
|
{
|
|
pvReturn = NULL;
|
|
}
|
|
|
|
return pvReturn;
|
|
}
|
|
|
|
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
|
|
|
#if ( portUSING_MPU_WRAPPERS == 1 )
|
|
/* ToDo: Check for multicore */
|
|
void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
ets_printf("ToDo %s\n", __FUNCTION__);
|
|
/* If null is passed in here then we are deleting ourselves. */
|
|
pxTCB = prvGetTCBFromHandle( xTaskToModify );
|
|
|
|
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
|
|
}
|
|
|
|
#endif /* portUSING_MPU_WRAPPERS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvInitialiseTaskLists( void )
|
|
{
|
|
UBaseType_t uxPriority;
|
|
|
|
for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
|
|
{
|
|
vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
|
|
}
|
|
|
|
vListInitialise( &xDelayedTaskList1 );
|
|
vListInitialise( &xDelayedTaskList2 );
|
|
vListInitialise( &xPendingReadyList );
|
|
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
{
|
|
vListInitialise( &xTasksWaitingTermination );
|
|
}
|
|
#endif /* INCLUDE_vTaskDelete */
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
vListInitialise( &xSuspendedTaskList );
|
|
}
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
|
|
using list2. */
|
|
pxDelayedTaskList = &xDelayedTaskList1;
|
|
pxOverflowDelayedTaskList = &xDelayedTaskList2;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvCheckTasksWaitingTermination( void )
|
|
{
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
{
|
|
BaseType_t xListIsEmpty;
|
|
|
|
/* ucTasksDeleted is used to prevent vTaskSuspendAll() being called
|
|
too often in the idle task. */
|
|
while( uxTasksDeleted > ( UBaseType_t ) 0U )
|
|
{
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination );
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
if( xListIsEmpty == pdFALSE )
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
--uxCurrentNumberOfTasks;
|
|
--uxTasksDeleted;
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
prvDeleteTCB( pxTCB );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
#endif /* vTaskDelete */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
//This should be called with the taskqueuemutex grabbed. -JD
|
|
static void prvAddCurrentTaskToDelayedList( const BaseType_t xCoreID, const TickType_t xTimeToWake )
|
|
{
|
|
/* The list item will be inserted in wake time order. */
|
|
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xGenericListItem ), xTimeToWake );
|
|
|
|
if( xTimeToWake < xTickCount )
|
|
{
|
|
/* Wake time has overflowed. Place this item in the overflow list. */
|
|
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCoreID ]->xGenericListItem ) );
|
|
}
|
|
else
|
|
{
|
|
/* The wake time has not overflowed, so the current block list is used. */
|
|
vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCoreID ]->xGenericListItem ) );
|
|
|
|
/* If the task entering the blocked state was placed at the head of the
|
|
list of blocked tasks then xNextTaskUnblockTime needs to be updated
|
|
too. */
|
|
if( xTimeToWake < xNextTaskUnblockTime )
|
|
{
|
|
xNextTaskUnblockTime = xTimeToWake;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer )
|
|
{
|
|
TCB_t *pxNewTCB;
|
|
|
|
/* If the stack grows down then allocate the stack then the TCB so the stack
|
|
does not grow into the TCB. Likewise if the stack grows up then allocate
|
|
the TCB then the stack. */
|
|
#if( portSTACK_GROWTH > 0 )
|
|
{
|
|
/* Allocate space for the TCB. Where the memory comes from depends on
|
|
the implementation of the port malloc function. */
|
|
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
|
if( pxNewTCB != NULL )
|
|
{
|
|
/* Allocate space for the stack used by the task being created.
|
|
The base of the stack memory stored in the TCB so the task can
|
|
be deleted later if required. */
|
|
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
|
if( pxNewTCB->pxStack == NULL )
|
|
{
|
|
/* Could not allocate the stack. Delete the allocated TCB. */
|
|
vPortFree( pxNewTCB );
|
|
pxNewTCB = NULL;
|
|
}
|
|
}
|
|
}
|
|
#else /* portSTACK_GROWTH */
|
|
{
|
|
StackType_t *pxStack;
|
|
|
|
/* Allocate space for the stack used by the task being created. */
|
|
pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
|
if( pxStack != NULL )
|
|
{
|
|
/* Allocate space for the TCB. Where the memory comes from depends
|
|
on the implementation of the port malloc function. */
|
|
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
|
if( pxNewTCB != NULL )
|
|
{
|
|
/* Store the stack location in the TCB. */
|
|
pxNewTCB->pxStack = pxStack;
|
|
}
|
|
else
|
|
{
|
|
/* The stack cannot be used as the TCB was not created. Free it
|
|
again. */
|
|
vPortFree( pxStack );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pxNewTCB = NULL;
|
|
}
|
|
}
|
|
#endif /* portSTACK_GROWTH */
|
|
|
|
if( pxNewTCB != NULL )
|
|
{
|
|
/* Avoid dependency on memset() if it is not required. */
|
|
#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
|
{
|
|
/* Just to help debugging. */
|
|
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) usStackDepth * sizeof( StackType_t ) );
|
|
}
|
|
#endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */
|
|
}
|
|
|
|
return pxNewTCB;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
|
|
{
|
|
volatile TCB_t *pxNextTCB, *pxFirstTCB;
|
|
UBaseType_t uxTask = 0;
|
|
|
|
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
{
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
|
|
|
|
/* Populate an TaskStatus_t structure within the
|
|
pxTaskStatusArray array for each task that is referenced from
|
|
pxList. See the definition of TaskStatus_t in task.h for the
|
|
meaning of each TaskStatus_t structure member. */
|
|
do
|
|
{
|
|
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
|
|
|
|
pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB;
|
|
pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] );
|
|
pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber;
|
|
pxTaskStatusArray[ uxTask ].eCurrentState = eState;
|
|
pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority;
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
/* If the task is in the suspended list then there is a chance
|
|
it is actually just blocked indefinitely - so really it should
|
|
be reported as being in the Blocked state. */
|
|
if( eState == eSuspended )
|
|
{
|
|
if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL )
|
|
{
|
|
pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked;
|
|
}
|
|
}
|
|
}
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority;
|
|
}
|
|
#else
|
|
{
|
|
pxTaskStatusArray[ uxTask ].uxBasePriority = 0;
|
|
}
|
|
#endif
|
|
|
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
{
|
|
pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter;
|
|
}
|
|
#else
|
|
{
|
|
pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0;
|
|
}
|
|
#endif
|
|
|
|
#if ( portSTACK_GROWTH > 0 )
|
|
{
|
|
pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack );
|
|
}
|
|
#else
|
|
{
|
|
pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack );
|
|
}
|
|
#endif
|
|
|
|
uxTask++;
|
|
|
|
} while( pxNextTCB != pxFirstTCB );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return uxTask;
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
|
|
|
static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
|
|
{
|
|
uint32_t ulCount = 0U;
|
|
|
|
while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
|
|
{
|
|
pucStackByte -= portSTACK_GROWTH;
|
|
ulCount++;
|
|
}
|
|
|
|
ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
|
|
|
|
return ( uint16_t ) ulCount;
|
|
}
|
|
|
|
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
|
|
|
|
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
|
|
{
|
|
TCB_t *pxTCB;
|
|
uint8_t *pucEndOfStack;
|
|
UBaseType_t uxReturn;
|
|
|
|
pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
|
#if portSTACK_GROWTH < 0
|
|
{
|
|
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
}
|
|
#else
|
|
{
|
|
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
}
|
|
#endif
|
|
|
|
uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
|
return uxReturn;
|
|
}
|
|
|
|
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
|
static void prvDeleteTCB( TCB_t *pxTCB )
|
|
{
|
|
/* This call is required specifically for the TriCore port. It must be
|
|
above the vPortFree() calls. The call is also used by ports/demos that
|
|
want to allocate and clean RAM statically. */
|
|
portCLEAN_UP_TCB( pxTCB );
|
|
|
|
/* Free up the memory allocated by the scheduler for the task. It is up
|
|
to the task to free any memory allocated at the application level. */
|
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
{
|
|
_reclaim_reent( &( pxTCB->xNewLib_reent ) );
|
|
}
|
|
#endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
|
#if( portUSING_MPU_WRAPPERS == 1 )
|
|
{
|
|
/* Only free the stack if it was allocated dynamically in the first
|
|
place. */
|
|
if( pxTCB->xUsingStaticallyAllocatedStack == pdFALSE )
|
|
{
|
|
vPortFreeAligned( pxTCB->pxStack );
|
|
}
|
|
}
|
|
#else
|
|
{
|
|
vPortFreeAligned( pxTCB->pxStack );
|
|
}
|
|
#endif
|
|
|
|
vPortFree( pxTCB );
|
|
}
|
|
|
|
#endif /* INCLUDE_vTaskDelete */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvResetNextTaskUnblockTime( void )
|
|
{
|
|
TCB_t *pxTCB;
|
|
|
|
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
{
|
|
/* The new current delayed list is empty. Set
|
|
xNextTaskUnblockTime to the maximum possible value so it is
|
|
extremely unlikely that the
|
|
if( xTickCount >= xNextTaskUnblockTime ) test will pass until
|
|
there is an item in the delayed list. */
|
|
xNextTaskUnblockTime = portMAX_DELAY;
|
|
}
|
|
else
|
|
{
|
|
/* The new current delayed list is not empty, get the value of
|
|
the item at the head of the delayed list. This is the time at
|
|
which the task at the head of the delayed list should be removed
|
|
from the Blocked state. */
|
|
( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
|
|
xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) );
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
|
|
|
|
TaskHandle_t xTaskGetCurrentTaskHandle( void )
|
|
{
|
|
TaskHandle_t xReturn;
|
|
|
|
/* A critical section is not required as this is not called from
|
|
an interrupt and the current TCB will always be the same for any
|
|
individual execution thread. */
|
|
xReturn = pxCurrentTCB[ xPortGetCoreID() ];
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
|
|
BaseType_t xTaskGetSchedulerState( void )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
if( xSchedulerRunning == pdFALSE )
|
|
{
|
|
xReturn = taskSCHEDULER_NOT_STARTED;
|
|
}
|
|
else
|
|
{
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
xReturn = taskSCHEDULER_RUNNING;
|
|
}
|
|
else
|
|
{
|
|
xReturn = taskSCHEDULER_SUSPENDED;
|
|
}
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
ToDo: Mutexes haven't been tested or adapted to multicore at all.
|
|
|
|
In fact, nothing below this line has/is.
|
|
*/
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
|
|
void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
|
|
{
|
|
TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
|
|
|
|
taskENTER_CRITICAL(&xTickCountMutex);
|
|
/* If the mutex was given back by an interrupt while the queue was
|
|
locked then the mutex holder might now be NULL. */
|
|
if( pxMutexHolder != NULL )
|
|
{
|
|
if( pxTCB->uxPriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* Adjust the mutex holder state to account for its new
|
|
priority. Only reset the event list item value if the value is
|
|
not being used for anything else. */
|
|
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
{
|
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* If the task being modified is in the ready state it will need to
|
|
be moved into a new list. */
|
|
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
|
{
|
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Inherit the priority before being moved into the new list. */
|
|
pxTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
|
|
prvAddTaskToReadyList( pxTCB );
|
|
}
|
|
else
|
|
{
|
|
/* Just inherit the priority. */
|
|
pxTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
|
|
}
|
|
|
|
traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB[ xPortGetCoreID() ]->uxPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskEXIT_CRITICAL(&xTickCountMutex);
|
|
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
|
|
BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
|
|
{
|
|
TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
|
|
BaseType_t xReturn = pdFALSE;
|
|
taskENTER_CRITICAL(&xTickCountMutex);
|
|
|
|
if( pxMutexHolder != NULL )
|
|
{
|
|
configASSERT( pxTCB->uxMutexesHeld );
|
|
( pxTCB->uxMutexesHeld )--;
|
|
|
|
if( pxTCB->uxPriority != pxTCB->uxBasePriority )
|
|
{
|
|
/* Only disinherit if no other mutexes are held. */
|
|
if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
|
|
{
|
|
/* A task can only have an inhertied priority if it holds
|
|
the mutex. If the mutex is held by a task then it cannot be
|
|
given from an interrupt, and if a mutex is given by the
|
|
holding task then it must be the running state task. Remove
|
|
the holding task from the ready list. */
|
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Disinherit the priority before adding the task into the
|
|
new ready list. */
|
|
traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
|
|
pxTCB->uxPriority = pxTCB->uxBasePriority;
|
|
|
|
/* Reset the event list item value. It cannot be in use for
|
|
any other purpose if this task is running, and it must be
|
|
running to give back the mutex. */
|
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
prvAddTaskToReadyList( pxTCB );
|
|
|
|
/* Return true to indicate that a context switch is required.
|
|
This is only actually required in the corner case whereby
|
|
multiple mutexes were held and the mutexes were given back
|
|
in an order different to that in which they were taken.
|
|
If a context switch did not occur when the first mutex was
|
|
returned, even if a task was waiting on it, then a context
|
|
switch should occur when the last mutex is returned whether
|
|
a task is waiting on it or not. */
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskEXIT_CRITICAL(&xTickCountMutex);
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* For multicore, this assumes the vPortCPUAquireMutex is recursive, that is, it can be called multiple
|
|
times and the release call will have to be called as many times for the mux to unlock. */
|
|
|
|
/* Gotcha (which seems to be deliberate in FreeRTOS, according to
|
|
http://www.freertos.org/FreeRTOS_Support_Forum_Archive/December_2012/freertos_PIC32_Bug_-_vTaskEnterCritical_6400806.html
|
|
) is that calling vTaskEnterCritical followed by vTaskExitCritical will leave the interrupts DISABLED! Re-enabling the
|
|
scheduler will re-enable the interrupts instead. */
|
|
|
|
|
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
|
|
|
#ifdef portMUX_DEBUG
|
|
void vTaskEnterCritical( portMUX_TYPE *mux, const char *function, int line )
|
|
#else
|
|
void vTaskEnterCritical( portMUX_TYPE *mux )
|
|
#endif
|
|
{
|
|
portDISABLE_INTERRUPTS();
|
|
#ifdef portMUX_DEBUG
|
|
vPortCPUAcquireMutex( mux, function, line );
|
|
#else
|
|
vPortCPUAcquireMutex( mux );
|
|
#endif
|
|
|
|
if( xSchedulerRunning != pdFALSE )
|
|
{
|
|
( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )++;
|
|
|
|
/* This is not the interrupt safe version of the enter critical
|
|
function so assert() if it is being called from an interrupt
|
|
context. Only API functions that end in "FromISR" can be used in an
|
|
interrupt. Only assert if the critical nesting count is 1 to
|
|
protect against recursive calls if the assert function also uses a
|
|
critical section. */
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 1 )
|
|
{
|
|
portASSERT_IF_IN_ISR();
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
|
#ifdef portMUX_DEBUG
|
|
void vTaskExitCritical( portMUX_TYPE *mux, const char *function, int line )
|
|
#else
|
|
void vTaskExitCritical( portMUX_TYPE *mux )
|
|
#endif
|
|
{
|
|
#ifdef portMUX_DEBUG
|
|
vPortCPUReleaseMutex( mux, function, line );
|
|
#else
|
|
vPortCPUReleaseMutex( mux );
|
|
#endif
|
|
if( xSchedulerRunning != pdFALSE )
|
|
{
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting > 0U )
|
|
{
|
|
( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )--;
|
|
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 0U )
|
|
{
|
|
portENABLE_INTERRUPTS();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
|
static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName )
|
|
{
|
|
BaseType_t x;
|
|
|
|
/* Start by copying the entire string. */
|
|
strcpy( pcBuffer, pcTaskName );
|
|
|
|
/* Pad the end of the string with spaces to ensure columns line up when
|
|
printed out. */
|
|
for( x = strlen( pcBuffer ); x < ( configMAX_TASK_NAME_LEN - 1 ); x++ )
|
|
{
|
|
pcBuffer[ x ] = ' ';
|
|
}
|
|
|
|
/* Terminate. */
|
|
pcBuffer[ x ] = 0x00;
|
|
|
|
/* Return the new end of string. */
|
|
return &( pcBuffer[ x ] );
|
|
}
|
|
|
|
#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
|
void vTaskList( char * pcWriteBuffer )
|
|
{
|
|
TaskStatus_t *pxTaskStatusArray;
|
|
volatile UBaseType_t uxArraySize, x;
|
|
char cStatus;
|
|
|
|
/*
|
|
* PLEASE NOTE:
|
|
*
|
|
* This function is provided for convenience only, and is used by many
|
|
* of the demo applications. Do not consider it to be part of the
|
|
* scheduler.
|
|
*
|
|
* vTaskList() calls uxTaskGetSystemState(), then formats part of the
|
|
* uxTaskGetSystemState() output into a human readable table that
|
|
* displays task names, states and stack usage.
|
|
*
|
|
* vTaskList() has a dependency on the sprintf() C library function that
|
|
* might bloat the code size, use a lot of stack, and provide different
|
|
* results on different platforms. An alternative, tiny, third party,
|
|
* and limited functionality implementation of sprintf() is provided in
|
|
* many of the FreeRTOS/Demo sub-directories in a file called
|
|
* printf-stdarg.c (note printf-stdarg.c does not provide a full
|
|
* snprintf() implementation!).
|
|
*
|
|
* It is recommended that production systems call uxTaskGetSystemState()
|
|
* directly to get access to raw stats data, rather than indirectly
|
|
* through a call to vTaskList().
|
|
*/
|
|
|
|
|
|
/* Make sure the write buffer does not contain a string. */
|
|
*pcWriteBuffer = 0x00;
|
|
|
|
/* Take a snapshot of the number of tasks in case it changes while this
|
|
function is executing. */
|
|
uxArraySize = uxCurrentNumberOfTasks;
|
|
|
|
/* Allocate an array index for each task. */
|
|
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
|
|
|
|
if( pxTaskStatusArray != NULL )
|
|
{
|
|
/* Generate the (binary) data. */
|
|
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
|
|
|
|
/* Create a human readable table from the binary data. */
|
|
for( x = 0; x < uxArraySize; x++ )
|
|
{
|
|
switch( pxTaskStatusArray[ x ].eCurrentState )
|
|
{
|
|
case eReady: cStatus = tskREADY_CHAR;
|
|
break;
|
|
|
|
case eBlocked: cStatus = tskBLOCKED_CHAR;
|
|
break;
|
|
|
|
case eSuspended: cStatus = tskSUSPENDED_CHAR;
|
|
break;
|
|
|
|
case eDeleted: cStatus = tskDELETED_CHAR;
|
|
break;
|
|
|
|
default: /* Should not get here, but it is included
|
|
to prevent static checking errors. */
|
|
cStatus = 0x00;
|
|
break;
|
|
}
|
|
|
|
/* Write the task name to the string, padding with spaces so it
|
|
can be printed in tabular form more easily. */
|
|
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
|
/* Write the rest of the string. */
|
|
sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
|
|
pcWriteBuffer += strlen( pcWriteBuffer );
|
|
}
|
|
|
|
/* Free the array again. */
|
|
vPortFree( pxTaskStatusArray );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
|
|
/*----------------------------------------------------------*/
|
|
|
|
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
|
void vTaskGetRunTimeStats( char *pcWriteBuffer )
|
|
{
|
|
TaskStatus_t *pxTaskStatusArray;
|
|
volatile UBaseType_t uxArraySize, x;
|
|
uint32_t ulTotalTime, ulStatsAsPercentage;
|
|
|
|
#if( configUSE_TRACE_FACILITY != 1 )
|
|
{
|
|
#error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* PLEASE NOTE:
|
|
*
|
|
* This function is provided for convenience only, and is used by many
|
|
* of the demo applications. Do not consider it to be part of the
|
|
* scheduler.
|
|
*
|
|
* vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
|
|
* of the uxTaskGetSystemState() output into a human readable table that
|
|
* displays the amount of time each task has spent in the Running state
|
|
* in both absolute and percentage terms.
|
|
*
|
|
* vTaskGetRunTimeStats() has a dependency on the sprintf() C library
|
|
* function that might bloat the code size, use a lot of stack, and
|
|
* provide different results on different platforms. An alternative,
|
|
* tiny, third party, and limited functionality implementation of
|
|
* sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
|
|
* a file called printf-stdarg.c (note printf-stdarg.c does not provide
|
|
* a full snprintf() implementation!).
|
|
*
|
|
* It is recommended that production systems call uxTaskGetSystemState()
|
|
* directly to get access to raw stats data, rather than indirectly
|
|
* through a call to vTaskGetRunTimeStats().
|
|
*/
|
|
|
|
/* Make sure the write buffer does not contain a string. */
|
|
*pcWriteBuffer = 0x00;
|
|
|
|
/* Take a snapshot of the number of tasks in case it changes while this
|
|
function is executing. */
|
|
uxArraySize = uxCurrentNumberOfTasks;
|
|
|
|
/* Allocate an array index for each task. */
|
|
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
|
|
|
|
if( pxTaskStatusArray != NULL )
|
|
{
|
|
/* Generate the (binary) data. */
|
|
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
|
|
|
|
/* For percentage calculations. */
|
|
ulTotalTime /= 100UL;
|
|
|
|
/* Avoid divide by zero errors. */
|
|
if( ulTotalTime > 0 )
|
|
{
|
|
/* Create a human readable table from the binary data. */
|
|
for( x = 0; x < uxArraySize; x++ )
|
|
{
|
|
/* What percentage of the total run time has the task used?
|
|
This will always be rounded down to the nearest integer.
|
|
ulTotalRunTimeDiv100 has already been divided by 100. */
|
|
ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
|
|
|
|
/* Write the task name to the string, padding with
|
|
spaces so it can be printed in tabular form more
|
|
easily. */
|
|
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
|
if( ulStatsAsPercentage > 0UL )
|
|
{
|
|
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
{
|
|
sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
|
|
}
|
|
#else
|
|
{
|
|
/* sizeof( int ) == sizeof( long ) so a smaller
|
|
printf() library can be used. */
|
|
sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/* If the percentage is zero here then the task has
|
|
consumed less than 1% of the total run time. */
|
|
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
{
|
|
sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
|
|
}
|
|
#else
|
|
{
|
|
/* sizeof( int ) == sizeof( long ) so a smaller
|
|
printf() library can be used. */
|
|
sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
pcWriteBuffer += strlen( pcWriteBuffer );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
/* Free the array again. */
|
|
vPortFree( pxTaskStatusArray );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
TickType_t uxTaskResetEventItemValue( void )
|
|
{
|
|
TickType_t uxReturn;
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
|
/* Reset the event list item to its normal value - so it can be used with
|
|
queues and semaphores. */
|
|
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return uxReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
|
|
void *pvTaskIncrementMutexHeldCount( void )
|
|
{
|
|
/* If xSemaphoreCreateMutex() is called before any tasks have been created
|
|
then pxCurrentTCB will be NULL. */
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
if( pxCurrentTCB[ xPortGetCoreID() ] != NULL )
|
|
{
|
|
( pxCurrentTCB[ xPortGetCoreID() ]->uxMutexesHeld )++;
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return pxCurrentTCB[ xPortGetCoreID() ];
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
|
uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
uint32_t ulReturn;
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* Only block if the notification count is not already non-zero. */
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue == 0UL )
|
|
{
|
|
/* Mark this task as waiting for a notification. */
|
|
pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eWaitingNotification;
|
|
|
|
if( xTicksToWait > ( TickType_t ) 0 )
|
|
{
|
|
/* The task is going to block. First it must be removed
|
|
from the ready list. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is
|
|
no need to check, and the port reset macro can be called
|
|
directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
if( xTicksToWait == portMAX_DELAY )
|
|
{
|
|
/* Add the task to the suspended task list instead
|
|
of a delayed task list to ensure the task is not
|
|
woken by a timing event. It will block
|
|
indefinitely. */
|
|
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
|
|
}
|
|
else
|
|
{
|
|
/* Calculate the time at which the task should be
|
|
woken if no notification events occur. This may
|
|
overflow but this doesn't matter, the scheduler will
|
|
handle it. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
}
|
|
}
|
|
#else /* INCLUDE_vTaskSuspend */
|
|
{
|
|
/* Calculate the time at which the task should be
|
|
woken if the event does not occur. This may
|
|
overflow but this doesn't matter, the scheduler will
|
|
handle it. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
|
}
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
/* All ports are written to allow a yield in a critical
|
|
section (some will yield immediately, others wait until the
|
|
critical section exits) - but it is not something that
|
|
application code should ever do. */
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
ulReturn = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue;
|
|
|
|
if( ulReturn != 0UL )
|
|
{
|
|
if( xClearCountOnExit != pdFALSE )
|
|
{
|
|
pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue = 0UL;
|
|
}
|
|
else
|
|
{
|
|
( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue )--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eNotWaitingNotification;
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return ulReturn;
|
|
}
|
|
|
|
#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
|
BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait )
|
|
{
|
|
TickType_t xTimeToWake;
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
/* Only block if a notification is not already pending. */
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState != eNotified )
|
|
{
|
|
/* Clear bits in the task's notification value as bits may get
|
|
set by the notifying task or interrupt. This can be used to
|
|
clear the value to zero. */
|
|
pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue &= ~ulBitsToClearOnEntry;
|
|
|
|
/* Mark this task as waiting for a notification. */
|
|
pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eWaitingNotification;
|
|
|
|
if( xTicksToWait > ( TickType_t ) 0 )
|
|
{
|
|
/* The task is going to block. First it must be removed
|
|
from the ready list. */
|
|
if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
|
{
|
|
/* The current task must be in a ready list, so there is
|
|
no need to check, and the port reset macro can be called
|
|
directly. */
|
|
portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
|
{
|
|
if( xTicksToWait == portMAX_DELAY )
|
|
{
|
|
/* Add the task to the suspended task list instead
|
|
of a delayed task list to ensure the task is not
|
|
woken by a timing event. It will block
|
|
indefinitely. */
|
|
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
|
|
}
|
|
else
|
|
{
|
|
/* Calculate the time at which the task should be
|
|
woken if no notification events occur. This may
|
|
overflow but this doesn't matter, the scheduler will
|
|
handle it. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
|
|
}
|
|
}
|
|
#else /* INCLUDE_vTaskSuspend */
|
|
{
|
|
/* Calculate the time at which the task should be
|
|
woken if the event does not occur. This may
|
|
overflow but this doesn't matter, the scheduler will
|
|
handle it. */
|
|
xTimeToWake = xTickCount + xTicksToWait;
|
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
|
}
|
|
#endif /* INCLUDE_vTaskSuspend */
|
|
|
|
/* All ports are written to allow a yield in a critical
|
|
section (some will yield immediately, others wait until the
|
|
critical section exits) - but it is not something that
|
|
application code should ever do. */
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
if( pulNotificationValue != NULL )
|
|
{
|
|
/* Output the current notification value, which may or may not
|
|
have changed. */
|
|
*pulNotificationValue = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue;
|
|
}
|
|
|
|
/* If eNotifyValue is set then either the task never entered the
|
|
blocked state (because a notification was already pending) or the
|
|
task unblocked because of a notification. Otherwise the task
|
|
unblocked because of a timeout. */
|
|
if( pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState == eWaitingNotification )
|
|
{
|
|
/* A notification was not received. */
|
|
xReturn = pdFALSE;
|
|
}
|
|
else
|
|
{
|
|
/* A notification was already pending or a notification was
|
|
received while the task was waiting. */
|
|
pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue &= ~ulBitsToClearOnExit;
|
|
xReturn = pdTRUE;
|
|
}
|
|
|
|
pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eNotWaitingNotification;
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
|
BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction )
|
|
{
|
|
TCB_t * pxTCB;
|
|
eNotifyValue eOriginalNotifyState;
|
|
BaseType_t xReturn = pdPASS;
|
|
|
|
configASSERT( xTaskToNotify );
|
|
pxTCB = ( TCB_t * ) xTaskToNotify;
|
|
|
|
taskENTER_CRITICAL(&xTaskQueueMutex);
|
|
{
|
|
eOriginalNotifyState = pxTCB->eNotifyState;
|
|
|
|
pxTCB->eNotifyState = eNotified;
|
|
|
|
switch( eAction )
|
|
{
|
|
case eSetBits :
|
|
pxTCB->ulNotifiedValue |= ulValue;
|
|
break;
|
|
|
|
case eIncrement :
|
|
( pxTCB->ulNotifiedValue )++;
|
|
break;
|
|
|
|
case eSetValueWithOverwrite :
|
|
pxTCB->ulNotifiedValue = ulValue;
|
|
break;
|
|
|
|
case eSetValueWithoutOverwrite :
|
|
if( eOriginalNotifyState != eNotified )
|
|
{
|
|
pxTCB->ulNotifiedValue = ulValue;
|
|
}
|
|
else
|
|
{
|
|
/* The value could not be written to the task. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
break;
|
|
|
|
case eNoAction:
|
|
/* The task is being notified without its notify value being
|
|
updated. */
|
|
break;
|
|
}
|
|
|
|
|
|
/* If the task is in the blocked state specifically to wait for a
|
|
notification then unblock it now. */
|
|
if( eOriginalNotifyState == eWaitingNotification )
|
|
{
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxTCB );
|
|
|
|
/* The task should not have been on an event list. */
|
|
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
|
if( pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* The notified task has a priority above the currently
|
|
executing task so a yield is required. */
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
|
BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken )
|
|
{
|
|
TCB_t * pxTCB;
|
|
eNotifyValue eOriginalNotifyState;
|
|
BaseType_t xReturn = pdPASS;
|
|
|
|
configASSERT( xTaskToNotify );
|
|
|
|
pxTCB = ( TCB_t * ) xTaskToNotify;
|
|
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
{
|
|
eOriginalNotifyState = pxTCB->eNotifyState;
|
|
|
|
pxTCB->eNotifyState = eNotified;
|
|
|
|
switch( eAction )
|
|
{
|
|
case eSetBits :
|
|
pxTCB->ulNotifiedValue |= ulValue;
|
|
break;
|
|
|
|
case eIncrement :
|
|
( pxTCB->ulNotifiedValue )++;
|
|
break;
|
|
|
|
case eSetValueWithOverwrite :
|
|
pxTCB->ulNotifiedValue = ulValue;
|
|
break;
|
|
|
|
case eSetValueWithoutOverwrite :
|
|
if( eOriginalNotifyState != eNotified )
|
|
{
|
|
pxTCB->ulNotifiedValue = ulValue;
|
|
}
|
|
else
|
|
{
|
|
/* The value could not be written to the task. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
break;
|
|
|
|
case eNoAction :
|
|
/* The task is being notified without its notify value being
|
|
updated. */
|
|
break;
|
|
}
|
|
|
|
|
|
/* If the task is in the blocked state specifically to wait for a
|
|
notification then unblock it now. */
|
|
if( eOriginalNotifyState == eWaitingNotification )
|
|
{
|
|
/* The task should not have been on an event list. */
|
|
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxTCB );
|
|
}
|
|
else
|
|
{
|
|
/* The delayed and ready lists cannot be accessed, so hold
|
|
this task pending until the scheduler is resumed. */
|
|
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
}
|
|
|
|
if( pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* The notified task has a priority above the currently
|
|
executing task so a yield is required. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
|
void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken )
|
|
{
|
|
TCB_t * pxTCB;
|
|
eNotifyValue eOriginalNotifyState;
|
|
|
|
configASSERT( xTaskToNotify );
|
|
|
|
|
|
pxTCB = ( TCB_t * ) xTaskToNotify;
|
|
|
|
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
|
|
{
|
|
eOriginalNotifyState = pxTCB->eNotifyState;
|
|
pxTCB->eNotifyState = eNotified;
|
|
|
|
/* 'Giving' is equivalent to incrementing a count in a counting
|
|
semaphore. */
|
|
( pxTCB->ulNotifiedValue )++;
|
|
|
|
/* If the task is in the blocked state specifically to wait for a
|
|
notification then unblock it now. */
|
|
if( eOriginalNotifyState == eWaitingNotification )
|
|
{
|
|
/* The task should not have been on an event list. */
|
|
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
|
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
|
{
|
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
prvAddTaskToReadyList( pxTCB );
|
|
}
|
|
else
|
|
{
|
|
/* The delayed and ready lists cannot be accessed, so hold
|
|
this task pending until the scheduler is resumed. */
|
|
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
}
|
|
|
|
if( pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
{
|
|
/* The notified task has a priority above the currently
|
|
executing task so a yield is required. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
|
|
}
|
|
|
|
#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
#ifdef FREERTOS_MODULE_TEST
|
|
#include "tasks_test_access_functions.h"
|
|
#endif
|
|
|