mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
175 lines
6.9 KiB
C
175 lines
6.9 KiB
C
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include "esp32s2beta/rom/ets_sys.h"
|
|
#include "soc/rtc.h"
|
|
#include "soc/rtc_cntl_reg.h"
|
|
#include "soc/timer_group_reg.h"
|
|
|
|
#define MHZ (1000000)
|
|
|
|
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
|
|
* This feature counts the number of XTAL clock cycles within a given number of
|
|
* RTC_SLOW_CLK cycles.
|
|
*
|
|
* Slow clock calibration feature has two modes of operation: one-off and cycling.
|
|
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
|
|
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
|
|
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
|
|
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
|
|
* enabled using TIMG_RTC_CALI_START bit.
|
|
*/
|
|
|
|
/**
|
|
* @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
|
|
* @param cal_clk which clock to calibrate
|
|
* @param slowclk_cycles number of slow clock cycles to count
|
|
* @return number of XTAL clock cycles within the given number of slow clock cycles
|
|
*/
|
|
uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
|
{
|
|
/* Enable requested clock (150k clock is always on) */
|
|
int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
|
|
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
|
|
}
|
|
|
|
if (cal_clk == RTC_CAL_8MD256) {
|
|
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
|
|
}
|
|
/* Prepare calibration */
|
|
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
|
|
/* There may be another calibration process already running during we call this function,
|
|
* so we should wait the last process is done.
|
|
*/
|
|
if (!GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
|
|
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
|
|
while(!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY));
|
|
}
|
|
}
|
|
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
|
|
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
|
|
/* Figure out how long to wait for calibration to finish */
|
|
|
|
/* Set timeout reg and expect time delay*/
|
|
uint32_t expected_freq;
|
|
if (cal_clk == RTC_CAL_32K_XTAL) {
|
|
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 13));
|
|
expected_freq = 32768;
|
|
} else if (cal_clk == RTC_CAL_8MD256) {
|
|
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 13));
|
|
expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256;
|
|
} else {
|
|
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 11));
|
|
expected_freq = 90000;
|
|
}
|
|
uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
|
|
/* Start calibration */
|
|
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
|
|
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
|
|
|
|
/* Wait for calibration to finish up to another us_time_estimate */
|
|
ets_delay_us(us_time_estimate);
|
|
uint32_t cal_val;
|
|
while (true) {
|
|
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
|
|
cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
|
|
break;
|
|
}
|
|
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
|
|
cal_val = 0;
|
|
break;
|
|
}
|
|
}
|
|
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
|
|
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
|
|
|
|
if (cal_clk == RTC_CAL_8MD256) {
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
|
|
}
|
|
|
|
return cal_val;
|
|
}
|
|
|
|
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
|
{
|
|
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
|
|
uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
|
|
uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
|
|
return ratio;
|
|
}
|
|
|
|
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
|
{
|
|
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
|
|
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
|
|
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
|
|
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
|
|
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
|
|
return period;
|
|
}
|
|
|
|
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
|
|
{
|
|
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
|
|
* TODO: fix overflow.
|
|
*/
|
|
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
|
|
}
|
|
|
|
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
|
|
{
|
|
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
|
|
}
|
|
|
|
uint64_t rtc_time_get(void)
|
|
{
|
|
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
|
|
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
|
|
ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
|
|
}
|
|
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
|
|
uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
|
|
t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
|
|
return t;
|
|
}
|
|
|
|
uint64_t rtc_light_slp_time_get(void)
|
|
{
|
|
uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
|
|
t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
|
|
uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
|
|
t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
|
|
return (t_wake - t_slp);
|
|
}
|
|
|
|
uint64_t rtc_deep_slp_time_get(void)
|
|
{
|
|
uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
|
|
t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
|
|
uint64_t t_wake = rtc_time_get();
|
|
return (t_wake - t_slp);
|
|
}
|
|
|
|
void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
|
|
{
|
|
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
|
|
while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
|
|
ets_delay_us(1);
|
|
}
|
|
}
|
|
|