mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
662e0812f4
The commit 88e4c06028 introduced a loop timeout for all ULP RISC-V I2C transactions to avoid getting stuck in a forever loop. The loop timeout was set to 500 msec by default. This commit improves on the concept by making the loop timeout configurable via a Kconfig option in terms of CPU ticks. If the timeout is set to -1 value then the transaction loops will never timeout, therefore restoring the driver behavior before the timeout was introduced. The commit also updates the I2C Fast mode timings for esp32s2 which need to be adjusted due to bus timing constraints. Closes https://github.com/espressif/esp-idf/issues/11154
513 lines
24 KiB
C
513 lines
24 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "ulp_riscv_i2c.h"
|
|
#include "esp_check.h"
|
|
#include "soc/rtc_i2c_reg.h"
|
|
#include "soc/rtc_i2c_struct.h"
|
|
#include "soc/rtc_io_struct.h"
|
|
#include "soc/sens_reg.h"
|
|
#include "soc/clk_tree_defs.h"
|
|
#include "hal/i2c_ll.h"
|
|
#include "driver/rtc_io.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "sdkconfig.h"
|
|
|
|
static const char *RTCI2C_TAG = "ulp_riscv_i2c";
|
|
|
|
#define I2C_CTRL_SLAVE_ADDR_MASK (0xFF << 0)
|
|
#define I2C_CTRL_SLAVE_REG_ADDR_MASK (0xFF << 11)
|
|
#define I2C_CTRL_MASTER_TX_DATA_MASK (0xFF << 19)
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S3
|
|
#define ULP_I2C_CMD_RESTART 0 /*!<I2C restart command */
|
|
#define ULP_I2C_CMD_WRITE 1 /*!<I2C write command */
|
|
#define ULP_I2C_CMD_READ 2 /*!<I2C read command */
|
|
#define ULP_I2C_CMD_STOP 3 /*!<I2C stop command */
|
|
#define ULP_I2C_CMD_END 4 /*!<I2C end command */
|
|
#else
|
|
#define ULP_I2C_CMD_RESTART I2C_LL_CMD_RESTART /*!<I2C restart command */
|
|
#define ULP_I2C_CMD_WRITE I2C_LL_CMD_WRITE /*!<I2C write command */
|
|
#define ULP_I2C_CMD_READ I2C_LL_CMD_READ /*!<I2C read command */
|
|
#define ULP_I2C_CMD_STOP I2C_LL_CMD_STOP /*!<I2C stop command */
|
|
#define ULP_I2C_CMD_END I2C_LL_CMD_END /*!<I2C end command */
|
|
#endif // CONFIG_IDF_TARGET_ESP32S3
|
|
|
|
/* Use the register structure to access RTC_I2C and RTCIO module registers */
|
|
rtc_i2c_dev_t *i2c_dev = &RTC_I2C;
|
|
rtc_io_dev_t *rtc_io_dev = &RTCIO;
|
|
|
|
#define MICROSEC_TO_RTC_FAST_CLK(period) (period) * ((float)(SOC_CLK_RC_FAST_FREQ_APPROX) / (1000000.0))
|
|
|
|
/* Read/Write timeout (number of iterations)*/
|
|
#define ULP_RISCV_I2C_RW_TIMEOUT CONFIG_ULP_RISCV_I2C_RW_TIMEOUT
|
|
|
|
static esp_err_t i2c_gpio_is_cfg_valid(gpio_num_t sda_io_num, gpio_num_t scl_io_num)
|
|
{
|
|
/* Verify that the SDA and SCL GPIOs are valid RTC I2C io pins */
|
|
ESP_RETURN_ON_ERROR(!rtc_gpio_is_valid_gpio(sda_io_num), RTCI2C_TAG, "RTC I2C SDA GPIO invalid");
|
|
ESP_RETURN_ON_ERROR(!rtc_gpio_is_valid_gpio(scl_io_num), RTCI2C_TAG, "RTC I2C SCL GPIO invalid");
|
|
|
|
/* Verify that the SDA and SCL line belong to the RTC IO I2C function group */
|
|
if ((sda_io_num != GPIO_NUM_1) && (sda_io_num != GPIO_NUM_3)) {
|
|
ESP_LOGE(RTCI2C_TAG, "SDA pin can only be configured as GPIO#1 or GPIO#3");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if ((scl_io_num != GPIO_NUM_0) && (scl_io_num != GPIO_NUM_2)) {
|
|
ESP_LOGE(RTCI2C_TAG, "SCL pin can only be configured as GPIO#0 or GPIO#2");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t i2c_configure_io(gpio_num_t io_num, bool pullup_en)
|
|
{
|
|
/* Initialize IO Pin */
|
|
ESP_RETURN_ON_ERROR(rtc_gpio_init(io_num), RTCI2C_TAG, "RTC GPIO Init failed for GPIO %d", io_num);
|
|
/* Set direction to input+output */
|
|
ESP_RETURN_ON_ERROR(rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_INPUT_OUTPUT), RTCI2C_TAG, "RTC GPIO Set direction failed for %d", io_num);
|
|
/* Disable pulldown on the io pin */
|
|
ESP_RETURN_ON_ERROR(rtc_gpio_pulldown_dis(io_num), RTCI2C_TAG, "RTC GPIO pulldown disable failed for %d", io_num);
|
|
/* Enable pullup based on pullup_en flag */
|
|
if (pullup_en) {
|
|
ESP_RETURN_ON_ERROR(rtc_gpio_pullup_en(io_num), RTCI2C_TAG, "RTC GPIO pullup enable failed for %d", io_num);
|
|
} else {
|
|
ESP_RETURN_ON_ERROR(rtc_gpio_pullup_dis(io_num), RTCI2C_TAG, "RTC GPIO pullup disable failed for %d", io_num);
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t i2c_set_pin(const ulp_riscv_i2c_cfg_t *cfg)
|
|
{
|
|
gpio_num_t sda_io_num = cfg->i2c_pin_cfg.sda_io_num;
|
|
gpio_num_t scl_io_num = cfg->i2c_pin_cfg.scl_io_num;
|
|
bool sda_pullup_en = cfg->i2c_pin_cfg.sda_pullup_en;
|
|
bool scl_pullup_en = cfg->i2c_pin_cfg.scl_pullup_en;
|
|
|
|
/* Verify that the I2C GPIOs are valid */
|
|
ESP_RETURN_ON_ERROR(i2c_gpio_is_cfg_valid(sda_io_num, scl_io_num), RTCI2C_TAG, "RTC I2C GPIO config invalid");
|
|
|
|
/* Initialize SDA Pin */
|
|
ESP_RETURN_ON_ERROR(i2c_configure_io(sda_io_num, sda_pullup_en), RTCI2C_TAG, "RTC I2C SDA pin config failed");
|
|
|
|
/* Initialize SCL Pin */
|
|
ESP_RETURN_ON_ERROR(i2c_configure_io(scl_io_num, scl_pullup_en), RTCI2C_TAG, "RTC I2C SCL pin config failed");
|
|
|
|
/* Route SDA IO signal to the RTC subsystem */
|
|
rtc_io_dev->touch_pad[sda_io_num].mux_sel = 1;
|
|
|
|
/* Route SCL IO signal to the RTC subsystem */
|
|
rtc_io_dev->touch_pad[scl_io_num].mux_sel = 1;
|
|
|
|
/* Select RTC I2C function for SDA pin */
|
|
rtc_io_dev->touch_pad[sda_io_num].fun_sel = 3;
|
|
|
|
/* Select RTC I2C function for SCL pin */
|
|
rtc_io_dev->touch_pad[scl_io_num].fun_sel = 3;
|
|
|
|
/* Map the SDA and SCL signals to the RTC I2C controller */
|
|
if (sda_io_num == GPIO_NUM_1) {
|
|
rtc_io_dev->sar_i2c_io.sda_sel = 0;
|
|
} else {
|
|
rtc_io_dev->sar_i2c_io.sda_sel = 1;
|
|
}
|
|
|
|
if (scl_io_num == GPIO_NUM_0) {
|
|
rtc_io_dev->sar_i2c_io.scl_sel = 0;
|
|
} else {
|
|
rtc_io_dev->sar_i2c_io.scl_sel = 1;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t i2c_set_timing(const ulp_riscv_i2c_cfg_t *cfg)
|
|
{
|
|
/* Convert all timing parameters from micro-seconds to period in RTC_FAST_CLK cycles.
|
|
* RTC_FAST_CLK = 8.5 MHz for esp32s2 and 17.5 MHz for esp32s3.
|
|
* The following calculations approximate the period for each parameter.
|
|
*/
|
|
float scl_low_period = MICROSEC_TO_RTC_FAST_CLK(cfg->i2c_timing_cfg.scl_low_period);
|
|
float scl_high_period = MICROSEC_TO_RTC_FAST_CLK(cfg->i2c_timing_cfg.scl_high_period);
|
|
float sda_duty_period = MICROSEC_TO_RTC_FAST_CLK(cfg->i2c_timing_cfg.sda_duty_period);
|
|
float scl_start_period = MICROSEC_TO_RTC_FAST_CLK(cfg->i2c_timing_cfg.scl_start_period);
|
|
float scl_stop_period = MICROSEC_TO_RTC_FAST_CLK(cfg->i2c_timing_cfg.scl_stop_period);
|
|
float i2c_trans_timeout = MICROSEC_TO_RTC_FAST_CLK(cfg->i2c_timing_cfg.i2c_trans_timeout);
|
|
float setup_time_start = (cfg->i2c_timing_cfg.scl_high_period + cfg->i2c_timing_cfg.sda_duty_period);
|
|
float hold_time_start = (cfg->i2c_timing_cfg.scl_start_period - cfg->i2c_timing_cfg.sda_duty_period);
|
|
float setup_time_data = (cfg->i2c_timing_cfg.scl_low_period - cfg->i2c_timing_cfg.sda_duty_period);
|
|
|
|
/* Verify timing constraints */
|
|
ESP_RETURN_ON_FALSE(cfg->i2c_timing_cfg.scl_low_period >= 1.3f, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SCL low period cannot be less than 1.3 micro seconds");
|
|
// TODO: As per specs, SCL high period must be greater than 0.6 micro seconds but after tests it is found that we can have a the period as 0.3 micro seconds to
|
|
// achieve performance close to I2C fast mode. Therefore, this criteria is relaxed.
|
|
ESP_RETURN_ON_FALSE(cfg->i2c_timing_cfg.scl_high_period >= 0.3f, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SCL high period cannot be less than 0.3 micro seconds");
|
|
ESP_RETURN_ON_FALSE(setup_time_start >= 0.6f, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "Setup time cannot be less than 0.6 micro seconds");
|
|
ESP_RETURN_ON_FALSE(hold_time_start >= 0.6f, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "Data hold time cannot be less than 0.6 micro seconds");
|
|
ESP_RETURN_ON_FALSE(cfg->i2c_timing_cfg.scl_stop_period >= 0.6f, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "Setup time cannot be less than 0.6 micro seconds");
|
|
ESP_RETURN_ON_FALSE(cfg->i2c_timing_cfg.sda_duty_period <= 3.45f, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "Data hold time cannot be greater than 3.45 micro seconds");
|
|
ESP_RETURN_ON_FALSE((setup_time_data * 1000) >= 250, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "Data setup time cannot be less than 250 nano seconds");
|
|
|
|
/* Verify filtering constrains
|
|
*
|
|
* I2C may have glitches on the transition edge, so the edge will be filtered in the design,
|
|
* which will also affect the value of the timing parameter register.
|
|
* Therefore, the following filtering constraints must be followed:
|
|
*/
|
|
ESP_RETURN_ON_FALSE(scl_stop_period > scl_high_period, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SCL Stop period cannot be greater than SCL high period");
|
|
ESP_RETURN_ON_FALSE(sda_duty_period < scl_low_period, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SDA duty period cannot be less than the SCL low period");
|
|
ESP_RETURN_ON_FALSE(scl_start_period > 8, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SCL start period must be greater than 8 RTC_FAST_CLK cycles");
|
|
ESP_RETURN_ON_FALSE((scl_low_period + scl_high_period - sda_duty_period) > 8, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SCL low + SCL high - SDA duty must be greater than 8 RTC_FAST_CLK cycles");
|
|
|
|
/* Verify SDA duty num constraints */
|
|
ESP_RETURN_ON_FALSE(sda_duty_period > 14, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "SDA duty period must be greater than 14 RTC_FAST_CLK cycles");
|
|
|
|
/* Set the RTC I2C timing parameters */
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
i2c_dev->scl_low.val = scl_low_period; // SCL low period
|
|
i2c_dev->scl_high.val = scl_high_period; // SCL high period
|
|
i2c_dev->sda_duty.val = sda_duty_period; // SDA duty cycle
|
|
i2c_dev->scl_start_period.val = scl_start_period; // Wait time after START condition
|
|
i2c_dev->scl_stop_period.val = scl_stop_period; // Wait time before END condition
|
|
i2c_dev->timeout.val = i2c_trans_timeout; // I2C transaction timeout
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
i2c_dev->i2c_scl_low.val = scl_low_period; // SCL low period
|
|
i2c_dev->i2c_scl_high.val = scl_high_period; // SCL high period
|
|
i2c_dev->i2c_sda_duty.val = sda_duty_period; // SDA duty cycle
|
|
i2c_dev->i2c_scl_start_period.val = scl_start_period; // Wait time after START condition
|
|
i2c_dev->i2c_scl_stop_period.val = scl_stop_period; // Wait time before END condition
|
|
i2c_dev->i2c_to.val = i2c_trans_timeout; // I2C transaction timeout
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
/*
|
|
* The RTC I2C controller follows the I2C command registers to perform read/write operations.
|
|
* The cmd registers have the following format:
|
|
*
|
|
* 31 30:14 13:11 10 9 8 7:0
|
|
* |----------|----------|---------|---------|----------|------------|---------|
|
|
* | CMD_DONE | Reserved | OPCODE |ACK Value|ACK Expect|ACK Check En|Byte Num |
|
|
* |----------|----------|---------|---------|----------|------------|---------|
|
|
*/
|
|
static void ulp_riscv_i2c_format_cmd(uint32_t cmd_idx, uint8_t op_code, uint8_t ack_val,
|
|
uint8_t ack_expected, uint8_t ack_check_en, uint8_t byte_num)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
/* Reset cmd register */
|
|
i2c_dev->command[cmd_idx].val = 0;
|
|
|
|
/* Write new command to cmd register */
|
|
i2c_dev->command[cmd_idx].done = 0; // CMD Done
|
|
i2c_dev->command[cmd_idx].op_code = op_code; // Opcode
|
|
i2c_dev->command[cmd_idx].ack_val = ack_val; // ACK bit sent by I2C controller during READ.
|
|
// Ignored during RSTART, STOP, END and WRITE cmds.
|
|
i2c_dev->command[cmd_idx].ack_exp = ack_expected; // ACK bit expected by I2C controller during WRITE.
|
|
// Ignored during RSTART, STOP, END and READ cmds.
|
|
i2c_dev->command[cmd_idx].ack_en = ack_check_en; // I2C controller verifies that the ACK bit sent by the
|
|
// slave device matches the ACK expected bit during WRITE.
|
|
// Ignored during RSTART, STOP, END and READ cmds.
|
|
i2c_dev->command[cmd_idx].byte_num = byte_num; // Byte Num
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
/* Reset cmd register */
|
|
i2c_dev->i2c_cmd[cmd_idx].val = 0;
|
|
|
|
/* Write new command to cmd register */
|
|
i2c_dev->i2c_cmd[cmd_idx].i2c_command_done = 0; // CMD Done
|
|
i2c_dev->i2c_cmd[cmd_idx].i2c_op_code = op_code; // Opcode
|
|
i2c_dev->i2c_cmd[cmd_idx].i2c_ack_val = ack_val; // ACK bit sent by I2C controller during READ.
|
|
// Ignored during RSTART, STOP, END and WRITE cmds.
|
|
i2c_dev->i2c_cmd[cmd_idx].i2c_ack_exp = ack_expected; // ACK bit expected by I2C controller during WRITE.
|
|
// Ignored during RSTART, STOP, END and READ cmds.
|
|
i2c_dev->i2c_cmd[cmd_idx].i2c_ack_en = ack_check_en; // I2C controller verifies that the ACK bit sent by the
|
|
// slave device matches the ACK expected bit during WRITE.
|
|
// Ignored during RSTART, STOP, END and READ cmds.
|
|
i2c_dev->i2c_cmd[cmd_idx].i2c_byte_num = byte_num; // Byte Num
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
}
|
|
|
|
static inline esp_err_t ulp_riscv_i2c_wait_for_interrupt(int32_t ticks_to_wait)
|
|
{
|
|
uint32_t status = 0;
|
|
uint32_t to = 0;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
while (1) {
|
|
status = READ_PERI_REG(RTC_I2C_INT_ST_REG);
|
|
|
|
/* Return ESP_OK if Tx or Rx data interrupt bits are set. */
|
|
if ((status & RTC_I2C_TX_DATA_INT_ST) ||
|
|
(status & RTC_I2C_RX_DATA_INT_ST)) {
|
|
ret = ESP_OK;
|
|
break;
|
|
/* In case of error status, break and return ESP_FAIL */
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
} else if ((status & RTC_I2C_TIMEOUT_INT_ST) ||
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
} else if ((status & RTC_I2C_TIME_OUT_INT_ST) ||
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
(status & RTC_I2C_ACK_ERR_INT_ST) ||
|
|
(status & RTC_I2C_ARBITRATION_LOST_INT_ST)) {
|
|
ret = ESP_FAIL;
|
|
break;
|
|
}
|
|
|
|
if (ticks_to_wait > -1) {
|
|
/* If the ticks_to_wait value is not -1, keep track of ticks and
|
|
* break from the loop once the timeout is reached.
|
|
*/
|
|
vTaskDelay(1);
|
|
to++;
|
|
if (to >= ticks_to_wait) {
|
|
ret = ESP_ERR_TIMEOUT;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void ulp_riscv_i2c_master_set_slave_addr(uint8_t slave_addr)
|
|
{
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, I2C_CTRL_SLAVE_ADDR_MASK);
|
|
SET_PERI_REG_BITS(SENS_SAR_I2C_CTRL_REG, 0xFF, slave_addr, 0);
|
|
}
|
|
|
|
void ulp_riscv_i2c_master_set_slave_reg_addr(uint8_t slave_reg_addr)
|
|
{
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, I2C_CTRL_SLAVE_REG_ADDR_MASK);
|
|
SET_PERI_REG_BITS(SENS_SAR_I2C_CTRL_REG, 0xFF, slave_reg_addr, 11);
|
|
}
|
|
|
|
/*
|
|
* I2C transactions when master reads one byte of data from the slave device:
|
|
*
|
|
* |--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
|
|
* | Master | START | SAD + W | | SUB | | SR | SAD + R | | | NACK | STOP |
|
|
* |--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
|
|
* | Slave | | | ACK | | ACK | | | ACK | DATA | | |
|
|
* |--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
|
|
*
|
|
* I2C transactions when master reads multiple bytes of data from the slave device:
|
|
*
|
|
* |--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
|
|
* | Master | START | SAD + W | | SUB | | SR | SAD + R | | | ACK | | NACK | STOP |
|
|
* |--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
|
|
* | Slave | | | ACK | | ACK | | | ACK | DATA | | DATA | | |
|
|
* |--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
|
|
*/
|
|
void ulp_riscv_i2c_master_read_from_device(uint8_t *data_rd, size_t size)
|
|
{
|
|
uint32_t i = 0;
|
|
uint32_t cmd_idx = 0;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
if (size == 0) {
|
|
// Quietly return
|
|
return;
|
|
}
|
|
|
|
/* By default, RTC I2C controller is hard wired to use CMD2 register onwards for read operations */
|
|
cmd_idx = 2;
|
|
|
|
/* Write slave addr */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_WRITE, 0, 0, 1, 2);
|
|
|
|
/* Repeated START */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_RESTART, 0, 0, 0, 0);
|
|
|
|
/* Write slave register addr */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_WRITE, 0, 0, 1, 1);
|
|
|
|
if (size > 1) {
|
|
/* Read n - 1 bytes */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_READ, 0, 0, 1, size - 1);
|
|
}
|
|
|
|
/* Read last byte + NACK */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_READ, 1, 1, 1, 1);
|
|
|
|
/* STOP */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_STOP, 0, 0, 0, 0);
|
|
|
|
/* Configure the RTC I2C controller in read mode */
|
|
SET_PERI_REG_BITS(SENS_SAR_I2C_CTRL_REG, 0x1, 0, 27);
|
|
|
|
/* Start RTC I2C transmission */
|
|
SET_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START_FORCE);
|
|
SET_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START);
|
|
|
|
for (i = 0; i < size; i++) {
|
|
/* Poll for RTC I2C Rx Data interrupt bit to be set */
|
|
ret = ulp_riscv_i2c_wait_for_interrupt(ULP_RISCV_I2C_RW_TIMEOUT);
|
|
|
|
if (ret == ESP_OK) {
|
|
/* Read the data
|
|
*
|
|
* Unfortunately, the RTC I2C has no fifo buffer to help us with reading and storing
|
|
* multiple bytes of data. Therefore, we need to read one byte at a time and clear the
|
|
* Rx interrupt to get ready for the next byte.
|
|
*/
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
data_rd[i] = REG_GET_FIELD(RTC_I2C_DATA_REG, RTC_I2C_RDATA);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
data_rd[i] = REG_GET_FIELD(RTC_I2C_DATA_REG, RTC_I2C_I2C_RDATA);
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
/* Clear the Rx data interrupt bit */
|
|
SET_PERI_REG_MASK(RTC_I2C_INT_CLR_REG, RTC_I2C_RX_DATA_INT_CLR);
|
|
} else {
|
|
ESP_LOGE(RTCI2C_TAG, "Read Failed!");
|
|
uint32_t status = READ_PERI_REG(RTC_I2C_INT_RAW_REG);
|
|
ESP_LOGE(RTCI2C_TAG, "RTC I2C Interrupt Raw Reg 0x%"PRIx32"", status);
|
|
ESP_LOGE(RTCI2C_TAG, "RTC I2C Status Reg 0x%"PRIx32"", READ_PERI_REG(RTC_I2C_STATUS_REG));
|
|
SET_PERI_REG_MASK(RTC_I2C_INT_CLR_REG, status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Clear the RTC I2C transmission bits */
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START_FORCE);
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START);
|
|
}
|
|
|
|
/*
|
|
* I2C transactions when master writes one byte of data to the slave device:
|
|
*
|
|
* |--------|--------|---------|--------|--------|--------|--------|--------|--------|
|
|
* | Master | START | SAD + W | | SUB | | DATA | | STOP |
|
|
* |--------|--------|---------|--------|--------|--------|--------|--------|--------|
|
|
* | Slave | | | ACK | | ACK | | ACK | |
|
|
* |--------|--------|---------|--------|--------|--------|--------|--------|--------|
|
|
*
|
|
* I2C transactions when master writes multiple bytes of data to the slave device:
|
|
*
|
|
* |--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|
|
* | Master | START | SAD + W | | SUB | | DATA | | DATA | | STOP |
|
|
* |--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|
|
* | Slave | | | ACK | | ACK | | ACK | | ACK | |
|
|
* |--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|
|
*/
|
|
void ulp_riscv_i2c_master_write_to_device(uint8_t *data_wr, size_t size)
|
|
{
|
|
uint32_t i = 0;
|
|
uint32_t cmd_idx = 0;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
if (size == 0) {
|
|
// Quietly return
|
|
return;
|
|
}
|
|
|
|
/* By default, RTC I2C controller is hard wired to use CMD0 and CMD1 registers for write operations */
|
|
cmd_idx = 0;
|
|
|
|
/* Write slave addr + reg addr + data */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_WRITE, 0, 0, 1, 2 + size);
|
|
|
|
/* Stop */
|
|
ulp_riscv_i2c_format_cmd(cmd_idx++, ULP_I2C_CMD_STOP, 0, 0, 0, 0);
|
|
|
|
/* Configure the RTC I2C controller in write mode */
|
|
SET_PERI_REG_BITS(SENS_SAR_I2C_CTRL_REG, 0x1, 1, 27);
|
|
|
|
for (i = 0; i < size; i++) {
|
|
/* Write the data to be transmitted */
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, I2C_CTRL_MASTER_TX_DATA_MASK);
|
|
SET_PERI_REG_BITS(SENS_SAR_I2C_CTRL_REG, 0xFF, data_wr[i], 19);
|
|
|
|
if (i == 0) {
|
|
/* Start RTC I2C transmission. (Needn't do it for every byte) */
|
|
SET_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START_FORCE);
|
|
SET_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START);
|
|
}
|
|
|
|
/* Poll for RTC I2C Tx Data interrupt bit to be set */
|
|
ret = ulp_riscv_i2c_wait_for_interrupt(ULP_RISCV_I2C_RW_TIMEOUT);
|
|
|
|
if (ret == ESP_OK) {
|
|
/* Clear the Tx data interrupt bit */
|
|
SET_PERI_REG_MASK(RTC_I2C_INT_CLR_REG, RTC_I2C_TX_DATA_INT_CLR);
|
|
} else {
|
|
ESP_LOGE(RTCI2C_TAG, "Write Failed!");
|
|
uint32_t status = READ_PERI_REG(RTC_I2C_INT_RAW_REG);
|
|
ESP_LOGE(RTCI2C_TAG, "RTC I2C Interrupt Raw Reg 0x%"PRIx32"", status);
|
|
ESP_LOGE(RTCI2C_TAG, "RTC I2C Status Reg 0x%"PRIx32"", READ_PERI_REG(RTC_I2C_STATUS_REG));
|
|
SET_PERI_REG_MASK(RTC_I2C_INT_CLR_REG, status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Clear the RTC I2C transmission bits */
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START_FORCE);
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_I2C_CTRL_REG, SENS_SAR_I2C_START);
|
|
}
|
|
|
|
esp_err_t ulp_riscv_i2c_master_init(const ulp_riscv_i2c_cfg_t *cfg)
|
|
{
|
|
/* Clear any stale config registers */
|
|
WRITE_PERI_REG(RTC_I2C_CTRL_REG, 0);
|
|
WRITE_PERI_REG(SENS_SAR_I2C_CTRL_REG, 0);
|
|
|
|
/* Reset RTC I2C */
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
i2c_dev->ctrl.i2c_reset = 1;
|
|
esp_rom_delay_us(20);
|
|
i2c_dev->ctrl.i2c_reset = 0;
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
SET_PERI_REG_MASK(SENS_SAR_PERI_RESET_CONF_REG, SENS_RTC_I2C_RESET);
|
|
i2c_dev->i2c_ctrl.i2c_i2c_reset = 1;
|
|
esp_rom_delay_us(20);
|
|
i2c_dev->i2c_ctrl.i2c_i2c_reset = 0;
|
|
CLEAR_PERI_REG_MASK(SENS_SAR_PERI_RESET_CONF_REG, SENS_RTC_I2C_RESET);
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
/* Verify that the input cfg param is valid */
|
|
ESP_RETURN_ON_FALSE(cfg, ESP_ERR_INVALID_ARG, RTCI2C_TAG, "RTC I2C configuration is NULL");
|
|
|
|
/* Configure RTC I2C GPIOs */
|
|
ESP_RETURN_ON_ERROR(i2c_set_pin(cfg), RTCI2C_TAG, "Failed to configure RTC I2C GPIOs");
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
/* Configure the RTC I2C controller in master mode */
|
|
i2c_dev->ctrl.ms_mode = 1;
|
|
|
|
/* Enable RTC I2C Clock gate */
|
|
i2c_dev->ctrl.i2c_ctrl_clk_gate_en = 1;
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
/* For esp32s3, we need to enable the rtc_i2c clock gate before accessing rtc i2c registers */
|
|
SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_RTC_I2C_CLK_EN);
|
|
|
|
/* Configure the RTC I2C controller in master mode */
|
|
i2c_dev->i2c_ctrl.i2c_ms_mode = 1;
|
|
|
|
/* Enable RTC I2C Clock gate */
|
|
i2c_dev->i2c_ctrl.i2c_i2c_ctrl_clk_gate_en = 1;
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
/* Configure RTC I2C timing paramters */
|
|
ESP_RETURN_ON_ERROR(i2c_set_timing(cfg), RTCI2C_TAG, "Failed to configure RTC I2C timing");
|
|
|
|
/* Enable RTC I2C interrupts */
|
|
SET_PERI_REG_MASK(RTC_I2C_INT_ENA_REG, RTC_I2C_RX_DATA_INT_ENA |
|
|
RTC_I2C_TX_DATA_INT_ENA |
|
|
RTC_I2C_ARBITRATION_LOST_INT_ENA |
|
|
RTC_I2C_ACK_ERR_INT_ENA |
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
RTC_I2C_TIMEOUT_INT_ENA);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
RTC_I2C_TIME_OUT_INT_ENA);
|
|
#endif // CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
return ESP_OK;
|
|
}
|