esp-idf/components/driver/dac/esp32/dac_dma.c

239 lines
8.5 KiB
C

/*
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* This file is a target specific for DAC DMA peripheral
* Target: ESP32
* DAC DMA peripheral (data source): I2S0 (i.e. use I2S DMA to transmit data)
* DAC DMA interrupt source: I2S0
* DAC digital controller clock source: I2S ws signal (root clock: D2PLL or APLL)
*/
#include "freertos/FreeRTOS.h"
#include "sdkconfig.h"
#include "hal/adc_ll.h"
#include "hal/i2s_hal.h"
#include "hal/i2s_types.h"
#include "hal/clk_tree_ll.h"
#include "soc/i2s_periph.h"
#include "../dac_priv_dma.h"
#include "esp_private/i2s_platform.h"
#include "esp_private/esp_clk.h"
#include "clk_ctrl_os.h"
#if CONFIG_DAC_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "esp_check.h"
#include "esp_attr.h"
#define DAC_DMA_PERIPH_I2S_NUM 0
#define DAC_DMA_PERIPH_I2S_BIT_WIDTH 16 // Fixed bit width, only the high 8 bits take effect
typedef struct {
void *periph_dev; /* DMA peripheral device address */
intr_handle_t intr_handle; /* Interrupt handle */
bool use_apll; /* Whether use APLL as clock source */
} dac_dma_periph_i2s_t;
static dac_dma_periph_i2s_t *s_ddp = NULL; // Static DAC DMA peripheral structure pointer
static const char *TAG = "DAC_DMA";
static uint32_t s_dac_set_apll_freq(uint32_t mclk)
{
/* Calculate the expected APLL */
int div = (int)((CLK_LL_APLL_MIN_HZ / mclk) + 1);
/* apll_freq = mclk * div
* when div = 1, hardware will still divide 2
* when div = 0, hardware will divide 255
* So the div here should be at least 2 */
div = div < 2 ? 2 : div;
uint32_t expt_freq = mclk * div;
/* Set APLL coefficients to the given frequency */
uint32_t real_freq = 0;
esp_err_t ret = periph_rtc_apll_freq_set(expt_freq, &real_freq);
if (ret == ESP_ERR_INVALID_ARG) {
return 0;
}
if (ret == ESP_ERR_INVALID_STATE) {
ESP_LOGW(TAG, "APLL is occupied already, it is working at %"PRIu32" Hz", real_freq);
}
ESP_LOGD(TAG, "APLL expected frequency is %"PRIu32" Hz, real frequency is %"PRIu32" Hz", expt_freq, real_freq);
return real_freq;
}
/**
* @brief Calculate and set DAC data frequency
* @note DAC frequency is decided by I2S WS frequency, the clock source of I2S is D2PLL or APLL on ESP32
* freq_hz = ws = bclk / I2S_LL_AD_BCK_FACTOR
* @param freq_hz DAC byte transmit frequency
* @return
* - ESP_OK config success
* - ESP_ERR_INVALID_ARG invalid frequency
*/
static esp_err_t s_dac_dma_periph_set_clock(uint32_t freq_hz, bool is_apll)
{
/* Calculate clock coefficients */
uint32_t bclk = freq_hz * I2S_LL_AD_BCK_FACTOR;
uint32_t bclk_div = DAC_DMA_PERIPH_I2S_BIT_WIDTH;
uint32_t mclk = bclk * bclk_div;
uint32_t sclk; // use 160M PLL clock as default, minimum support freq: 19.6 KHz maximum support freq: 2.5 MHz
if (is_apll) {
sclk = s_dac_set_apll_freq(mclk);
ESP_RETURN_ON_FALSE(sclk, ESP_ERR_INVALID_ARG, TAG, "set APLL coefficients failed");
} else {
// [clk_tree] TODO: replace the following clock by clk_tree API
sclk = esp_clk_apb_freq() * 2; // D2PLL
}
uint32_t mclk_div = sclk / mclk;
/* Check if the configuration is correct */
ESP_RETURN_ON_FALSE(sclk / (float)mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "Frequency is too large, the mclk division is below minimum value 2");
ESP_RETURN_ON_FALSE(mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "Frequency is too small, the mclk division exceed the maximum value 255");
ESP_LOGD(TAG, "[sclk] %"PRIu32" [mclk] %"PRIu32" [mclk_div] %"PRIu32" [bclk] %"PRIu32" [bclk_div] %"PRIu32, sclk, mclk, mclk_div, bclk, bclk_div);
i2s_ll_tx_clk_set_src(s_ddp->periph_dev, is_apll ? I2S_CLK_SRC_APLL : I2S_CLK_SRC_DEFAULT);
hal_utils_clk_div_t mclk_div_coeff = {};
i2s_hal_calc_mclk_precise_division(sclk, mclk, &mclk_div_coeff);
i2s_ll_tx_set_mclk(s_ddp->periph_dev, &mclk_div_coeff);
i2s_ll_tx_set_bck_div_num(s_ddp->periph_dev, bclk_div);
return ESP_OK;
}
esp_err_t dac_dma_periph_init(uint32_t freq_hz, bool is_alternate, bool is_apll)
{
#if CONFIG_DAC_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
esp_err_t ret = ESP_OK;
/* Acquire DMA peripheral */
ESP_RETURN_ON_ERROR(i2s_platform_acquire_occupation(DAC_DMA_PERIPH_I2S_NUM, "dac_dma"), TAG, "Failed to acquire DAC DMA peripheral");
/* Allocate DAC DMA peripheral object */
s_ddp = (dac_dma_periph_i2s_t *)heap_caps_calloc(1, sizeof(dac_dma_periph_i2s_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ESP_GOTO_ON_FALSE(s_ddp, ESP_ERR_NO_MEM, err, TAG, "No memory for DAC DMA object");
s_ddp->periph_dev = (void *)I2S_LL_GET_HW(DAC_DMA_PERIPH_I2S_NUM);
if (is_apll) {
periph_rtc_apll_acquire();
s_ddp->use_apll = true;
}
ESP_GOTO_ON_ERROR(s_dac_dma_periph_set_clock(freq_hz, is_apll), err, TAG, "Failed to set clock of DMA peripheral");
i2s_ll_enable_builtin_dac(s_ddp->periph_dev, true);
i2s_ll_tx_reset(s_ddp->periph_dev);
i2s_ll_tx_set_slave_mod(s_ddp->periph_dev, false);
i2s_ll_tx_set_sample_bit(s_ddp->periph_dev, DAC_DMA_PERIPH_I2S_BIT_WIDTH, DAC_DMA_PERIPH_I2S_BIT_WIDTH);
i2s_ll_tx_enable_mono_mode(s_ddp->periph_dev, !is_alternate);
i2s_ll_tx_select_std_slot(s_ddp->periph_dev, I2S_STD_SLOT_BOTH, !is_alternate);
i2s_ll_tx_enable_msb_shift(s_ddp->periph_dev, false);
i2s_ll_tx_set_ws_width(s_ddp->periph_dev, DAC_DMA_PERIPH_I2S_BIT_WIDTH);
i2s_ll_tx_enable_msb_right(s_ddp->periph_dev, false);
i2s_ll_tx_enable_right_first(s_ddp->periph_dev, true);
/* Should always enable fifo */
i2s_ll_tx_force_enable_fifo_mod(s_ddp->periph_dev, true);
i2s_ll_dma_enable_auto_write_back(s_ddp->periph_dev, true);
/* Enable the interrupts */
i2s_ll_enable_intr(s_ddp->periph_dev, I2S_LL_EVENT_TX_EOF | I2S_LL_EVENT_TX_TEOF, true);
return ret;
err:
dac_dma_periph_deinit();
return ret;
}
esp_err_t dac_dma_periph_deinit(void)
{
ESP_RETURN_ON_FALSE(s_ddp->intr_handle == NULL, ESP_ERR_INVALID_STATE, TAG, "The interrupt is not deregistered yet");
ESP_RETURN_ON_ERROR(i2s_platform_release_occupation(DAC_DMA_PERIPH_I2S_NUM), TAG, "Failed to release DAC DMA peripheral");
i2s_ll_enable_intr(s_ddp->periph_dev, I2S_LL_EVENT_TX_EOF | I2S_LL_EVENT_TX_TEOF, false);
if (s_ddp) {
if (s_ddp->use_apll) {
periph_rtc_apll_release();
s_ddp->use_apll = false;
}
free(s_ddp);
s_ddp = NULL;
}
return ESP_OK;
}
int dac_dma_periph_get_intr_signal(void)
{
return i2s_periph_signal[DAC_DMA_PERIPH_I2S_NUM].irq;
}
static void s_dac_dma_periph_reset(void)
{
i2s_ll_tx_reset(s_ddp->periph_dev);
i2s_ll_tx_reset_dma(s_ddp->periph_dev);
i2s_ll_tx_reset_fifo(s_ddp->periph_dev);
}
static void s_dac_dma_periph_start(void)
{
i2s_ll_enable_dma(s_ddp->periph_dev,true);
i2s_ll_tx_enable_intr(s_ddp->periph_dev);
i2s_ll_tx_start(s_ddp->periph_dev);
i2s_ll_dma_enable_eof_on_fifo_empty(s_ddp->periph_dev, true);
i2s_ll_dma_enable_auto_write_back(s_ddp->periph_dev, true);
}
static void s_dac_dma_periph_stop(void)
{
i2s_ll_tx_stop(s_ddp->periph_dev);
i2s_ll_tx_stop_link(s_ddp->periph_dev);
i2s_ll_tx_disable_intr(s_ddp->periph_dev);
i2s_ll_enable_dma(s_ddp->periph_dev, false);
i2s_ll_dma_enable_eof_on_fifo_empty(s_ddp->periph_dev, false);
i2s_ll_dma_enable_auto_write_back(s_ddp->periph_dev, false);
}
void dac_dma_periph_enable(void)
{
/* Reset */
s_dac_dma_periph_reset();
/* Start */
s_dac_dma_periph_start();
}
void dac_dma_periph_disable(void)
{
/* Reset */
s_dac_dma_periph_reset();
/* Stop */
s_dac_dma_periph_stop();
}
uint32_t IRAM_ATTR dac_dma_periph_intr_is_triggered(void)
{
uint32_t status = i2s_ll_get_intr_status(s_ddp->periph_dev);
if (status == 0) {
//Avoid spurious interrupt
return false;
}
i2s_ll_clear_intr_status(s_ddp->periph_dev, status);
uint32_t ret = 0;
ret |= (status & I2S_LL_EVENT_TX_EOF) ? DAC_DMA_EOF_INTR : 0;
ret |= (status & I2S_LL_EVENT_TX_TEOF) ? DAC_DMA_TEOF_INTR : 0;
return ret;
}
uint32_t IRAM_ATTR dac_dma_periph_intr_get_eof_desc(void)
{
uint32_t finish_desc;
i2s_ll_tx_get_eof_des_addr(s_ddp->periph_dev, &finish_desc);
return finish_desc;
}
void dac_dma_periph_dma_trans_start(uint32_t desc_addr)
{
i2s_ll_tx_start_link(s_ddp->periph_dev, desc_addr);
}