esp-idf/components/esp32/clk.c
Mahavir Jain e3956787f6 clk: fix regression in clock setting for SPIRAM with 80MHz config
Support for HSPI to output clock for 4M SPIRAM introduced regression
in clock configuration affecting SPIRAM access with 80MHz clock. This
commit fixes the issue.
2018-11-17 00:08:20 +05:30

328 lines
12 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_clk.h"
#include "esp_clk_internal.h"
#include "rom/ets_sys.h"
#include "rom/uart.h"
#include "rom/rtc.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_wdt.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/i2s_reg.h"
#include "driver/periph_ctrl.h"
#include "xtensa/core-macros.h"
#include "bootloader_clock.h"
#include "driver/spi_common.h"
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_ESP32_RTC_CLK_CAL_CYCLES
#define MHZ (1000000)
/* Indicates that this 32k oscillator gets input from external oscillator, rather
* than a crystal.
*/
#define EXT_OSC_FLAG BIT(3)
/* This is almost the same as rtc_slow_freq_t, except that we define
* an extra enum member for the external 32k oscillator.
* For convenience, lower 2 bits should correspond to rtc_slow_freq_t values.
*/
typedef enum {
SLOW_CLK_150K = RTC_SLOW_FREQ_RTC, //!< Internal 150 kHz RC oscillator
SLOW_CLK_32K_XTAL = RTC_SLOW_FREQ_32K_XTAL, //!< External 32 kHz XTAL
SLOW_CLK_8MD256 = RTC_SLOW_FREQ_8MD256, //!< Internal 8 MHz RC oscillator, divided by 256
SLOW_CLK_32K_EXT_OSC = RTC_SLOW_FREQ_32K_XTAL | EXT_OSC_FLAG //!< External 32k oscillator connected to 32K_XP pin
} slow_clk_sel_t;
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk);
// g_ticks_us defined in ROMs for PRO and APP CPU
extern uint32_t g_ticks_per_us_pro;
#ifndef CONFIG_FREERTOS_UNICORE
extern uint32_t g_ticks_per_us_app;
#endif
static const char* TAG = "clk";
void esp_clk_init(void)
{
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
rtc_init(cfg);
#ifdef CONFIG_COMPATIBLE_PRE_V2_1_BOOTLOADERS
/* Check the bootloader set the XTAL frequency.
Bootloaders pre-v2.1 don't do this.
*/
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
ESP_EARLY_LOGW(TAG, "RTC domain not initialised by bootloader");
bootloader_clock_configure();
}
#else
/* If this assertion fails, either upgrade the bootloader or enable CONFIG_COMPATIBLE_PRE_V2_1_BOOTLOADERS */
assert(rtc_clk_xtal_freq_get() != RTC_XTAL_FREQ_AUTO);
#endif
rtc_clk_fast_freq_set(RTC_FAST_FREQ_8M);
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
rtc_wdt_protect_off();
rtc_wdt_feed();
rtc_wdt_set_time(RTC_WDT_STAGE0, 1600);
rtc_wdt_protect_on();
#endif
#if defined(CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL)
select_rtc_slow_clk(SLOW_CLK_32K_XTAL);
#elif defined(CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_OSC)
select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC);
#elif defined(CONFIG_ESP32_RTC_CLOCK_SOURCE_INTERNAL_8MD256)
select_rtc_slow_clk(SLOW_CLK_8MD256);
#else
select_rtc_slow_clk(RTC_SLOW_FREQ_RTC);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
rtc_wdt_protect_off();
rtc_wdt_feed();
rtc_wdt_set_time(RTC_WDT_STAGE0, CONFIG_BOOTLOADER_WDT_TIME_MS);
rtc_wdt_protect_on();
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ;
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
uart_tx_wait_idle(CONFIG_CONSOLE_UART_NUM);
rtc_clk_cpu_freq_set_config(&new_config);
// Re calculate the ccount to make time calculation correct.
XTHAL_SET_CCOUNT( XTHAL_GET_CCOUNT() * new_freq_mhz / old_freq_mhz );
}
int IRAM_ATTR esp_clk_cpu_freq(void)
{
return g_ticks_per_us_pro * MHZ;
}
int IRAM_ATTR esp_clk_apb_freq(void)
{
return MIN(g_ticks_per_us_pro, 80) * MHZ;
}
int IRAM_ATTR esp_clk_xtal_freq(void)
{
return rtc_clk_xtal_freq_get() * MHZ;
}
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)
{
/* Update scale factors used by ets_delay_us */
g_ticks_per_us_pro = ticks_per_us;
#ifndef CONFIG_FREERTOS_UNICORE
g_ticks_per_us_app = ticks_per_us;
#endif
}
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk)
{
rtc_slow_freq_t rtc_slow_freq = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
uint32_t cal_val = 0;
do {
if (rtc_slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
if (slow_clk == SLOW_CLK_32K_XTAL) {
rtc_clk_32k_enable(true);
} else if (slow_clk == SLOW_CLK_32K_EXT_OSC) {
rtc_clk_32k_enable_external();
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0 || cal_val < 15000000L) {
ESP_EARLY_LOGW(TAG, "32 kHz XTAL not found, switching to internal 150 kHz oscillator");
rtc_slow_freq = RTC_SLOW_FREQ_RTC;
}
}
} else if (rtc_slow_freq == RTC_SLOW_FREQ_8MD256) {
rtc_clk_8m_enable(true, true);
}
rtc_clk_slow_freq_set(rtc_slow_freq);
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk()
{
select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL);
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
void esp_perip_clk_init(void)
{
uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
#if CONFIG_FREERTOS_UNICORE
RESET_REASON rst_reas[1];
#else
RESET_REASON rst_reas[2];
#endif
rst_reas[0] = rtc_get_reset_reason(0);
#if !CONFIG_FREERTOS_UNICORE
rst_reas[1] = rtc_get_reset_reason(1);
#endif
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
if ((rst_reas[0] >= TGWDT_CPU_RESET && rst_reas[0] <= RTCWDT_CPU_RESET)
#if !CONFIG_FREERTOS_UNICORE
|| (rst_reas[1] >= TGWDT_CPU_RESET && rst_reas[1] <= RTCWDT_CPU_RESET)
#endif
) {
common_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN_REG);
hwcrypto_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERI_CLK_EN_REG);
wifi_bt_sdio_clk = ~DPORT_READ_PERI_REG(DPORT_WIFI_CLK_EN_REG);
}
else {
common_perip_clk = DPORT_WDG_CLK_EN |
DPORT_PCNT_CLK_EN |
DPORT_LEDC_CLK_EN |
DPORT_TIMERGROUP1_CLK_EN |
DPORT_PWM0_CLK_EN |
DPORT_CAN_CLK_EN |
DPORT_PWM1_CLK_EN |
DPORT_PWM2_CLK_EN |
DPORT_PWM3_CLK_EN;
hwcrypto_perip_clk = DPORT_PERI_EN_AES |
DPORT_PERI_EN_SHA |
DPORT_PERI_EN_RSA |
DPORT_PERI_EN_SECUREBOOT;
wifi_bt_sdio_clk = DPORT_WIFI_CLK_WIFI_EN |
DPORT_WIFI_CLK_BT_EN_M |
DPORT_WIFI_CLK_UNUSED_BIT5 |
DPORT_WIFI_CLK_UNUSED_BIT12 |
DPORT_WIFI_CLK_SDIOSLAVE_EN |
DPORT_WIFI_CLK_SDIO_HOST_EN |
DPORT_WIFI_CLK_EMAC_EN;
}
//Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state.
common_perip_clk |= DPORT_I2S0_CLK_EN |
#if CONFIG_CONSOLE_UART_NUM != 0
DPORT_UART_CLK_EN |
#endif
#if CONFIG_CONSOLE_UART_NUM != 1
DPORT_UART1_CLK_EN |
#endif
#if CONFIG_CONSOLE_UART_NUM != 2
DPORT_UART2_CLK_EN |
#endif
DPORT_SPI2_CLK_EN |
DPORT_I2C_EXT0_CLK_EN |
DPORT_UHCI0_CLK_EN |
DPORT_RMT_CLK_EN |
DPORT_UHCI1_CLK_EN |
DPORT_SPI3_CLK_EN |
DPORT_I2C_EXT1_CLK_EN |
DPORT_I2S1_CLK_EN |
DPORT_SPI_DMA_CLK_EN;
#if CONFIG_SPIRAM_SPEED_80M
//80MHz SPIRAM uses SPI2/SPI3 as well; it's initialized before this is called. Because it is used in
//a weird mode where clock to the peripheral is disabled but reset is also disabled, it 'hangs'
//in a state where it outputs a continuous 80MHz signal. Mask its bit here because we should
//not modify that state, regardless of what we calculated earlier.
if (spicommon_periph_in_use(HSPI_HOST)) {
common_perip_clk &= ~DPORT_SPI2_CLK_EN;
}
if (spicommon_periph_in_use(VSPI_HOST)) {
common_perip_clk &= ~DPORT_SPI3_CLK_EN;
}
#endif
/* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock,
* the current is not reduced when disable I2S clock.
*/
DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(0), I2S_CLKA_ENA);
DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(1), I2S_CLKA_ENA);
/* Disable some peripheral clocks. */
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, common_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, common_perip_clk);
/* Disable hardware crypto clocks. */
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERI_CLK_EN_REG, hwcrypto_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERI_RST_EN_REG, hwcrypto_perip_clk);
/* Disable WiFi/BT/SDIO clocks. */
DPORT_CLEAR_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
}