esp-idf/components/freertos/FreeRTOS-Kernel/tasks.c
Sudeep Mohanty 411ef4557a fix(freertos): Fixed critical section macro in vTaskPlaceOnEventListRestricted()
The vTaskPlaceOnEventListRestricted() did not use the correct macro when
exiting a kernel cirtical section. This does not affect the HW targets
but on the Linux port, this caused an issue as the critical nesting
count became negative, leading to deadlocks. This commit fixes the bug
and updates the linux port to prevent the nesting count from going
negative.
2024-08-10 09:24:19 +02:00

6435 lines
264 KiB
C

/*
* FreeRTOS Kernel V10.5.1 (ESP-IDF SMP modified)
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-FileCopyrightText: 2021 Amazon.com, Inc. or its affiliates
*
* SPDX-License-Identifier: MIT
*
* SPDX-FileContributor: 2023 Espressif Systems (Shanghai) CO LTD
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/* Standard includes. */
#include <stdlib.h>
#include <string.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
* all the API functions to use the MPU wrappers. That should only be done when
* task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "stack_macros.h"
/* Include private IDF API additions for critical thread safety macros */
#include "esp_private/freertos_idf_additions_priv.h"
#include "freertos/idf_additions.h"
/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
* because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
* for the header files above, but not in this file, in order to generate the
* correct privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
* functions but without including stdio.h here. */
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
/* At the bottom of this file are two optional functions that can be used
* to generate human readable text from the raw data generated by the
* uxTaskGetSystemState() function. Note the formatting functions are provided
* for convenience only, and are NOT considered part of the kernel. */
#include <stdio.h>
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
#if ( configUSE_PREEMPTION == 0 )
/* If the cooperative scheduler is being used then a yield should not be
* performed just because a higher priority task has been woken. */
#define taskYIELD_IF_USING_PREEMPTION()
#else
#define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
#endif
#if ( configNUMBER_OF_CORES > 1 )
#define taskYIELD_CORE( xCoreID ) portYIELD_CORE( xCoreID )
#endif /* configNUMBER_OF_CORES > 1 */
/* Values that can be assigned to the ucNotifyState member of the TCB. */
#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
/*
* The value used to fill the stack of a task when the task is created. This
* is used purely for checking the high water mark for tasks.
*/
#define tskSTACK_FILL_BYTE ( 0xa5U )
/* Bits used to record how a task's stack and TCB were allocated. */
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
/* If any of the following are set then task stacks are filled with a known
* value so the high water mark can be determined. If none of the following are
* set then don't fill the stack so there is no unnecessary dependency on memset. */
#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
#else
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
#endif
/*
* Macros used by vListTask to indicate which state a task is in.
*/
#define tskRUNNING_CHAR ( 'X' )
#define tskBLOCKED_CHAR ( 'B' )
#define tskREADY_CHAR ( 'R' )
#define tskDELETED_CHAR ( 'D' )
#define tskSUSPENDED_CHAR ( 'S' )
/*
* Some kernel aware debuggers require the data the debugger needs access to to
* be global, rather than file scope.
*/
#ifdef portREMOVE_STATIC_QUALIFIER
#define static
#endif
/* The name allocated to the Idle task. This can be overridden by defining
* configIDLE_TASK_NAME in FreeRTOSConfig.h. */
#ifndef configIDLE_TASK_NAME
#define configIDLE_TASK_NAME "IDLE"
#endif
/*-----------------------------------------------------------*/
/* Macros to check if an unblocked task causes a yield on the current core.
* - pxTCB is the TCB of the task to check
* - uxTaskPriority is the task's priority
* - xYieldEqualPriority if the task having equal priority as the currently
* executing task should cause a yield.
*
* In single-core, this macro simply checks the unblocked task has a high enough
* priority to preempt the current task, and returns pdTRUE if so.
*
* In SMP, this macro checks if the unblocked task can preempt either core:
* - If a yield is required on the current core, this macro return pdTRUE
* - if a yield is required on the other core, this macro will internally
* trigger it.
*
* - In SMP, these macros must be called from a critical section (where the
* kernel locks are taken).
* - In single-core, these macros must be called from a critical section or when
* the scheduler is suspended.
*/
#if ( configNUMBER_OF_CORES > 1 )
#define taskIS_YIELD_REQUIRED( pxTCB, xYieldEqualPriority ) prvIsYieldRequiredSMP( ( pxTCB ), ( pxTCB )->uxPriority, xYieldEqualPriority )
#define taskIS_YIELD_REQUIRED_USING_PRIORITY( pxTCB, uxTaskPriority, xYieldEqualPriority ) prvIsYieldRequiredSMP( ( pxTCB ), uxTaskPriority, xYieldEqualPriority )
#else
#define taskIS_YIELD_REQUIRED( pxTCB, xYieldEqualPriority ) \
( { \
( ( ( pxTCB )->uxPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) > pxCurrentTCBs[ 0 ]->uxPriority ) ? pdTRUE : pdFALSE; \
} )
#define taskIS_YIELD_REQUIRED_USING_PRIORITY( pxTCB, uxTaskPriority, xYieldEqualPriority ) \
( { \
( void ) pxTCB; \
( ( uxTaskPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) >= pxCurrentTCBs[ 0 ]->uxPriority ) ? pdTRUE : pdFALSE; \
} )
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
/* Macros to check if a task has a compatible affinity with a particular core.
* - xCore is the target core
* - pxTCB is the task to check
*
* This macro will always return true on single core as the concept of core
* affinity doesn't exist. */
#if ( configNUMBER_OF_CORES > 1 )
#define taskIS_AFFINITY_COMPATIBLE( xCore, pxTCB ) ( ( ( ( pxTCB )->xCoreID == xCore ) || ( ( pxTCB )->xCoreID == tskNO_AFFINITY ) ) ? pdTRUE : pdFALSE )
#else
#define taskIS_AFFINITY_COMPATIBLE( xCore, pxTCB ) \
( { \
/* xCore and pxTCB are unused */ \
( void ) xCore; \
( void ) pxTCB; \
pdTRUE; \
} )
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
/* Macros to check if a particular task is a currently running.
*
* - In SMP, these macros must be called from a critical section (where the
* kernel lock is taken).
* - In single-core, these macros must be called from a critical section or when
* the scheduler is suspended */
#if ( configNUMBER_OF_CORES > 1 )
#define taskIS_CURRENTLY_RUNNING( pxTCB ) ( ( ( ( pxTCB ) == pxCurrentTCBs[ 0 ] ) || ( ( pxTCB ) == pxCurrentTCBs[ 1 ] ) ) ? pdTRUE : pdFALSE )
#define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID ) ( ( ( pxTCB ) == pxCurrentTCBs[ ( xCoreID ) ] ) ? pdTRUE : pdFALSE )
#else
#define taskIS_CURRENTLY_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCBs[ 0 ] ) ? pdTRUE : pdFALSE )
#define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID ) \
( { \
/* xCoreID is unused */ \
( void ) xCoreID; \
taskIS_CURRENTLY_RUNNING( pxTCB ); \
} )
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
/* Macro to check if a particular task can currently be scheduled (i.e., is
* the scheduler suspended).
*
* - In SMP, these macros must be called from a critical section (where the
* kernel lock is taken).
* - In single-core, these macros must be called from a critical section or when
* the scheduler is suspended */
#if ( configNUMBER_OF_CORES > 1 )
#define taskCAN_BE_SCHEDULED( pxTCB ) prvCheckTaskCanBeScheduledSMP( pxTCB )
#else
#define taskCAN_BE_SCHEDULED( pxTCB ) \
( { \
/* pxTCB is unused */ \
( void ) pxTCB; \
( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) ) ? pdTRUE : pdFALSE; \
} )
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
/* Macro to check if the scheduler is suspended (on the current core)
*
* There are various blocking tasks.c APIs that call configASSERT() to check if
* the API is being called while the scheduler is suspended. However, these
* asserts are done outside a critical section or interrupt disabled block.
* Directly checking uxSchedulerSuspended[ portGET_CORE_ID() ] outside a
* critical section can lead to false positives in SMP. Thus for SMP, we call
* xTaskGetSchedulerState() instead.
*
* Take the following example of an unpinned Task A in SMP calling
* uxSchedulerSuspended[ portGET_CORE_ID() ]:
* - Task A calls portGET_CORE_ID() which is 0
* - Task A gets preempted by Task B, Task A switches to core 1
* - Task B on core 0 calls vTaskSuspendAll()
* - Task A checks uxSchedulerSuspended[ 0 ] leading to a false positive
*/
#if ( configNUMBER_OF_CORES > 1 )
#define taskIS_SCHEDULER_SUSPENDED() ( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) ? pdTRUE : pdFALSE )
#else
#define taskIS_SCHEDULER_SUSPENDED() ( ( ( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U ) ) ? pdTRUE : pdFALSE )
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
* performed in a generic way that is not optimised to any particular
* microcontroller architecture. */
/* uxTopReadyPriority holds the priority of the highest priority ready
* state task. */
#define taskRECORD_READY_PRIORITY( uxPriority ) \
{ \
if( ( uxPriority ) > uxTopReadyPriority ) \
{ \
uxTopReadyPriority = ( uxPriority ); \
} \
} /* taskRECORD_READY_PRIORITY */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
#define taskSELECT_HIGHEST_PRIORITY_TASK() prvSelectHighestPriorityTaskSMP()
#else /* if ( configNUMBER_OF_CORES > 1 ) */
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
{ \
UBaseType_t uxTopPriority = uxTopReadyPriority; \
\
/* Find the highest priority queue that contains ready tasks. */ \
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
{ \
configASSERT( uxTopPriority ); \
--uxTopPriority; \
} \
\
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
* the same priority get an equal share of the processor time. */ \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCBs[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
uxTopReadyPriority = uxTopPriority; \
} /* taskSELECT_HIGHEST_PRIORITY_TASK */
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
* they are only required when a port optimised method of task selection is
* being used. */
#define taskRESET_READY_PRIORITY( uxPriority )
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
* performed in a way that is tailored to the particular microcontroller
* architecture being used. */
/* A port optimised version is provided. Call the port defined macros. */
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
/*-----------------------------------------------------------*/
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
{ \
UBaseType_t uxTopPriority; \
\
/* Find the highest priority list that contains ready tasks. */ \
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCBs[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
} /* taskSELECT_HIGHEST_PRIORITY_TASK() */
/*-----------------------------------------------------------*/
/* A port optimised version is provided, call it only if the TCB being reset
* is being referenced from a ready list. If it is referenced from a delayed
* or suspended list then it won't be in a ready list. */
#define taskRESET_READY_PRIORITY( uxPriority ) \
{ \
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
{ \
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
} \
}
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
* count overflows. */
#define taskSWITCH_DELAYED_LISTS() \
{ \
List_t * pxTemp; \
\
/* The delayed tasks list should be empty when the lists are switched. */ \
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\
pxTemp = pxDelayedTaskList; \
pxDelayedTaskList = pxOverflowDelayedTaskList; \
pxOverflowDelayedTaskList = pxTemp; \
xNumOfOverflows++; \
prvResetNextTaskUnblockTime(); \
}
/*-----------------------------------------------------------*/
/*
* Place the task represented by pxTCB into the appropriate ready list for
* the task. It is inserted at the end of the list.
*/
#define prvAddTaskToReadyList( pxTCB ) \
traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
/*-----------------------------------------------------------*/
/*
* Several functions take a TaskHandle_t parameter that can optionally be NULL,
* where NULL is used to indicate that the handle of the currently executing
* task should be used in place of the parameter. This macro simply checks to
* see if the parameter is NULL and returns a pointer to the appropriate TCB.
*
* In SMP, calling xTaskGetCurrentTaskHandle() ensures atomic access to pxCurrentTCBs
*/
#if ( configNUMBER_OF_CORES > 1 )
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? xTaskGetCurrentTaskHandle() : ( pxHandle ) )
#else
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCBs[ 0 ] : ( pxHandle ) )
#endif
/* The item value of the event list item is normally used to hold the priority
* of the task to which it belongs (coded to allow it to be held in reverse
* priority order). However, it is occasionally borrowed for other purposes. It
* is important its value is not updated due to a task priority change while it is
* being used for another purpose. The following bit definition is used to inform
* the scheduler that the value should not be changed - in which case it is the
* responsibility of whichever module is using the value to ensure it gets set back
* to its original value when it is released. */
#if ( configUSE_16_BIT_TICKS == 1 )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
#else
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
#endif
/*
* Task control block. A task control block (TCB) is allocated for each task,
* and stores task state information, including a pointer to the task's context
* (the task's run time environment, including register values)
*/
typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
{
volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
#if ( portUSING_MPU_WRAPPERS == 1 )
xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
#endif
ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
StackType_t * pxStack; /*< Points to the start of the stack. */
char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#if ( configNUMBER_OF_CORES > 1 )
BaseType_t xCoreID; /*< The core that this task is pinned to */
#endif /* configNUMBER_OF_CORES > 1 */
#if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
#endif
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
#endif
#if ( configUSE_MUTEXES == 1 )
UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
UBaseType_t uxMutexesHeld;
#endif
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t pxTaskTag;
#endif
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
#endif
#if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
configTLS_BLOCK_TYPE xTLSBlock; /*< Memory block used as Thread Local Storage (TLS) Block for the task. */
#endif
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
#endif
/* See the comments in FreeRTOS.h with the definition of
* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
#endif
#if ( INCLUDE_xTaskAbortDelay == 1 )
uint8_t ucDelayAborted;
#endif
#if ( configUSE_POSIX_ERRNO == 1 )
int iTaskErrno;
#endif
} tskTCB;
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
* below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;
/*lint -save -e956 A manual analysis and inspection has been used to determine
* which static variables must be declared volatile. */
portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ] = { NULL };
/* Lists for ready and blocked tasks. --------------------
* xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
* doing so breaks some kernel aware debuggers and debuggers that rely on removing
* the static qualifier. */
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t xPendingReadyList[ configNUMBER_OF_CORES ]; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
#if ( INCLUDE_vTaskDelete == 1 )
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
#endif
/* Global POSIX errno. Its value is changed upon context switching to match
* the errno of the currently running task. */
#if ( configUSE_POSIX_ERRNO == 1 )
int FreeRTOS_errno = 0;
#endif
/* Other file private variables. --------------------------------*/
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
PRIVILEGED_DATA static volatile BaseType_t xYieldPending[ configNUMBER_OF_CORES ] = { pdFALSE };
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[ configNUMBER_OF_CORES ] = { NULL }; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
* For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
* to determine the number of priority lists to read back from the remote target. */
const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
/* Context switches are held pending while the scheduler is suspended. Also,
* interrupts must not manipulate the xStateListItem of a TCB, or any of the
* lists the xStateListItem can be referenced from, if the scheduler is suspended.
* If an interrupt needs to unblock a task while the scheduler is suspended then it
* moves the task's event list item into the xPendingReadyList, ready for the
* kernel to move the task from the pending ready list into the real ready list
* when the scheduler is unsuspended. The pending ready list itself can only be
* accessed from a critical section. */
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[ configNUMBER_OF_CORES ] = { ( UBaseType_t ) pdFALSE };
#if ( configGENERATE_RUN_TIME_STATS == 1 )
/* Do not move these variables to function scope as doing so prevents the
* code working with debuggers that need to remove the static qualifier. */
PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0UL }; /*< Holds the value of a timer/counter the last time a task was switched in. */
PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
#endif
/* Spinlock required for SMP critical sections. This lock protects all of the
* kernel's data structures such as various tasks lists, flags, and tick counts. */
PRIVILEGED_DATA static portMUX_TYPE xKernelLock = portMUX_INITIALIZER_UNLOCKED;
/*lint -restore */
/*-----------------------------------------------------------*/
/* File private functions. --------------------------------*/
/*
* Creates the idle tasks during scheduler start.
*/
static BaseType_t prvCreateIdleTasks( void );
/**
* Utility function to check whether a yield (on either core) is required after
* unblocking (or changing the priority of) a particular task.
*
* - This function is the SMP replacement for checking if an unblocked task has
* a higher (or equal) priority than the current task.
* - It should be called before calling taskYIELD_IF_USING_PREEMPTION() or
* before setting xYieldRequired
* - If it is the other core that requires a yield, this function will
* internally trigger the other core to yield
*
* Note: In some special instances, a yield is triggered if the unblocked task
* has an equal priority (such as in xTaskResumeAll). Thus the
* xYieldEqualPriority parameter specifies whether to yield if the current
* task has equal priority.
*
* Scheduling Algorithm:
* This function will bias towards yielding the current core.
* - If the unblocked task has a higher (or equal) priority than the current
* core, the current core is yielded regardless of the current priority of the
* other core.
* - A core (current or other) will only yield if their schedulers are not
* suspended.
*
* Todo: This can be optimized (IDF-5772)
*
* Entry:
* - This function must be called in a critical section
* - A task must just have been unblocked, or its priority raised
* Exit:
* - Returns pdTRUE if the current core requires yielding
* - The other core will be triggered to yield if required
*
* @note This function must be called from a critical section where the kernel
* lock is taken).
*/
#if ( configNUMBER_OF_CORES > 1 )
static BaseType_t prvIsYieldRequiredSMP( TCB_t * pxTCB,
UBaseType_t uxTaskPriority,
BaseType_t xYieldEqualPriority ) PRIVILEGED_FUNCTION;
#endif /* configNUMBER_OF_CORES > 1 */
/**
* Utility function to check whether a task can currently be scheduled on one
* or more cores. This function is the SMP replacement for checking if
* `uxSchedulerSuspended == 0`.
*
* - If a task is pinned, check the scheduler suspension state on the task's
* pinned core. The task can be scheduled if the scheduler is not suspended on
* the pinned core.
* - If a task is unpinned, check the scheduler suspension state on both cores.
* The task can be scheduled if the scheduler is not suspended on either of
* the cores.
*
* @note This function must be called from a critical section (where the kernel
* lock is taken).
*/
#if ( configNUMBER_OF_CORES > 1 )
static BaseType_t prvCheckTaskCanBeScheduledSMP( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
#endif /* configNUMBER_OF_CORES > 1 */
/**
* Utility function to select the highest priority and runnable task for the
* current core.
*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvSelectHighestPriorityTaskSMP( void ) PRIVILEGED_FUNCTION;
#endif /* configNUMBER_OF_CORES > 1 */
/**
* Utility task that simply returns pdTRUE if the task referenced by xTask is
* currently in the Suspended state, or pdFALSE if the task referenced by xTask
* is in any other state.
*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
#endif /* INCLUDE_vTaskSuspend */
/*
* Utility to ready all the lists used by the scheduler. This is called
* automatically upon the creation of the first task.
*/
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
/*
* The idle task, which as all tasks is implemented as a never ending loop.
* The idle task is automatically created and added to the ready lists upon
* creation of the first user task.
*
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for this function is:
*
* void prvIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
/*
* Utility to free all memory allocated by the scheduler to hold a TCB,
* including the stack pointed to by the TCB.
*
* This does not free memory allocated by the task itself (i.e. memory
* allocated by calls to pvPortMalloc from within the tasks application code).
*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
#endif
/*
* Used only by the idle task. This checks to see if anything has been placed
* in the list of tasks waiting to be deleted. If so the task is cleaned up
* and its TCB deleted.
*/
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
/*
* The currently executing task is entering the Blocked state. Add the task to
* either the current or the overflow delayed task list.
*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
/*
* Fills an TaskStatus_t structure with information on each task that is
* referenced from the pxList list (which may be a ready list, a delayed list,
* a suspended list, etc.).
*
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
* NORMAL APPLICATION CODE.
*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState ) PRIVILEGED_FUNCTION;
#endif
/*
* Searches pxList for a task with name pcNameToQuery - returning a handle to
* the task if it is found, or NULL if the task is not found.
*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
#endif
/*
* When a task is created, the stack of the task is filled with a known value.
* This function determines the 'high water mark' of the task stack by
* determining how much of the stack remains at the original preset value.
*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
#endif
/*
* Return the amount of time, in ticks, that will pass before the kernel will
* next move a task from the Blocked state to the Running state.
*
* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be
* set to a value other than 1.
*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
#endif
/*
* Set xNextTaskUnblockTime to the time at which the next Blocked state task
* will exit the Blocked state.
*/
static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
#if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
/*
* Helper function used to pad task names with spaces when printing out
* human readable tables of task information.
*/
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName ) PRIVILEGED_FUNCTION;
#endif
/*
* Called after a Task_t structure has been allocated either statically or
* dynamically to fill in the structure's members.
*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions,
BaseType_t xCoreID ) PRIVILEGED_FUNCTION;
/*
* Called after a new task has been created and initialised to place the task
* under the control of the scheduler.
*/
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
/*
* freertos_tasks_c_additions_init() should only be called if the user definable
* macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
* called by the function.
*/
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
#endif
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static BaseType_t prvIsYieldRequiredSMP( TCB_t * pxTCB,
UBaseType_t uxTaskPriority,
BaseType_t xYieldEqualPriority )
{
/* This function must be called from a critical section (where the kernel
* lock is taken). */
configASSERT( uxTaskPriority < configMAX_PRIORITIES );
/* Save core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
if( xYieldEqualPriority == pdTRUE )
{
/* Increment the task priority to achieve the same affect as
* if( uxTaskPriority >= pxCurrentTCBs->uxPriority ). */
uxTaskPriority++;
}
/* Indicate whether the current core needs to yield */
BaseType_t xYieldRequiredCurrentCore;
/* If the target task can run on the current core, and has a higher
* priority than the current core, and the core has not suspended
* scheduling, then yield the current core.
* Todo: Make fair scheduling a configurable option (IDF-5772). */
if( ( taskIS_AFFINITY_COMPATIBLE( xCurCoreID, pxTCB ) == pdTRUE ) &&
( uxTaskPriority > pxCurrentTCBs[ xCurCoreID ]->uxPriority ) &&
( uxSchedulerSuspended[ xCurCoreID ] == ( UBaseType_t ) 0U ) )
{
/* Return true for the caller to yield the current core */
xYieldRequiredCurrentCore = pdTRUE;
}
/* If the target task can run on the other core, and has a higher
* priority then the other core, and the other core has not suspended
* scheduling, then yield the other core */
else if( ( taskIS_AFFINITY_COMPATIBLE( !xCurCoreID, pxTCB ) == pdTRUE ) &&
( uxTaskPriority > pxCurrentTCBs[ !xCurCoreID ]->uxPriority ) &&
( uxSchedulerSuspended[ !xCurCoreID ] == ( UBaseType_t ) 0U ) )
{
/* Signal the other core to yield */
taskYIELD_CORE( !xCurCoreID );
xYieldRequiredCurrentCore = pdFALSE;
}
else
{
xYieldRequiredCurrentCore = pdFALSE;
}
return xYieldRequiredCurrentCore;
}
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static BaseType_t prvCheckTaskCanBeScheduledSMP( TCB_t * pxTCB )
{
/* This function must be called from a critical section (where the kernel
* lock is taken). */
BaseType_t xReturn;
if( pxTCB->xCoreID == tskNO_AFFINITY )
{
/* Task is unpinned. As long as one core has not suspended
* scheduling, the task can be scheduled. */
if( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) || ( uxSchedulerSuspended[ 1 ] == ( UBaseType_t ) 0U ) )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
else if( uxSchedulerSuspended[ pxTCB->xCoreID ] == ( UBaseType_t ) 0U )
{
/* The task is pinned to a core. If it's pinned core has not
* suspended scheduling, the task can be scheduled. */
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
}
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
/* Todo: Add support for task restricted API (IDF-7895) */
BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
{
/* Allocate space for the TCB. Where the memory comes from depends
* on the implementation of the port malloc function and whether or
* not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
( uint32_t ) pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
return xReturn;
}
#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
/* Todo: Add support for task restricted API (IDF-7895) */
BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
{
TCB_t * pxNewTCB;
BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
configASSERT( pxTaskDefinition->puxStackBuffer );
if( pxTaskDefinition->puxStackBuffer != NULL )
{
/* Allocate space for the TCB. Where the memory comes from depends
* on the implementation of the port malloc function and whether or
* not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note
* this task had a statically allocated stack in case it is
* later deleted. The TCB was allocated dynamically. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
( uint32_t ) pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
}
return xReturn;
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions,
BaseType_t xCoreID )
{
StackType_t * pxTopOfStack;
UBaseType_t x;
#if ( portUSING_MPU_WRAPPERS == 1 )
/* Should the task be created in privileged mode? */
BaseType_t xRunPrivileged;
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
{
xRunPrivileged = pdTRUE;
}
else
{
xRunPrivileged = pdFALSE;
}
uxPriority &= ~portPRIVILEGE_BIT;
#endif /* portUSING_MPU_WRAPPERS == 1 */
/* Avoid dependency on memset() if it is not required. */
#if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
{
/* Fill the stack with a known value to assist debugging. */
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
}
#endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
/* Calculate the top of stack address. This depends on whether the stack
* grows from high memory to low (as per the 80x86) or vice versa.
* portSTACK_GROWTH is used to make the result positive or negative as required
* by the port. */
#if ( portSTACK_GROWTH < 0 )
{
pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
#if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
{
/* Also record the stack's high address, which may assist
* debugging. */
pxNewTCB->pxEndOfStack = pxTopOfStack;
}
#endif /* configRECORD_STACK_HIGH_ADDRESS */
}
#else /* portSTACK_GROWTH */
{
pxTopOfStack = pxNewTCB->pxStack;
/* Check the alignment of the stack buffer is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
/* The other extreme of the stack space is required if stack checking is
* performed. */
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
}
#endif /* portSTACK_GROWTH */
/* Store the task name in the TCB. */
if( pcName != NULL )
{
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
pxNewTCB->pcTaskName[ x ] = pcName[ x ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( pcName[ x ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Ensure the name string is terminated in the case that the string length
* was greater or equal to configMAX_TASK_NAME_LEN. */
pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* This is used as an array index so must ensure it's not too large. */
configASSERT( uxPriority < configMAX_PRIORITIES );
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxNewTCB->uxPriority = uxPriority;
#if ( configNUMBER_OF_CORES > 1 )
{
pxNewTCB->xCoreID = xCoreID;
}
#else /* configNUMBER_OF_CORES > 1 */
{
/* Avoid compiler warning about unreferenced parameter. */
( void ) xCoreID;
}
#endif /* configNUMBER_OF_CORES > 1 */
#if ( configUSE_MUTEXES == 1 )
{
pxNewTCB->uxBasePriority = uxPriority;
}
#endif /* configUSE_MUTEXES */
vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
/* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
* back to the containing TCB from a generic item in a list. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
/* Event lists are always in priority order. */
listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
#if ( portUSING_MPU_WRAPPERS == 1 )
{
vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
}
#else
{
/* Avoid compiler warning about unreferenced parameter. */
( void ) xRegions;
}
#endif
#if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
{
/* Allocate and initialize memory for the task's TLS Block. */
configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock );
}
#endif
/* Initialize the TCB stack to look as if the task was already running,
* but had been interrupted by the scheduler. The return address is set
* to the start of the task function. Once the stack has been initialised
* the top of stack variable is updated. */
#if ( portUSING_MPU_WRAPPERS == 1 )
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#else /* portUSING_MPU_WRAPPERS */
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#endif /* portUSING_MPU_WRAPPERS */
if( pxCreatedTask != NULL )
{
/* Pass the handle out in an anonymous way. The handle can be used to
* change the created task's priority, delete the created task, etc.*/
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*-----------------------------------------------------------*/
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
/* Ensure interrupts don't access the task lists while the lists are being
* updated. */
taskENTER_CRITICAL( &xKernelLock );
{
uxCurrentNumberOfTasks++;
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
{
/* This is the first task to be created so do the preliminary
* initialisation required. We will not recover if this call
* fails, but we will report the failure. */
prvInitialiseTaskLists();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( ( pxCurrentTCBs[ 0 ] == NULL ) && ( taskIS_AFFINITY_COMPATIBLE( 0, pxNewTCB ) == pdTRUE ) )
{
/* On core 0, there are no other tasks, or all the other tasks
* are in the suspended state - make this the current task. */
pxCurrentTCBs[ 0 ] = pxNewTCB;
}
#if ( configNUMBER_OF_CORES > 1 )
else if( ( pxCurrentTCBs[ 1 ] == NULL ) && ( taskIS_AFFINITY_COMPATIBLE( 1, pxNewTCB ) == pdTRUE ) )
{
/* On core 1, there are no other tasks, or all the other tasks
* are in the suspended state - make this the current task. */
pxCurrentTCBs[ 1 ] = pxNewTCB;
}
#endif /* configNUMBER_OF_CORES > 1 */
else
{
/* If the scheduler is not already running, make this task the
* current task if it is the highest priority task to be created
* so far. */
if( xSchedulerRunning == pdFALSE )
{
if( ( pxCurrentTCBs[ 0 ] != NULL ) &&
( taskIS_AFFINITY_COMPATIBLE( 0, pxNewTCB ) == pdTRUE ) &&
( pxCurrentTCBs[ 0 ]->uxPriority <= pxNewTCB->uxPriority ) )
{
pxCurrentTCBs[ 0 ] = pxNewTCB;
}
#if ( configNUMBER_OF_CORES > 1 )
else if( ( pxCurrentTCBs[ 1 ] != NULL ) &&
( taskIS_AFFINITY_COMPATIBLE( 1, pxNewTCB ) == pdTRUE ) &&
( pxCurrentTCBs[ 1 ]->uxPriority <= pxNewTCB->uxPriority ) )
{
pxCurrentTCBs[ 1 ] = pxNewTCB;
}
#endif /* configNUMBER_OF_CORES > 1 */
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
uxTaskNumber++;
#if ( configUSE_TRACE_FACILITY == 1 )
{
/* Add a counter into the TCB for tracing only. */
pxNewTCB->uxTCBNumber = uxTaskNumber;
}
#endif /* configUSE_TRACE_FACILITY */
traceTASK_CREATE( pxNewTCB );
prvAddTaskToReadyList( pxNewTCB );
portSETUP_TCB( pxNewTCB );
if( xSchedulerRunning != pdFALSE )
{
/* If the created task is of a higher priority than the current task
* then it should run now. */
if( taskIS_YIELD_REQUIRED( pxNewTCB, pdTRUE ) == pdTRUE )
{
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
/* SINGLE-CORE MODIFICATION: Extended critical section so that SMP can check
* for yield inside critical section. */
}
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
void vTaskDelete( TaskHandle_t xTaskToDelete )
{
TCB_t * pxTCB;
BaseType_t xSelfDelete;
BaseType_t xIsCurRunning;
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* If null is passed in here then it is the calling task that is
* being deleted. */
pxTCB = prvGetTCBFromHandle( xTaskToDelete );
/* Remove task from the ready/delayed list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Increment the uxTaskNumber also so kernel aware debuggers can
* detect that the task lists need re-generating. This is done before
* portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
* not return. */
uxTaskNumber++;
/* Check if the task is deleting itself, or is currently running on
* the other core. */
if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCurCoreID ) == pdTRUE )
{
xSelfDelete = pdTRUE;
xIsCurRunning = pdTRUE;
}
#if ( configNUMBER_OF_CORES > 1 )
else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xCurCoreID ) == pdTRUE )
{
xSelfDelete = pdFALSE;
xIsCurRunning = pdTRUE;
}
#endif /* configNUMBER_OF_CORES > 1 */
else
{
xSelfDelete = pdFALSE;
xIsCurRunning = pdFALSE;
}
if( xIsCurRunning == pdTRUE )
{
/* A task is deleting itself or is currently running. This
* cannot complete within the task itself, as a context switch
* to another task is required. Place the task in the
* termination list. The idle task will check the termination
* list and free up any memory allocated by the scheduler for
* the TCB and stack of the deleted task. */
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
/* Increment the ucTasksDeleted variable so the idle task knows
* there is a task that has been deleted and that it should therefore
* check the xTasksWaitingTermination list. */
++uxDeletedTasksWaitingCleanUp;
/* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
* portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
traceTASK_DELETE( pxTCB );
/* The pre-delete hook is primarily for the Windows simulator,
* in which Windows specific clean up operations are performed,
* after which it is not possible to yield away from this task -
* hence xYieldPending is used to latch that a context switch is
* required. */
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[ xCurCoreID ] );
#if ( configNUMBER_OF_CORES > 1 )
if( xSelfDelete == pdFALSE )
{
/* The task that is being deleted is currently running
* on the other core. Send a yield request to the other
* core so that the task is swapped out. */
taskYIELD_CORE( !xCurCoreID );
}
#else /* configNUMBER_OF_CORES > 1 */
/* xCurCoreID is unused */
( void ) xCurCoreID;
#endif /* configNUMBER_OF_CORES > 1 */
}
else
{
--uxCurrentNumberOfTasks;
traceTASK_DELETE( pxTCB );
/* Reset the next expected unblock time in case it referred to
* the task that has just been deleted. */
prvResetNextTaskUnblockTime();
}
}
taskEXIT_CRITICAL( &xKernelLock );
/* If the task is currently running, call prvDeleteTCB from outside of
* critical section. If a task is currently running, prvDeleteTCB is
* called from prvCheckTasksWaitingTermination which is called from
* Idle task. */
if( xIsCurRunning == pdFALSE )
{
prvDeleteTCB( pxTCB );
}
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Force a reschedule if it is the currently running task that has just
* been deleted. */
if( xSchedulerRunning != pdFALSE )
{
if( xSelfDelete == pdTRUE )
{
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdFALSE );
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskDelayUntil == 1 )
BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
const TickType_t xTimeIncrement )
{
TickType_t xTimeToWake;
BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
configASSERT( pxPreviousWakeTime );
configASSERT( ( xTimeIncrement > 0U ) );
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdFALSE );
prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount;
/* Generate the tick time at which the task wants to wake. */
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
if( xConstTickCount < *pxPreviousWakeTime )
{
/* The tick count has overflowed since this function was
* lasted called. In this case the only time we should ever
* actually delay is if the wake time has also overflowed,
* and the wake time is greater than the tick time. When this
* is the case it is as if neither time had overflowed. */
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The tick time has not overflowed. In this case we will
* delay if either the wake time has overflowed, and/or the
* tick time is less than the wake time. */
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Update the wake time ready for the next call. */
*pxPreviousWakeTime = xTimeToWake;
if( xShouldDelay != pdFALSE )
{
traceTASK_DELAY_UNTIL( xTimeToWake );
/* prvAddCurrentTaskToDelayedList() needs the block time, not
* the time to wake, so subtract the current tick count. */
prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xShouldDelay;
}
#endif /* INCLUDE_xTaskDelayUntil */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelay == 1 )
void vTaskDelay( const TickType_t xTicksToDelay )
{
BaseType_t xAlreadyYielded = pdFALSE;
/* A delay time of zero just forces a reschedule. */
if( xTicksToDelay > ( TickType_t ) 0U )
{
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdFALSE );
prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
{
traceTASK_DELAY();
/* A task that is removed from the event list while the
* scheduler is suspended will not get placed in the ready
* list or removed from the blocked list until the scheduler
* is resumed.
*
* This task cannot be in an event list as it is the currently
* executing task. */
prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
}
xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* INCLUDE_vTaskDelay */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
eTaskState eTaskGetState( TaskHandle_t xTask )
{
eTaskState eReturn;
List_t const * pxStateList;
List_t const * pxDelayedList;
List_t const * pxOverflowedDelayedList;
const TCB_t * const pxTCB = xTask;
configASSERT( pxTCB );
taskENTER_CRITICAL( &xKernelLock );
{
if( taskIS_CURRENTLY_RUNNING( pxTCB ) == pdTRUE )
{
/* The task calling this function is querying its own state. */
eReturn = eRunning;
}
else
{
pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
pxDelayedList = pxDelayedTaskList;
pxOverflowedDelayedList = pxOverflowDelayedTaskList;
if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
{
/* The task being queried is referenced from one of the Blocked
* lists. */
eReturn = eBlocked;
}
#if ( INCLUDE_vTaskSuspend == 1 )
else if( pxStateList == &xSuspendedTaskList )
{
/* The task being queried is referenced from the suspended
* list. Is it genuinely suspended or is it blocked
* indefinitely? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
{
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
/* The task does not appear on the event list item of
* and of the RTOS objects, but could still be in the
* blocked state if it is waiting on its notification
* rather than waiting on an object. If not, is
* suspended. */
eReturn = eSuspended;
for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
eReturn = eBlocked;
break;
}
}
}
#else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
{
eReturn = eSuspended;
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
else
{
eReturn = eBlocked;
}
}
#endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
#if ( INCLUDE_vTaskDelete == 1 )
else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
{
/* The task being queried is referenced from the deleted
* tasks list, or it is not referenced from any lists at
* all. */
eReturn = eDeleted;
}
#endif
else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
{
/* If the task is not in any other state, it must be in the
* Ready (including pending ready) state. */
eReturn = eReady;
}
}
}
taskEXIT_CRITICAL( &xKernelLock );
return eReturn;
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
#endif /* INCLUDE_eTaskGetState */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
taskENTER_CRITICAL( &xKernelLock );
{
/* If null is passed in here then it is the priority of the task
* that called uxTaskPriorityGet() that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
taskEXIT_CRITICAL( &xKernelLock );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn, uxSavedInterruptState;
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptState );
{
/* If null is passed in here then it is the priority of the calling
* task that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptState );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskPrioritySet == 1 )
void vTaskPrioritySet( TaskHandle_t xTask,
UBaseType_t uxNewPriority )
{
TCB_t * pxTCB;
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
BaseType_t xYieldRequired = pdFALSE;
configASSERT( uxNewPriority < configMAX_PRIORITIES );
/* Ensure the new priority is valid. */
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* If null is passed in here then it is the priority of the calling
* task that is being changed. */
pxTCB = prvGetTCBFromHandle( xTask );
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
#if ( configUSE_MUTEXES == 1 )
{
uxCurrentBasePriority = pxTCB->uxBasePriority;
}
#else
{
uxCurrentBasePriority = pxTCB->uxPriority;
}
#endif
if( uxCurrentBasePriority != uxNewPriority )
{
/* The priority change may have readied a task of higher
* priority than the calling task. */
if( uxNewPriority > uxCurrentBasePriority )
{
if( taskIS_CURRENTLY_RUNNING( pxTCB ) == pdFALSE )
{
/* The priority of a task other than the currently
* running task is being raised. Is the priority being
* raised above that of the running task? */
if( taskIS_YIELD_REQUIRED_USING_PRIORITY( pxTCB, uxNewPriority, pdTRUE ) == pdTRUE )
{
xYieldRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The priority of the running task is being raised,
* but the running task must already be the highest
* priority task able to run so no yield is required. */
}
}
else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCurCoreID ) == pdTRUE )
{
/* Lowering the priority of task currently running on the
* current core means there may now be another task of
* higher priority that is ready to execute. */
xYieldRequired = pdTRUE;
}
#if ( configNUMBER_OF_CORES > 1 )
else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xCurCoreID ) == pdTRUE )
{
/* Lowering the priority of task currently running on the
* other core also means there may now be another task of
* higher priority that is ready to execute. */
taskYIELD_CORE( !xCurCoreID );
}
#endif /* configNUMBER_OF_CORES > 1 */
else
{
/* Setting the priority of any other task down does not
* require a yield as the running task must be above the
* new priority of the task being modified. */
}
/* Remember the ready list the task might be referenced from
* before its uxPriority member is changed so the
* taskRESET_READY_PRIORITY() macro can function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
/* Only change the priority being used if the task is not
* currently using an inherited priority. */
if( pxTCB->uxBasePriority == pxTCB->uxPriority )
{
pxTCB->uxPriority = uxNewPriority;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The base priority gets set whatever. */
pxTCB->uxBasePriority = uxNewPriority;
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
pxTCB->uxPriority = uxNewPriority;
}
#endif /* if ( configUSE_MUTEXES == 1 ) */
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xYieldRequired != pdFALSE )
{
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Remove compiler warning about unused variables when the port
* optimised task selection is not being used. */
( void ) uxPriorityUsedOnEntry;
}
}
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* INCLUDE_vTaskPrioritySet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
{
TCB_t * pxTCB;
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* If null is passed in here then it is the running task that is
* being suspended. */
pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
traceTASK_SUSPEND( pxTCB );
/* Remove task from the ready/delayed list and place in the
* suspended list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
/* The task was blocked to wait for a notification, but is
* now suspended, so no notification was received. */
pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
}
}
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
if( xSchedulerRunning != pdFALSE )
{
/* Reset the next expected unblock time in case it referred to the
* task that is now in the Suspended state. */
prvResetNextTaskUnblockTime();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCurCoreID ) == pdTRUE )
{
if( xSchedulerRunning != pdFALSE )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended[ xCurCoreID ] == 0 );
portYIELD_WITHIN_API();
}
else
{
/* The scheduler is not running, but the task that was pointed
* to by pxCurrentTCBs has just been suspended and pxCurrentTCBs
* must be adjusted to point to a different task. */
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
{
/* No other tasks are ready, so set pxCurrentTCBs back to
* NULL so when the next task is created pxCurrentTCBs will
* be set to point to it no matter what its relative priority
* is. */
pxCurrentTCBs[ xCurCoreID ] = NULL;
}
else
{
vTaskSwitchContext();
}
}
}
#if ( configNUMBER_OF_CORES > 1 )
else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xCurCoreID ) == pdTRUE )
{
/* The other core's current task has just been suspended */
if( xSchedulerRunning != pdFALSE )
{
taskYIELD_CORE( !xCurCoreID );
}
else
{
/* The scheduler is not running, but the task that was
* pointed to by pxCurrentTCBs[ otherCore ] has just been
* suspended. We simply set the
* pxCurrentTCBs[ otherCore ] to NULL for now.
*
* Todo: Update vTaskSwitchContext() to be able to run
* on behalf of the other core. */
pxCurrentTCBs[ !xCurCoreID ] = NULL;
}
}
#endif /* configNUMBER_OF_CORES > 1 */
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
{
BaseType_t xReturn = pdFALSE;
const TCB_t * const pxTCB = xTask;
/* Accesses xPendingReadyList so must be called from a critical
* section. */
/* It does not make sense to check if the calling task is suspended. */
configASSERT( xTask );
/* Is the task being resumed actually in the suspended list? */
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* Has the task already been resumed from within an ISR? */
#if ( configNUMBER_OF_CORES > 1 )
if( ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) &&
( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 1 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) )
#else
if( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE )
#endif /* configNUMBER_OF_CORES > 1 */
{
/* Is it in the suspended list because it is in the Suspended
* state, or because is is blocked with no timeout? */
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
{
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskResume( TaskHandle_t xTaskToResume )
{
TCB_t * const pxTCB = xTaskToResume;
/* It does not make sense to resume the calling task. */
configASSERT( xTaskToResume );
taskENTER_CRITICAL( &xKernelLock );
{
/* The parameter cannot be NULL as it is impossible to resume the
* currently executing task. */
if( ( taskIS_CURRENTLY_RUNNING( pxTCB ) == pdFALSE ) && ( pxTCB != NULL ) )
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME( pxTCB );
/* The ready list can be accessed even if the scheduler is
* suspended because this is inside a critical section. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* A higher priority task may have just been resumed. */
if( taskIS_YIELD_REQUIRED( pxTCB, pdTRUE ) == pdTRUE )
{
/* This yield may not cause the task just resumed to run,
* but will leave the lists in the correct state for the
* next yield. */
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
{
BaseType_t xYieldRequired = pdFALSE;
TCB_t * const pxTCB = xTaskToResume;
UBaseType_t uxSavedInterruptStatus;
configASSERT( xTaskToResume );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
traceTASK_RESUME_FROM_ISR( pxTCB );
/* Check the ready lists can be accessed. */
if( taskCAN_BE_SCHEDULED( pxTCB ) == pdTRUE )
{
/* Ready lists can be accessed so move the task from the
* suspended list to the ready list directly. */
if( taskIS_YIELD_REQUIRED( pxTCB, pdTRUE ) == pdTRUE )
{
xYieldRequired = pdTRUE;
/* Mark that a yield is pending in case the user is not
* using the return value to initiate a context switch
* from the ISR using portYIELD_FROM_ISR. */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed or ready lists cannot be accessed so the task
* is held in the pending ready list until the scheduler is
* unsuspended. */
vListInsertEnd( &( xPendingReadyList[ xCurCoreID ] ), &( pxTCB->xEventListItem ) );
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
return xYieldRequired;
}
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
/*-----------------------------------------------------------*/
static BaseType_t prvCreateIdleTasks( void )
{
BaseType_t xReturn = pdPASS;
BaseType_t xCoreID;
#if ( configNUMBER_OF_CORES > 1 )
char cIdleName[ configMAX_TASK_NAME_LEN ];
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/* Add each idle task at the lowest priority. */
for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
#if ( configNUMBER_OF_CORES > 1 )
{
BaseType_t x;
if( xReturn == pdFAIL )
{
/* TODO: IDF-8240 - Memory leaks occur if IDLE task creation fails on some core
* as we do not free memory for the successfully created IDLE tasks. */
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
cIdleName[ x ] = configIDLE_TASK_NAME[ x ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( cIdleName[ x ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Append the idle task number to the end of the name if there is space. */
if( x < ( BaseType_t ) configMAX_TASK_NAME_LEN )
{
cIdleName[ x ] = ( char ) ( xCoreID + '0' );
x++;
/* And append a null character if there is space. */
if( x < ( BaseType_t ) configMAX_TASK_NAME_LEN )
{
cIdleName[ x ] = '\0';
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/* Add the idle task at the lowest priority. */
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
StaticTask_t * pxIdleTaskTCBBuffer = NULL;
StackType_t * pxIdleTaskStackBuffer = NULL;
uint32_t ulIdleTaskStackSize;
/* The Idle task is created using user provided RAM - obtain the
* address of the RAM then create the idle task. */
vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
xIdleTaskHandle[ xCoreID ] = xTaskCreateStaticPinnedToCore( prvIdleTask,
#if ( configNUMBER_OF_CORES > 1 )
cIdleName,
#else /* #if ( configNUMBER_OF_CORES > 1 ) */
configIDLE_TASK_NAME,
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
ulIdleTaskStackSize,
( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
pxIdleTaskStackBuffer,
pxIdleTaskTCBBuffer, /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
xCoreID );
if( xIdleTaskHandle[ xCoreID ] != NULL )
{
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
#else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
{
/* The Idle task is being created using dynamically allocated RAM. */
xReturn = xTaskCreatePinnedToCore( prvIdleTask,
#if ( configNUMBER_OF_CORES > 1 )
cIdleName,
#else /* #if ( configNUMBER_OF_CORES > 1 ) */
configIDLE_TASK_NAME,
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
configMINIMAL_STACK_SIZE,
( void * ) NULL,
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
&xIdleTaskHandle[ xCoreID ], /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
xCoreID );
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
}
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskStartScheduler( void )
{
BaseType_t xReturn;
/* The code for prvCreateIdleTasks() has been backported from the upstream
* FreeRTOS-Kernel source. The reference for the same is on the mainline
* at the commit id# 2f94b181a2f049ec342deba0927bed51f7174ab0. */
xReturn = prvCreateIdleTasks();
#if ( configUSE_TIMERS == 1 )
{
if( xReturn == pdPASS )
{
xReturn = xTimerCreateTimerTask();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TIMERS */
if( xReturn == pdPASS )
{
/* freertos_tasks_c_additions_init() should only be called if the user
* definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
* the only macro called by the function. */
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
{
freertos_tasks_c_additions_init();
}
#endif
/* Interrupts are turned off here, to ensure a tick does not occur
* before or during the call to xPortStartScheduler(). The stacks of
* the created tasks contain a status word with interrupts switched on
* so interrupts will automatically get re-enabled when the first task
* starts to run. */
portDISABLE_INTERRUPTS();
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
#if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
{
/* Switch C-Runtime's TLS Block to point to the TLS
* block specific to the task that will run first. */
configSET_TLS_BLOCK( pxCurrentTCBs[ portGET_CORE_ID() ]->xTLSBlock );
}
#endif
xNextTaskUnblockTime = portMAX_DELAY;
xSchedulerRunning = pdTRUE;
xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
/* If configGENERATE_RUN_TIME_STATS is defined then the following
* macro must be defined to configure the timer/counter used to generate
* the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
* is set to 0 and the following line fails to build then ensure you do not
* have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
* FreeRTOSConfig.h file. */
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
traceTASK_SWITCHED_IN();
/* Setting up the timer tick is hardware specific and thus in the
* portable interface. */
xPortStartScheduler();
/* In most cases, xPortStartScheduler() will not return. If it
* returns pdTRUE then there was not enough heap memory available
* to create either the Idle or the Timer task. If it returned
* pdFALSE, then the application called xTaskEndScheduler().
* Most ports don't implement xTaskEndScheduler() as there is
* nothing to return to. */
}
else
{
/* This line will only be reached if the kernel could not be started,
* because there was not enough FreeRTOS heap to create the idle task
* or the timer task. */
configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
}
/* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
* meaning xIdleTaskHandle is not used anywhere else. */
( void ) xIdleTaskHandle[ 0 ];
/* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
* from getting optimized out as it is no longer used by the kernel. */
( void ) uxTopUsedPriority;
}
/*-----------------------------------------------------------*/
void vTaskEndScheduler( void )
{
/* Stop the scheduler interrupts and call the portable scheduler end
* routine so the original ISRs can be restored if necessary. The port
* layer must ensure interrupts enable bit is left in the correct state. */
portDISABLE_INTERRUPTS();
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
xSchedulerRunning = pdFALSE;
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
vPortEndScheduler();
}
/*----------------------------------------------------------*/
void vTaskSuspendAll( void )
{
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures.
*
* For single-core, a critical section is not required as the variable is of type
* BaseType_t. Please read Richard Barry's reply in the following link to a
* post in the FreeRTOS support forum before reporting this as a bug! -
* https://goo.gl/wu4acr */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that
* do not otherwise exhibit real time behaviour. */
portSOFTWARE_BARRIER();
/* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
* is used to allow calls to vTaskSuspendAll() to nest. */
++uxSchedulerSuspended[ portGET_CORE_ID() ];
/* Enforces ordering for ports and optimised compilers that may otherwise place
* the above increment elsewhere. */
portMEMORY_BARRIER();
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
/*----------------------------------------------------------*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void )
{
TickType_t xReturn;
UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
/* uxHigherPriorityReadyTasks takes care of the case where
* configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
* task that are in the Ready state, even though the idle task is
* running. */
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
{
if( uxTopReadyPriority > tskIDLE_PRIORITY )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#else
{
const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
/* When port optimised task selection is used the uxTopReadyPriority
* variable is used as a bit map. If bits other than the least
* significant bit are set then there are tasks that have a priority
* above the idle priority that are in the Ready state. This takes
* care of the case where the co-operative scheduler is in use. */
if( uxTopReadyPriority > uxLeastSignificantBit )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
if( pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority > tskIDLE_PRIORITY )
{
xReturn = 0;
}
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > configNUMBER_OF_CORES )
{
/* There are other idle priority tasks in the ready state. If
* time slicing is used then the very next tick interrupt must be
* processed. */
xReturn = 0;
}
else if( uxHigherPriorityReadyTasks != pdFALSE )
{
/* There are tasks in the Ready state that have a priority above the
* idle priority. This path can only be reached if
* configUSE_PREEMPTION is 0. */
xReturn = 0;
}
else
{
xReturn = xNextTaskUnblockTime - xTickCount;
}
return xReturn;
}
#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/
BaseType_t xTaskResumeAll( void )
{
TCB_t * pxTCB = NULL;
BaseType_t xAlreadyYielded = pdFALSE;
/* If uxSchedulerSuspended is zero then this function does not match a
* previous call to vTaskSuspendAll(). */
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdTRUE );
/* It is possible that an ISR caused a task to be removed from an event
* list while the scheduler was suspended. If this was the case then the
* removed task will have been added to the xPendingReadyList. Once the
* scheduler has been resumed it is safe to move all the pending ready
* tasks from this list into their appropriate ready list. */
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
--uxSchedulerSuspended[ xCurCoreID ];
if( uxSchedulerSuspended[ xCurCoreID ] == ( UBaseType_t ) pdFALSE )
{
if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
{
/* Move any readied tasks from the pending list into the
* appropriate ready list. */
while( listLIST_IS_EMPTY( &xPendingReadyList[ xCurCoreID ] ) == pdFALSE )
{
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList[ xCurCoreID ] ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
portMEMORY_BARRIER();
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* If the moved task has a priority higher than or equal to
* the current task then a yield must be performed. */
if( taskIS_YIELD_REQUIRED( pxTCB, pdTRUE ) == pdTRUE )
{
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
if( pxTCB != NULL )
{
/* A task was unblocked while the scheduler was suspended,
* which may have prevented the next unblock time from being
* re-calculated, in which case re-calculate it now. Mainly
* important for low power tickless implementations, where
* this can prevent an unnecessary exit from low power
* state. */
prvResetNextTaskUnblockTime();
}
#if ( configNUMBER_OF_CORES > 1 )
/* Core 0 is solely responsible for managing tick count, thus it
* must be the only core to unwind the pended ticks */
if( xCurCoreID == 0 )
#endif
/* If any ticks occurred while the scheduler was suspended then
* they should be processed now. This ensures the tick count does
* not slip, and that any delayed tasks are resumed at the correct
* time. */
{
TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
if( xPendedCounts > ( TickType_t ) 0U )
{
do
{
if( xTaskIncrementTick() != pdFALSE )
{
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
--xPendedCounts;
} while( xPendedCounts > ( TickType_t ) 0U );
xPendedTicks = 0;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
if( xYieldPending[ xCurCoreID ] != pdFALSE )
{
#if ( configUSE_PREEMPTION != 0 )
{
xAlreadyYielded = pdTRUE;
}
#endif
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
return xAlreadyYielded;
}
/*-----------------------------------------------------------*/
TickType_t xTaskGetTickCount( void )
{
TickType_t xTicks;
/* Critical section required if running on a 16 bit processor. */
portTICK_TYPE_ENTER_CRITICAL();
{
xTicks = xTickCount;
}
portTICK_TYPE_EXIT_CRITICAL();
return xTicks;
}
/*-----------------------------------------------------------*/
TickType_t xTaskGetTickCountFromISR( void )
{
TickType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
/* RTOS ports that support interrupt nesting have the concept of a maximum
* system call (or maximum API call) interrupt priority. Interrupts that are
* above the maximum system call priority are kept permanently enabled, even
* when the RTOS kernel is in a critical section, but cannot make any calls to
* FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
* then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has been
* assigned a priority above the configured maximum system call priority.
* Only FreeRTOS functions that end in FromISR can be called from interrupts
* that have been assigned a priority at or (logically) below the maximum
* system call interrupt priority. FreeRTOS maintains a separate interrupt
* safe API to ensure interrupt entry is as fast and as simple as possible.
* More information (albeit Cortex-M specific) is provided on the following
* link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures. */
prvENTER_CRITICAL_ISR_SMP_ONLY( &xKernelLock );
{
uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
{
xReturn = xTickCount;
}
portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_ISR_SMP_ONLY( &xKernelLock );
return xReturn;
}
/*-----------------------------------------------------------*/
UBaseType_t uxTaskGetNumberOfTasks( void )
{
/* A critical section is not required because the variables are of type
* BaseType_t. */
return uxCurrentNumberOfTasks;
}
/*-----------------------------------------------------------*/
char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
TCB_t * pxTCB;
/* If null is passed in here then the name of the calling task is being
* queried. */
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
configASSERT( pxTCB );
return &( pxTCB->pcTaskName[ 0 ] );
}
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] )
{
TCB_t * pxNextTCB;
TCB_t * pxFirstTCB;
TCB_t * pxReturn = NULL;
UBaseType_t x;
char cNextChar;
BaseType_t xBreakLoop;
/* This function is called with the scheduler suspended. */
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
do
{
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
/* Check each character in the name looking for a match or
* mismatch. */
xBreakLoop = pdFALSE;
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
cNextChar = pxNextTCB->pcTaskName[ x ];
if( cNextChar != pcNameToQuery[ x ] )
{
/* Characters didn't match. */
xBreakLoop = pdTRUE;
}
else if( cNextChar == ( char ) 0x00 )
{
/* Both strings terminated, a match must have been
* found. */
pxReturn = pxNextTCB;
xBreakLoop = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xBreakLoop != pdFALSE )
{
break;
}
}
if( pxReturn != NULL )
{
/* The handle has been found. */
break;
}
} while( pxNextTCB != pxFirstTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return pxReturn;
}
#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetHandle == 1 )
TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
UBaseType_t uxQueue = configMAX_PRIORITIES;
TCB_t * pxTCB;
/* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
{
/* Search the ready lists. */
do
{
uxQueue--;
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
if( pxTCB != NULL )
{
/* Found the handle. */
break;
}
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
/* Search the delayed lists. */
if( pxTCB == NULL )
{
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
}
if( pxTCB == NULL )
{
pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
}
#if ( INCLUDE_vTaskSuspend == 1 )
{
if( pxTCB == NULL )
{
/* Search the suspended list. */
pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
}
}
#endif
#if ( INCLUDE_vTaskDelete == 1 )
{
if( pxTCB == NULL )
{
/* Search the deleted list. */
pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
}
}
#endif
}
( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
return pxTCB;
}
#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
StackType_t ** ppuxStackBuffer,
StaticTask_t ** ppxTaskBuffer )
{
BaseType_t xReturn;
TCB_t * pxTCB;
configASSERT( ppuxStackBuffer != NULL );
configASSERT( ppxTaskBuffer != NULL );
pxTCB = prvGetTCBFromHandle( xTask );
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
{
if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
{
*ppuxStackBuffer = pxTCB->pxStack;
*ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
xReturn = pdTRUE;
}
else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
{
*ppuxStackBuffer = pxTCB->pxStack;
*ppxTaskBuffer = NULL;
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
#else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
{
*ppuxStackBuffer = pxTCB->pxStack;
*ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
xReturn = pdTRUE;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
return xReturn;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
const UBaseType_t uxArraySize,
configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime )
{
UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
{
/* Is there a space in the array for each task in the system? */
if( uxArraySize >= uxCurrentNumberOfTasks )
{
/* Fill in an TaskStatus_t structure with information on each
* task in the Ready state. */
do
{
uxQueue--;
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
/* Fill in an TaskStatus_t structure with information on each
* task in the Blocked state. */
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
#if ( INCLUDE_vTaskDelete == 1 )
{
/* Fill in an TaskStatus_t structure with information on
* each task that has been deleted but not yet cleaned up. */
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
}
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
{
/* Fill in an TaskStatus_t structure with information on
* each task in the Suspended state. */
uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
}
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
if( pulTotalRunTime != NULL )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
#else
*pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
#endif
}
}
#else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
{
if( pulTotalRunTime != NULL )
{
*pulTotalRunTime = 0;
}
}
#endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
return uxTask;
}
#endif /* configUSE_TRACE_FACILITY */
/*----------------------------------------------------------*/
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
TaskHandle_t xTaskGetIdleTaskHandle( void )
{
return xTaskGetIdleTaskHandleForCore( portGET_CORE_ID() );
}
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
/*----------------------------------------------------------*/
/* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure vTaskStepTick() is available when user defined low power mode
* implementations require configUSE_TICKLESS_IDLE to be set to a value other than
* 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )
void vTaskStepTick( TickType_t xTicksToJump )
{
/* SINGLE-CORE MODIFICATION: Expanded critical section so that SMP
* accesses xTickCount inside a critical section. */
taskENTER_CRITICAL( &xKernelLock );
{
/* Correct the tick count value after a period during which the tick
* was suppressed. Note this does *not* call the tick hook function for
* each stepped tick. */
configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
if( ( xTickCount + xTicksToJump ) == xNextTaskUnblockTime )
{
/* Arrange for xTickCount to reach xNextTaskUnblockTime in
* xTaskIncrementTick() when the scheduler resumes. This ensures
* that any delayed tasks are resumed at the correct time. */
#if ( configNUMBER_OF_CORES > 1 )
{
/* In SMP, the entire tickless idle handling block
* is replaced with a critical section, taking the kernel lock. */
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdFALSE );
}
#else /* configNUMBER_OF_CORES > 1 */
{
/* In single-core, the entire tickless idle handling block
* is done with scheduler suspended. */
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdTRUE );
}
#endif /* configNUMBER_OF_CORES > 1 */
configASSERT( xTicksToJump != ( TickType_t ) 0 );
xPendedTicks++;
xTicksToJump--;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xTickCount += xTicksToJump;
traceINCREASE_TICK_COUNT( xTicksToJump );
}
/* SINGLE-CORE MODIFICATION: Expanded critical section */
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/
BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
{
BaseType_t xYieldOccurred;
/* Must not be called with the scheduler suspended as the implementation
* relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
configASSERT( taskIS_SCHEDULER_SUSPENDED() == pdFALSE );
/* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
* the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
vTaskSuspendAll();
/* Prevent the tick interrupt modifying xPendedTicks simultaneously. */
taskENTER_CRITICAL( &xKernelLock );
{
xPendedTicks += xTicksToCatchUp;
}
taskEXIT_CRITICAL( &xKernelLock );
xYieldOccurred = xTaskResumeAll();
return xYieldOccurred;
}
/*----------------------------------------------------------*/
#if ( INCLUDE_xTaskAbortDelay == 1 )
BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
{
TCB_t * pxTCB = xTask;
BaseType_t xReturn;
configASSERT( pxTCB );
prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
{
/* A task can only be prematurely removed from the Blocked state if
* it is actually in the Blocked state. */
if( eTaskGetState( xTask ) == eBlocked )
{
xReturn = pdPASS;
/* Remove the reference to the task from the blocked list. An
* interrupt won't touch the xStateListItem because the
* scheduler is suspended. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
/* Is the task waiting on an event also? If so remove it from
* the event list too. Interrupts can touch the event list item,
* even though the scheduler is suspended, so a critical section
* is used. */
prvENTER_CRITICAL_SC_ONLY( &xKernelLock );
{
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
/* This lets the task know it was forcibly removed from the
* blocked state so it should not re-evaluate its block time and
* then block again. */
pxTCB->ucDelayAborted = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
prvEXIT_CRITICAL_SC_ONLY( &xKernelLock );
/* Place the unblocked task into the appropriate ready list. */
prvAddTaskToReadyList( pxTCB );
/* A task being unblocked cannot cause an immediate context
* switch if preemption is turned off. */
#if ( configUSE_PREEMPTION == 1 )
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* Preemption is on, but a context switch should only be
* performed if the unblocked task has a priority that is
* higher than the currently executing task. */
if( taskIS_YIELD_REQUIRED( pxTCB, pdFALSE ) == pdTRUE )
{
/* Pend the yield to be performed when the scheduler
* is unsuspended. */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
else
{
xReturn = pdFAIL;
}
}
( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
return xReturn;
}
#endif /* INCLUDE_xTaskAbortDelay */
/*----------------------------------------------------------*/
BaseType_t xTaskIncrementTick( void )
{
#if ( configNUMBER_OF_CORES > 1 )
/* Only Core 0 should ever call this function. */
configASSERT( portGET_CORE_ID() == 0 );
#endif /* configNUMBER_OF_CORES > 1 */
TCB_t * pxTCB;
TickType_t xItemValue;
BaseType_t xSwitchRequired = pdFALSE;
#if ( configUSE_TICK_HOOK == 1 )
BaseType_t xCallTickHook;
#endif /* configUSE_TICK_HOOK == 1 */
/* Called by the portable layer each time a tick interrupt occurs.
* Increments the tick then checks to see if the new tick value will cause any
* tasks to be unblocked. */
traceTASK_INCREMENT_TICK( xTickCount );
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures (unlike single core which calls this function with
* interrupts disabled). */
prvENTER_CRITICAL_SAFE_SMP_ONLY( &xKernelLock );
{
if( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) pdFALSE )
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
/* Increment the RTOS tick, switching the delayed and overflowed
* delayed lists if it wraps to 0. */
xTickCount = xConstTickCount;
if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
{
taskSWITCH_DELAYED_LISTS();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* See if this tick has made a timeout expire. Tasks are stored in
* the queue in the order of their wake time - meaning once one task
* has been found whose block time has not expired there is no need to
* look any further down the list. */
if( xConstTickCount >= xNextTaskUnblockTime )
{
for( ; ; )
{
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
{
/* The delayed list is empty. Set xNextTaskUnblockTime
* to the maximum possible value so it is extremely
* unlikely that the
* if( xTickCount >= xNextTaskUnblockTime ) test will pass
* next time through. */
xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
break;
}
else
{
/* The delayed list is not empty, get the value of the
* item at the head of the delayed list. This is the time
* at which the task at the head of the delayed list must
* be removed from the Blocked state. */
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
if( xConstTickCount < xItemValue )
{
/* It is not time to unblock this item yet, but the
* item value is the time at which the task at the head
* of the blocked list must be removed from the Blocked
* state - so record the item value in
* xNextTaskUnblockTime. */
xNextTaskUnblockTime = xItemValue;
break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* It is time to remove the item from the Blocked state. */
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
/* Is the task waiting on an event also? If so remove
* it from the event list. */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Place the unblocked task into the appropriate ready
* list. */
prvAddTaskToReadyList( pxTCB );
/* A task being unblocked cannot cause an immediate
* context switch if preemption is turned off. */
#if ( configUSE_PREEMPTION == 1 )
{
/* Preemption is on, but a context switch should
* only be performed if the unblocked task has a
* priority that is equal to or higher than the
* currently executing task.
*
* For SMP, since this function is only run on core
* 0, we only need to context switch if the unblocked
* task can run on core 0 and has a higher priority
* than the current task. */
if( ( taskIS_AFFINITY_COMPATIBLE( 0, pxTCB ) == pdTRUE ) && ( pxTCB->uxPriority > pxCurrentTCBs[ 0 ]->uxPriority ) )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
}
}
/* Tasks of equal priority to the currently running task will share
* processing time (time slice) if preemption is on, and the application
* writer has not explicitly turned time slicing off. */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
{
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ 0 ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
#if ( configUSE_TICK_HOOK == 1 )
{
/* Guard against the tick hook being called when the pended tick
* count is being unwound (when the scheduler is being unlocked). */
if( xPendedTicks == ( TickType_t ) 0 )
{
xCallTickHook = pdTRUE;
}
else
{
xCallTickHook = pdFALSE;
}
}
#endif /* configUSE_TICK_HOOK */
#if ( configUSE_PREEMPTION == 1 )
{
if( xYieldPending[ 0 ] != pdFALSE )
{
xSwitchRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_PREEMPTION */
}
else
{
++xPendedTicks;
/* The tick hook gets called at regular intervals, even if the
* scheduler is locked. */
#if ( configUSE_TICK_HOOK == 1 )
{
xCallTickHook = pdTRUE;
}
#endif
}
}
/* Release the previously taken kernel lock as we have finished accessing
* the kernel data structures. */
prvEXIT_CRITICAL_SAFE_SMP_ONLY( &xKernelLock );
#if ( configUSE_TICK_HOOK == 1 )
{
if( xCallTickHook == pdTRUE )
{
vApplicationTickHook();
}
}
#endif
return xSwitchRequired;
}
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
TaskHookFunction_t pxHookFunction )
{
TCB_t * xTCB;
/* If xTask is NULL then it is the task hook of the calling task that is
* getting set. */
if( xTask == NULL )
{
xTCB = ( TCB_t * ) xTaskGetCurrentTaskHandle();
}
else
{
xTCB = xTask;
}
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
taskENTER_CRITICAL( &xKernelLock );
{
xTCB->pxTaskTag = pxHookFunction;
}
taskEXIT_CRITICAL( &xKernelLock );
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
{
TCB_t * pxTCB;
TaskHookFunction_t xReturn;
/* If xTask is NULL then set the calling task's hook. */
pxTCB = prvGetTCBFromHandle( xTask );
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
taskENTER_CRITICAL( &xKernelLock );
{
xReturn = pxTCB->pxTaskTag;
}
taskEXIT_CRITICAL( &xKernelLock );
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
{
TCB_t * pxTCB;
TaskHookFunction_t xReturn;
UBaseType_t uxSavedInterruptStatus;
/* If xTask is NULL then set the calling task's hook. */
pxTCB = prvGetTCBFromHandle( xTask );
/* Save the hook function in the TCB. A critical section is required as
* the value can be accessed from an interrupt. */
prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
{
xReturn = pxTCB->pxTaskTag;
}
prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
void * pvParameter )
{
TCB_t * xTCB;
BaseType_t xReturn;
/* If xTask is NULL then we are calling our own task hook. */
if( xTask == NULL )
{
xTCB = xTaskGetCurrentTaskHandle();
}
else
{
xTCB = xTask;
}
if( xTCB->pxTaskTag != NULL )
{
xReturn = xTCB->pxTaskTag( pvParameter );
}
else
{
xReturn = pdFAIL;
}
return xReturn;
}
#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvSelectHighestPriorityTaskSMP( void )
{
/* This function is called from a critical section. So some optimizations are made */
BaseType_t uxCurPriority;
BaseType_t xTaskScheduled = pdFALSE;
BaseType_t xNewTopPrioritySet = pdFALSE;
BaseType_t xCurCoreID = portGET_CORE_ID();
/* Search for tasks, starting form the highest ready priority. If nothing is
* found, we eventually default to the IDLE tasks at priority 0 */
for( uxCurPriority = uxTopReadyPriority; uxCurPriority >= 0 && xTaskScheduled == pdFALSE; uxCurPriority-- )
{
/* Check if current priority has one or more ready tasks. Skip if none */
if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurPriority ] ) ) )
{
continue;
}
/* Save a copy of highest priority that has a ready state task */
if( xNewTopPrioritySet == pdFALSE )
{
xNewTopPrioritySet = pdTRUE;
uxTopReadyPriority = uxCurPriority;
}
/* We now search this priority's ready task list for a runnable task.
* We always start searching from the head of the list, so we reset
* pxIndex to point to the tail so that we start walking the list from
* the first item */
pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd );
/* Get the first item on the list */
TCB_t * pxTCBCur;
TCB_t * pxTCBFirst;
listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) );
pxTCBFirst = pxTCBCur;
do
{
/* Check if the current task is currently being executed. However, if
* it's being executed by the current core, we can still schedule it.
* Todo: Each task can store a xTaskRunState, instead of needing to
* check each core */
UBaseType_t x;
for( x = 0; x < configNUMBER_OF_CORES; x++ )
{
if( x == xCurCoreID )
{
continue;
}
else if( pxCurrentTCBs[ x ] == pxTCBCur )
{
/* Current task is already being executed. Get the next task */
goto get_next_task;
}
}
/* Check if the current task has a compatible affinity */
if( taskIS_AFFINITY_COMPATIBLE( xCurCoreID, pxTCBCur ) == pdFALSE )
{
goto get_next_task;
}
/* The current task is runnable. Schedule it */
pxCurrentTCBs[ xCurCoreID ] = pxTCBCur;
xTaskScheduled = pdTRUE;
/* Move the current tasks list item to the back of the list in order
* to implement best effort round robin. To do this, we need to reset
* the pxIndex to point to the tail again. */
pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd );
listREMOVE_ITEM( &( pxTCBCur->xStateListItem ) );
listINSERT_END( &( pxReadyTasksLists[ uxCurPriority ] ), &( pxTCBCur->xStateListItem ) );
break;
get_next_task:
/* The current task cannot be scheduled. Get the next task in the list */
listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) );
} while( pxTCBCur != pxTCBFirst ); /* Check to see if we've walked the entire list */
}
configASSERT( xTaskScheduled == pdTRUE ); /* At this point, a task MUST have been scheduled */
}
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
void vTaskSwitchContext( void )
{
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures (unlike single core which calls this function with
* either interrupts disabled or when the scheduler hasn't started yet). */
prvENTER_CRITICAL_SAFE_SMP_ONLY( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
if( uxSchedulerSuspended[ xCurCoreID ] != ( UBaseType_t ) pdFALSE )
{
/* The scheduler is currently suspended - do not allow a context
* switch. */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
xYieldPending[ xCurCoreID ] = pdFALSE;
traceTASK_SWITCHED_OUT();
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
#else
ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
#endif
/* Add the amount of time the task has been running to the
* accumulated time so far. The time the task started running was
* stored in ulTaskSwitchedInTime. Note that there is no overflow
* protection here so count values are only valid until the timer
* overflows. The guard against negative values is to protect
* against suspect run time stat counter implementations - which
* are provided by the application, not the kernel. */
if( ulTotalRunTime > ulTaskSwitchedInTime[ xCurCoreID ] )
{
pxCurrentTCBs[ xCurCoreID ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime[ xCurCoreID ] );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
ulTaskSwitchedInTime[ xCurCoreID ] = ulTotalRunTime;
}
#endif /* configGENERATE_RUN_TIME_STATS */
/* Check for stack overflow, if configured. */
taskCHECK_FOR_STACK_OVERFLOW( xCurCoreID );
/* Before the currently running task is switched out, save its errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
pxCurrentTCBs[ xCurCoreID ]->iTaskErrno = FreeRTOS_errno;
}
#endif
/* Select a new task to run using either the generic C or port
* optimised asm code. */
taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
traceTASK_SWITCHED_IN();
/* After the new task is switched in, update the global errno. */
#if ( configUSE_POSIX_ERRNO == 1 )
{
FreeRTOS_errno = pxCurrentTCBs[ xCurCoreID ]->iTaskErrno;
}
#endif
/* Wrap this call in a macro. IDF-8434 */
#if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
{
vPortSetStackWatchpoint( pxCurrentTCBs[ xCurCoreID ]->pxStack );
}
#endif /* CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK */
#if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
{
/* Switch C-Runtime's TLS Block to point to the TLS
* Block specific to this task. */
configSET_TLS_BLOCK( pxCurrentTCBs[ xCurCoreID ]->xTLSBlock );
}
#endif
}
}
/* Release the previously taken kernel lock as we have finished accessing
* the kernel data structures. */
prvEXIT_CRITICAL_SAFE_SMP_ONLY( &xKernelLock );
}
/*-----------------------------------------------------------*/
void vTaskPlaceOnEventList( List_t * const pxEventList,
const TickType_t xTicksToWait )
{
configASSERT( pxEventList );
/* IN SINGLE-CORE THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED
* OR THE SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. IN SMP
* THIS FUNCTION MUST BE CALLED WITH THE QUEUE'S xQueueLock TAKEN. */
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Place the event list item of the TCB in the appropriate event list.
* This is placed in the list in priority order so the highest priority task
* is the first to be woken by the event.
*
* Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
* Normally, the xItemValue of a TCB's ListItem_t members is:
* xItemValue = ( configMAX_PRIORITIES - uxPriority )
* Therefore, the event list is sorted in descending priority order.
*
* The queue that contains the event list is locked, preventing
* simultaneous access from interrupts. */
vListInsert( pxEventList, &( pxCurrentTCBs[ portGET_CORE_ID() ]->xEventListItem ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
/*-----------------------------------------------------------*/
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
const TickType_t xItemValue,
const TickType_t xTicksToWait )
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
configASSERT( pxEventList );
#if ( configNUMBER_OF_CORES > 1 )
{
/* IN SMP, THIS FUNCTION MUST BE CALLED WITH THE EVENT GROUP'S
* xEventGroupLock ALREADY TAKEN. */
}
#else /* configNUMBER_OF_CORES > 1 */
{
/* IN SINGLE-CORE, THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.
* It is used by the event groups implementation. */
configASSERT( uxSchedulerSuspended[ xCurCoreID ] != 0 );
}
#endif /* configNUMBER_OF_CORES > 1 */
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Store the item value in the event list item. It is safe to access the
* event list item here as interrupts won't access the event list item of a
* task that is not in the Blocked state. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCBs[ xCurCoreID ]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
/* Place the event list item of the TCB at the end of the appropriate event
* list. It is safe to access the event list here because it is part of an
* event group implementation - and interrupts don't access event groups
* directly (instead they access them indirectly by pending function calls to
* the task level). */
listINSERT_END( pxEventList, &( pxCurrentTCBs[ xCurCoreID ]->xEventListItem ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
/*-----------------------------------------------------------*/
#if ( configUSE_TIMERS == 1 )
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
TickType_t xTicksToWait,
const BaseType_t xWaitIndefinitely )
{
configASSERT( pxEventList );
/* This function should not be called by application code hence the
* 'Restricted' in its name. It is not part of the public API. It is
* designed for use by kernel code, and has special calling requirements -
* it should be called with the scheduler suspended in single-core, or
* with the queue's xQueueLock already taken in SMP. */
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Place the event list item of the TCB in the appropriate event list.
* In this case it is assume that this is the only task that is going to
* be waiting on this event list, so the faster vListInsertEnd() function
* can be used in place of vListInsert. */
listINSERT_END( pxEventList, &( pxCurrentTCBs[ portGET_CORE_ID() ]->xEventListItem ) );
/* If the task should block indefinitely then set the block time to a
* value that will be recognised as an indefinite delay inside the
* prvAddCurrentTaskToDelayedList() function. */
if( xWaitIndefinitely != pdFALSE )
{
xTicksToWait = portMAX_DELAY;
}
traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
#endif /* configUSE_TIMERS */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
{
TCB_t * pxUnblockedTCB;
BaseType_t xReturn;
/* For SMP, we need to take the kernel lock here as we are about to access
* kernel data structures.
* This function can also be called from an ISR context, so we
* need to check whether we are in an ISR.*/
if( portCHECK_IF_IN_ISR() == pdFALSE )
{
taskENTER_CRITICAL( &xKernelLock );
}
else
{
taskENTER_CRITICAL_ISR( &xKernelLock );
}
{
/* Before taking the kernel lock, another task/ISR could have already
* emptied the pxEventList. So we insert a check here to see if
* pxEventList is empty before attempting to remove an item from it. */
if( listLIST_IS_EMPTY( pxEventList ) == pdFALSE )
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* Remove the task from its current event list */
pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
/* Add the task to the ready list if a core with compatible affinity
* has NOT suspended its scheduler. This occurs when:
* - The task is pinned, and the pinned core's scheduler is running
* - The task is unpinned, and at least one of the core's scheduler is running */
if( taskCAN_BE_SCHEDULED( pxUnblockedTCB ) == pdTRUE )
{
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
}
else
{
/* We arrive here due to one of the following possibilities:
* - The task is pinned to core X and core X has suspended its scheduler
* - The task is unpinned and both cores have suspend their schedulers
* Therefore, we add the task to one of the pending lists:
* - If the task is pinned to core X, add it to core X's pending list
* - If the task is unpinned, add it to the current core's pending list */
UBaseType_t uxPendCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID );
configASSERT( uxSchedulerSuspended[ uxPendCore ] != ( UBaseType_t ) 0U );
/* Add the task to the current core's pending list */
listINSERT_END( &( xPendingReadyList[ uxPendCore ] ), &( pxUnblockedTCB->xEventListItem ) );
}
if( taskIS_YIELD_REQUIRED( pxUnblockedTCB, pdFALSE ) == pdTRUE )
{
/* The unblocked task requires a the current core to yield */
xReturn = pdTRUE;
/* Mark that a yield is pending in case the user is not using the
* "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
else
{
/* The pxEventList was emptied before we entered the critical
* section, Nothing to do except return pdFALSE. */
xReturn = pdFALSE;
}
}
/* Release the previously taken kernel lock. */
if( portCHECK_IF_IN_ISR() == pdFALSE )
{
taskEXIT_CRITICAL( &xKernelLock );
}
else
{
taskEXIT_CRITICAL_ISR( &xKernelLock );
}
return xReturn;
}
#else /* configNUMBER_OF_CORES > 1 */
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
{
TCB_t * pxUnblockedTCB;
BaseType_t xReturn;
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
* called from a critical section within an ISR. */
/* The event list is sorted in priority order, so the first in the list can
* be removed as it is known to be the highest priority. Remove the TCB from
* the delayed list, and add it to the ready list.
*
* If an event is for a queue that is locked then this function will never
* get called - the lock count on the queue will get modified instead. This
* means exclusive access to the event list is guaranteed here.
*
* This function assumes that a check has already been made to ensure that
* pxEventList is not empty. */
pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
if( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) pdFALSE )
{
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
}
else
{
/* The delayed and ready lists cannot be accessed, so hold this task
* pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList[ 0 ] ), &( pxUnblockedTCB->xEventListItem ) );
}
if( pxUnblockedTCB->uxPriority > pxCurrentTCBs[ 0 ]->uxPriority )
{
/* Return true if the task removed from the event list has a higher
* priority than the calling task. This allows the calling task to know if
* it should force a context switch now. */
xReturn = pdTRUE;
/* Mark that a yield is pending in case the user is not using the
* "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
xYieldPending[ 0 ] = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
}
#endif /* configNUMBER_OF_CORES > 1 */
/*-----------------------------------------------------------*/
void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
const TickType_t xItemValue )
{
TCB_t * pxUnblockedTCB;
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
#if ( configNUM_CORES > 1 )
/* THIS FUNCTION MUST BE CALLED WITH THE KERNEL LOCK ALREADY TAKEN.
* It is used by the event flags implementation, thus those functions
* should call prvTakeKernelLock() before calling this function. */
#else /* configNUM_CORES > 1 */
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
* the event flags implementation. */
configASSERT( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U );
#endif /* configNUM_CORES > 1 */
/* Store the new item value in the event list. */
listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
/* Remove the event list form the event flag. Interrupts do not access
* event flags. */
pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
configASSERT( pxUnblockedTCB );
listREMOVE_ITEM( pxEventListItem );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked on a kernel object then xNextTaskUnblockTime
* might be set to the blocked task's time out time. If the task is
* unblocked for a reason other than a timeout xNextTaskUnblockTime is
* normally left unchanged, because it is automatically reset to a new
* value when the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter sleep mode
* at the earliest possible time - so reset xNextTaskUnblockTime here to
* ensure it is updated at the earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
#if ( configNUM_CORES > 1 )
/* Add the task to the ready list if a core with compatible affinity
* has NOT suspended its scheduler. This occurs when:
* - The task is pinned, and the pinned core's scheduler is running
* - The task is unpinned, and at least one of the core's scheduler is
* running */
if( taskCAN_BE_SCHEDULED( pxUnblockedTCB ) == pdFALSE )
{
/* We arrive here due to one of the following possibilities:
* - The task is pinned to core X and core X has suspended its scheduler
* - The task is unpinned and both cores have suspend their schedulers
* Therefore, we add the task to one of the pending lists:
* - If the task is pinned to core X, add it to core X's pending list
* - If the task is unpinned, add it to the current core's pending list */
BaseType_t xPendingListCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID );
configASSERT( uxSchedulerSuspended[ xPendingListCore ] != ( UBaseType_t ) 0U );
/* The delayed and ready lists cannot be accessed, so hold this task
* pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList[ xPendingListCore ] ), &( pxUnblockedTCB->xEventListItem ) );
}
else
#else /* configNUM_CORES > 1 */
/* In single core, the caller of this function has already suspended the
* scheduler, which means we have exclusive access to the ready list.
* We add the unblocked task to the ready list directly. */
#endif /* configNUM_CORES > 1 */
{
/* Remove the task from the delayed list and add it to the ready list. The
* scheduler is suspended so interrupts will not be accessing the ready
* lists. */
listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
prvAddTaskToReadyList( pxUnblockedTCB );
if( taskIS_YIELD_REQUIRED( pxUnblockedTCB, pdFALSE ) == pdTRUE )
{
/* The unblocked task has a priority above that of the calling task, so
* a context switch is required. This function is called with the
* scheduler suspended so xYieldPending is set so the context switch
* occurs immediately that the scheduler is resumed (unsuspended). */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
{
configASSERT( pxTimeOut );
taskENTER_CRITICAL( &xKernelLock );
{
pxTimeOut->xOverflowCount = xNumOfOverflows;
pxTimeOut->xTimeOnEntering = xTickCount;
}
taskEXIT_CRITICAL( &xKernelLock );
}
/*-----------------------------------------------------------*/
void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
{
/* For internal use only as it does not use a critical section. */
pxTimeOut->xOverflowCount = xNumOfOverflows;
pxTimeOut->xTimeOnEntering = xTickCount;
}
/*-----------------------------------------------------------*/
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
TickType_t * const pxTicksToWait )
{
BaseType_t xReturn;
configASSERT( pxTimeOut );
configASSERT( pxTicksToWait );
taskENTER_CRITICAL( &xKernelLock );
{
/* Minor optimisation. The tick count cannot change in this block. */
const TickType_t xConstTickCount = xTickCount;
const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
#if ( INCLUDE_xTaskAbortDelay == 1 )
if( pxCurrentTCBs[ xCurCoreID ]->ucDelayAborted != ( uint8_t ) pdFALSE )
{
/* The delay was aborted, which is not the same as a time out,
* but has the same result. */
pxCurrentTCBs[ xCurCoreID ]->ucDelayAborted = pdFALSE;
xReturn = pdTRUE;
}
else
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
if( *pxTicksToWait == portMAX_DELAY )
{
/* If INCLUDE_vTaskSuspend is set to 1 and the block time
* specified is the maximum block time then the task should block
* indefinitely, and therefore never time out. */
xReturn = pdFALSE;
}
else
#endif
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
{
/* The tick count is greater than the time at which
* vTaskSetTimeout() was called, but has also overflowed since
* vTaskSetTimeOut() was called. It must have wrapped all the way
* around and gone past again. This passed since vTaskSetTimeout()
* was called. */
xReturn = pdTRUE;
*pxTicksToWait = ( TickType_t ) 0;
}
else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
{
/* Not a genuine timeout. Adjust parameters for time remaining. */
*pxTicksToWait -= xElapsedTime;
vTaskInternalSetTimeOutState( pxTimeOut );
xReturn = pdFALSE;
}
else
{
*pxTicksToWait = ( TickType_t ) 0;
xReturn = pdTRUE;
}
}
taskEXIT_CRITICAL( &xKernelLock );
return xReturn;
}
/*-----------------------------------------------------------*/
void vTaskMissedYield( void )
{
xYieldPending[ portGET_CORE_ID() ] = pdTRUE;
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
{
UBaseType_t uxReturn;
TCB_t const * pxTCB;
if( xTask != NULL )
{
pxTCB = xTask;
uxReturn = pxTCB->uxTaskNumber;
}
else
{
uxReturn = 0U;
}
return uxReturn;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vTaskSetTaskNumber( TaskHandle_t xTask,
const UBaseType_t uxHandle )
{
TCB_t * pxTCB;
if( xTask != NULL )
{
pxTCB = xTask;
pxTCB->uxTaskNumber = uxHandle;
}
}
#endif /* configUSE_TRACE_FACILITY */
/*
* -----------------------------------------------------------
* The Idle task.
* ----------------------------------------------------------
*
* The portTASK_FUNCTION() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for this function is:
*
* void prvIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION( prvIdleTask, pvParameters )
{
/* Stop warnings. */
( void ) pvParameters;
/** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
* SCHEDULER IS STARTED. **/
/* In case a task that has a secure context deletes itself, in which case
* the idle task is responsible for deleting the task's secure context, if
* any. */
portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
for( ; ; )
{
/* See if any tasks have deleted themselves - if so then the idle task
* is responsible for freeing the deleted task's TCB and stack. */
prvCheckTasksWaitingTermination();
#if ( configUSE_PREEMPTION == 0 )
{
/* If we are not using preemption we keep forcing a task switch to
* see if any other task has become available. If we are using
* preemption we don't need to do this as any task becoming available
* will automatically get the processor anyway. */
taskYIELD();
}
#endif /* configUSE_PREEMPTION */
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
{
/* When using preemption tasks of equal priority will be
* timesliced. If a task that is sharing the idle priority is ready
* to run then the idle task should yield before the end of the
* timeslice.
*
* A critical region is not required here as we are just reading from
* the list, and an occasional incorrect value will not matter. If
* the ready list at the idle priority contains more than one task
* then a task other than the idle task is ready to execute. */
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
{
taskYIELD();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
#if ( configUSE_IDLE_HOOK == 1 )
{
extern void vApplicationIdleHook( void );
/* Call the user defined function from within the idle task. This
* allows the application designer to add background functionality
* without the overhead of a separate task.
* NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
* CALL A FUNCTION THAT MIGHT BLOCK. */
vApplicationIdleHook();
}
#endif /* configUSE_IDLE_HOOK */
/* Call the esp-idf idle hook system. Todo IDF-8180 */
extern void esp_vApplicationIdleHook( void );
esp_vApplicationIdleHook();
/* This conditional compilation should use inequality to 0, not equality
* to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
* user defined low power mode implementations require
* configUSE_TICKLESS_IDLE to be set to a value other than 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )
{
TickType_t xExpectedIdleTime;
/* It is not desirable to suspend then resume the scheduler on
* each iteration of the idle task. Therefore, a preliminary
* test of the expected idle time is performed without the
* scheduler suspended. The result here is not necessarily
* valid. */
xExpectedIdleTime = prvGetExpectedIdleTime();
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
{
prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
{
/* Now the scheduler is suspended, the expected idle
* time can be sampled again, and this time its value can
* be used. */
configASSERT( xNextTaskUnblockTime >= xTickCount );
xExpectedIdleTime = prvGetExpectedIdleTime();
/* Define the following macro to set xExpectedIdleTime to 0
* if the application does not want
* portSUPPRESS_TICKS_AND_SLEEP() to be called. */
configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
{
traceLOW_POWER_IDLE_BEGIN();
portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
traceLOW_POWER_IDLE_END();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICKLESS_IDLE */
}
}
/*-----------------------------------------------------------*/
#if ( configUSE_TICKLESS_IDLE != 0 )
eSleepModeStatus eTaskConfirmSleepModeStatus( void )
{
#if ( INCLUDE_vTaskSuspend == 1 )
/* The idle task exists in addition to the application tasks. */
const UBaseType_t uxNonApplicationTasks = 1;
#endif /* INCLUDE_vTaskSuspend */
eSleepModeStatus eReturn = eStandardSleep;
/* This function must be called from a critical section. */
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
if( listCURRENT_LIST_LENGTH( &xPendingReadyList[ xCurCoreID ] ) != 0 )
{
/* A task was made ready while the scheduler was suspended. */
eReturn = eAbortSleep;
}
else if( xYieldPending[ xCurCoreID ] != pdFALSE )
{
/* A yield was pended while the scheduler was suspended. */
eReturn = eAbortSleep;
}
#if ( configNUMBER_OF_CORES == 1 )
else if( xPendedTicks != 0 )
{
/* A tick interrupt has already occurred but was held pending
* because the scheduler is suspended. */
eReturn = eAbortSleep;
}
#endif /* configNUMBER_OF_CORES == 1 */
#if ( INCLUDE_vTaskSuspend == 1 )
else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
{
/* If all the tasks are in the suspended list (which might mean they
* have an infinite block time rather than actually being suspended)
* then it is safe to turn all clocks off and just wait for external
* interrupts. */
eReturn = eNoTasksWaitingTimeout;
}
#endif /* INCLUDE_vTaskSuspend */
else
{
mtCOVERAGE_TEST_MARKER();
}
return eReturn;
}
#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
BaseType_t xIndex,
void * pvValue )
{
TCB_t * pxTCB;
if( ( xIndex >= 0 ) &&
( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
{
pxTCB = prvGetTCBFromHandle( xTaskToSet );
configASSERT( pxTCB != NULL );
pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
}
}
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
BaseType_t xIndex )
{
void * pvReturn = NULL;
TCB_t * pxTCB;
if( ( xIndex >= 0 ) &&
( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) )
{
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
}
else
{
pvReturn = NULL;
}
return pvReturn;
}
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/
#if ( portUSING_MPU_WRAPPERS == 1 )
void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
const MemoryRegion_t * const xRegions )
{
TCB_t * pxTCB;
/* If null is passed in here then we are modifying the MPU settings of
* the calling task. */
pxTCB = prvGetTCBFromHandle( xTaskToModify );
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
static void prvInitialiseTaskLists( void )
{
UBaseType_t uxPriority;
UBaseType_t x;
for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
{
vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
}
vListInitialise( &xDelayedTaskList1 );
vListInitialise( &xDelayedTaskList2 );
for( x = 0; x < configNUMBER_OF_CORES; x++ )
{
vListInitialise( &xPendingReadyList[ x ] );
}
#if ( INCLUDE_vTaskDelete == 1 )
{
vListInitialise( &xTasksWaitingTermination );
}
#endif /* INCLUDE_vTaskDelete */
#if ( INCLUDE_vTaskSuspend == 1 )
{
vListInitialise( &xSuspendedTaskList );
}
#endif /* INCLUDE_vTaskSuspend */
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
* using list2. */
pxDelayedTaskList = &xDelayedTaskList1;
pxOverflowDelayedTaskList = &xDelayedTaskList2;
}
/*-----------------------------------------------------------*/
static void prvCheckTasksWaitingTermination( void )
{
/** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
#if ( INCLUDE_vTaskDelete == 1 )
{
TCB_t * pxTCB;
/* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
* being called too often in the idle task. */
while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
{
#if ( configNUMBER_OF_CORES > 1 )
{
pxTCB = NULL;
taskENTER_CRITICAL( &xKernelLock );
{
/* List may have already been cleared by the other core. Check again */
if( listLIST_IS_EMPTY( &xTasksWaitingTermination ) == pdFALSE )
{
/* We can't delete a task if it is still running on
* the other core. Keep walking the list until we
* find a task we can free, or until we walk the
* entire list. */
ListItem_t * xEntry;
for( xEntry = listGET_HEAD_ENTRY( &xTasksWaitingTermination ); xEntry != listGET_END_MARKER( &xTasksWaitingTermination ); xEntry = listGET_NEXT( xEntry ) )
{
if( taskIS_CURRENTLY_RUNNING( ( ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry ) ) ) == pdFALSE )
{
pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry );
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
--uxCurrentNumberOfTasks;
--uxDeletedTasksWaitingCleanUp;
break;
}
}
}
}
taskEXIT_CRITICAL( &xKernelLock );
if( pxTCB != NULL )
{
prvDeleteTCB( pxTCB );
}
else
{
/* No task found to delete, break out of loop */
break;
}
}
#else /* configNUMBER_OF_CORES > 1 */
{
taskENTER_CRITICAL( &xKernelLock );
{
pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
--uxCurrentNumberOfTasks;
--uxDeletedTasksWaitingCleanUp;
}
taskEXIT_CRITICAL( &xKernelLock );
prvDeleteTCB( pxTCB );
}
#endif /* configNUMBER_OF_CORES > 1 */
}
}
#endif /* INCLUDE_vTaskDelete */
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vTaskGetInfo( TaskHandle_t xTask,
TaskStatus_t * pxTaskStatus,
BaseType_t xGetFreeStackSpace,
eTaskState eState )
{
TCB_t * pxTCB;
/* xTask is NULL then get the state of the calling task. */
pxTCB = prvGetTCBFromHandle( xTask );
/* A critical section is required for SMP in case another core modifies
* the task simultaneously. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
pxTaskStatus->pxStackBase = pxTCB->pxStack;
#if ( ( portSTACK_GROWTH > 0 ) && ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
pxTaskStatus->pxTopOfStack = pxTCB->pxTopOfStack;
pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack;
#endif
pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
#if ( configTASKLIST_INCLUDE_COREID == 1 )
{
#if ( configNUMBER_OF_CORES > 1 )
{
pxTaskStatus->xCoreID = pxTCB->xCoreID;
}
#else /* configNUMBER_OF_CORES > 1 */
{
pxTaskStatus->xCoreID = 0;
}
#endif /* configNUMBER_OF_CORES > 1 */
}
#endif /* configTASKLIST_INCLUDE_COREID == 1 */
#if ( configUSE_MUTEXES == 1 )
{
pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
}
#else
{
pxTaskStatus->uxBasePriority = 0;
}
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
{
pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
}
#else
{
pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0;
}
#endif
/* Obtaining the task state is a little fiddly, so is only done if the
* value of eState passed into this function is eInvalid - otherwise the
* state is just set to whatever is passed in. */
if( eState != eInvalid )
{
if( pxTCB == pxCurrentTCBs[ portGET_CORE_ID() ] )
{
pxTaskStatus->eCurrentState = eRunning;
}
else
{
pxTaskStatus->eCurrentState = eState;
#if ( INCLUDE_vTaskSuspend == 1 )
{
/* If the task is in the suspended list then there is a
* chance it is actually just blocked indefinitely - so really
* it should be reported as being in the Blocked state. */
if( eState == eSuspended )
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* Single core uses a scheduler suspension to
* atomically check if the task task is blocked. */
vTaskSuspendAll();
}
#endif /* configNUMBER_OF_CORES == 1 */
{
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
pxTaskStatus->eCurrentState = eBlocked;
}
}
#if ( configNUMBER_OF_CORES == 1 )
{
( void ) xTaskResumeAll();
}
#endif /* configNUMBER_OF_CORES == 1 */
}
}
#endif /* INCLUDE_vTaskSuspend */
}
}
else
{
pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
}
/* Obtaining the stack space takes some time, so the xGetFreeStackSpace
* parameter is provided to allow it to be skipped. */
if( xGetFreeStackSpace != pdFALSE )
{
#if ( portSTACK_GROWTH > 0 )
{
pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
}
#else
{
pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
}
#endif
}
else
{
pxTaskStatus->usStackHighWaterMark = 0;
}
}
/* Exit the previously entered critical section. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState )
{
configLIST_VOLATILE TCB_t * pxNextTCB;
configLIST_VOLATILE TCB_t * pxFirstTCB;
UBaseType_t uxTask = 0;
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
/* Populate an TaskStatus_t structure within the
* pxTaskStatusArray array for each task that is referenced from
* pxList. See the definition of TaskStatus_t in task.h for the
* meaning of each TaskStatus_t structure member. */
do
{
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
uxTask++;
} while( pxNextTCB != pxFirstTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return uxTask;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
{
uint32_t ulCount = 0U;
while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
{
pucStackByte -= portSTACK_GROWTH;
ulCount++;
}
ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
return ( configSTACK_DEPTH_TYPE ) ulCount;
}
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
* same except for their return type. Using configSTACK_DEPTH_TYPE allows the
* user to determine the return type. It gets around the problem of the value
* overflowing on 8-bit types without breaking backward compatibility for
* applications that expect an 8-bit return type. */
configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * pucEndOfStack;
configSTACK_DEPTH_TYPE uxReturn;
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
* the same except for their return type. Using configSTACK_DEPTH_TYPE
* allows the user to determine the return type. It gets around the
* problem of the value overflowing on 8-bit types without breaking
* backward compatibility for applications that expect an 8-bit return
* type. */
pxTCB = prvGetTCBFromHandle( xTask );
#if portSTACK_GROWTH < 0
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
}
#else
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
}
#endif
uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
return uxReturn;
}
#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
{
TCB_t * pxTCB;
uint8_t * pucEndOfStack;
UBaseType_t uxReturn;
pxTCB = prvGetTCBFromHandle( xTask );
#if portSTACK_GROWTH < 0
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
}
#else
{
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
}
#endif
uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
return uxReturn;
}
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB )
{
/* This call is required specifically for the TriCore port. It must be
* above the vPortFree() calls. The call is also used by ports/demos that
* want to allocate and clean RAM statically. */
portCLEAN_UP_TCB( pxTCB );
#if ( ( configUSE_NEWLIB_REENTRANT == 1 ) || ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) )
{
/* Free up the memory allocated for the task's TLS Block. */
/* Note: Fixed bug in upstream. Free TLS block of pxTCB, NOT pxCurrentTCBs */
configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock );
}
#endif
#if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
{
/* The task can only have been allocated dynamically - free both
* the stack and TCB. */
vPortFreeStack( pxTCB->pxStack );
vPortFree( pxTCB );
}
#elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
{
/* The task could have been allocated statically or dynamically, so
* check what was statically allocated before trying to free the
* memory. */
if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
{
/* Both the stack and TCB were allocated dynamically, so both
* must be freed. */
vPortFreeStack( pxTCB->pxStack );
vPortFree( pxTCB );
}
else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
{
/* Only the stack was statically allocated, so the TCB is the
* only memory that must be freed. */
vPortFree( pxTCB );
}
else
{
/* Neither the stack nor the TCB were allocated dynamically, so
* nothing needs to be freed. */
configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
static void prvResetNextTaskUnblockTime( void )
{
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
{
/* The new current delayed list is empty. Set xNextTaskUnblockTime to
* the maximum possible value so it is extremely unlikely that the
* if( xTickCount >= xNextTaskUnblockTime ) test will pass until
* there is an item in the delayed list. */
xNextTaskUnblockTime = portMAX_DELAY;
}
else
{
/* The new current delayed list is not empty, get the value of
* the item at the head of the delayed list. This is the time at
* which the task at the head of the delayed list should be removed
* from the Blocked state. */
xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
}
}
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
TaskHandle_t xTaskGetCurrentTaskHandle( void )
{
TaskHandle_t xReturn;
UBaseType_t uxSavedInterruptStatus;
/* For SMP, we need to disable interrupts to ensure the caller does not
* switch cores in between portGET_CORE_ID() and fetching the current
* core's TCB. We use the ISR versions of interrupt macros as this
* function could be called inside critical sections.
*
* For single-core a critical section is not required as this is not
* called from an interrupt and the current TCB will always be the same
* for any individual execution thread. */
uxSavedInterruptStatus = prvDISABLE_INTERRUPTS_ISR_SMP_ONLY();
{
xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
}
prvENABLE_INTERRUPTS_ISR_SMP_ONLY( uxSavedInterruptStatus );
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
BaseType_t xTaskGetSchedulerState( void )
{
BaseType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
/* For SMP, we need to disable interrupts here to ensure we don't switch
* cores midway. We forego taking the kernel lock here as a minor
* optimization as it is not required.
*
* - xSchedulerRunning is only ever set by core 0 atomically
* - Each core will only ever update its own copy of uxSchedulerSuspended.
*
* We use the ISR versions of interrupt macros as this function could be
* called inside critical sections. */
uxSavedInterruptStatus = prvDISABLE_INTERRUPTS_ISR_SMP_ONLY();
{
if( xSchedulerRunning == pdFALSE )
{
xReturn = taskSCHEDULER_NOT_STARTED;
}
else
{
if( uxSchedulerSuspended[ portGET_CORE_ID() ] == ( UBaseType_t ) pdFALSE )
{
xReturn = taskSCHEDULER_RUNNING;
}
else
{
xReturn = taskSCHEDULER_SUSPENDED;
}
}
}
prvENABLE_INTERRUPTS_ISR_SMP_ONLY( uxSavedInterruptStatus );
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
{
TCB_t * const pxMutexHolderTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* If the mutex was given back by an interrupt while the queue was
* locked then the mutex holder might now be NULL. _RB_ Is this still
* needed as interrupts can no longer use mutexes? */
if( pxMutexHolder != NULL )
{
/* If the holder of the mutex has a priority below the priority of
* the task attempting to obtain the mutex then it will temporarily
* inherit the priority of the task attempting to obtain the mutex. */
if( pxMutexHolderTCB->uxPriority < pxCurrentTCBs[ xCurCoreID ]->uxPriority )
{
/* Adjust the mutex holder state to account for its new
* priority. Only reset the event list item value if the value is
* not being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCBs[ xCurCoreID ]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task being modified is in the ready state it will need
* to be moved into a new list. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
{
if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Inherit the priority before being moved into the new list. */
pxMutexHolderTCB->uxPriority = pxCurrentTCBs[ xCurCoreID ]->uxPriority;
prvAddTaskToReadyList( pxMutexHolderTCB );
}
else
{
/* Just inherit the priority. */
pxMutexHolderTCB->uxPriority = pxCurrentTCBs[ xCurCoreID ]->uxPriority;
}
traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCBs[ xCurCoreID ]->uxPriority );
/* Inheritance occurred. */
xReturn = pdTRUE;
}
else
{
if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCBs[ xCurCoreID ]->uxPriority )
{
/* The base priority of the mutex holder is lower than the
* priority of the task attempting to take the mutex, but the
* current priority of the mutex holder is not lower than the
* priority of the task attempting to take the mutex.
* Therefore the mutex holder must have already inherited a
* priority, but inheritance would have occurred if that had
* not been the case. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
{
TCB_t * const pxTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
if( pxMutexHolder != NULL )
{
/* A task can only have an inherited priority if it holds the mutex.
* If the mutex is held by a task then it cannot be given from an
* interrupt, and if a mutex is given by the holding task then it must
* be the running state task. */
configASSERT( pxTCB == pxCurrentTCBs[ portGET_CORE_ID() ] );
configASSERT( pxTCB->uxMutexesHeld );
( pxTCB->uxMutexesHeld )--;
/* Has the holder of the mutex inherited the priority of another
* task? */
if( pxTCB->uxPriority != pxTCB->uxBasePriority )
{
/* Only disinherit if no other mutexes are held. */
if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
{
/* A task can only have an inherited priority if it holds
* the mutex. If the mutex is held by a task then it cannot be
* given from an interrupt, and if a mutex is given by the
* holding task then it must be the running state task. Remove
* the holding task from the ready list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Disinherit the priority before adding the task into the
* new ready list. */
traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
pxTCB->uxPriority = pxTCB->uxBasePriority;
/* Reset the event list item value. It cannot be in use for
* any other purpose if this task is running, and it must be
* running to give back the mutex. */
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
prvAddTaskToReadyList( pxTCB );
/* Return true to indicate that a context switch is required.
* This is only actually required in the corner case whereby
* multiple mutexes were held and the mutexes were given back
* in an order different to that in which they were taken.
* If a context switch did not occur when the first mutex was
* returned, even if a task was waiting on it, then a context
* switch should occur when the last mutex is returned whether
* a task is waiting on it or not. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
UBaseType_t uxHighestPriorityWaitingTask )
{
TCB_t * const pxTCB = pxMutexHolder;
UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
if( pxMutexHolder != NULL )
{
/* If pxMutexHolder is not NULL then the holder must hold at least
* one mutex. */
configASSERT( pxTCB->uxMutexesHeld );
/* Determine the priority to which the priority of the task that
* holds the mutex should be set. This will be the greater of the
* holding task's base priority and the priority of the highest
* priority task that is waiting to obtain the mutex. */
if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
{
uxPriorityToUse = uxHighestPriorityWaitingTask;
}
else
{
uxPriorityToUse = pxTCB->uxBasePriority;
}
/* Does the priority need to change? */
if( pxTCB->uxPriority != uxPriorityToUse )
{
/* Only disinherit if no other mutexes are held. This is a
* simplification in the priority inheritance implementation. If
* the task that holds the mutex is also holding other mutexes then
* the other mutexes may have caused the priority inheritance. */
if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
{
/* If a task has timed out because it already holds the
* mutex it was trying to obtain then it cannot of inherited
* its own priority. */
configASSERT( pxTCB != pxCurrentTCBs[ portGET_CORE_ID() ] );
/* Disinherit the priority, remembering the previous
* priority to facilitate determining the subject task's
* state. */
traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
uxPriorityUsedOnEntry = pxTCB->uxPriority;
pxTCB->uxPriority = uxPriorityToUse;
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the running task is not the task that holds the mutex
* then the task that holds the mutex could be in either the
* Ready, Blocked or Suspended states. Only remove the task
* from its current state list if it is in the Ready state as
* the task's priority is going to change and there is one
* Ready list per priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
void vTaskEnterCritical( void )
{
portDISABLE_INTERRUPTS();
if( xSchedulerRunning != pdFALSE )
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
( pxCurrentTCBs[ xCurCoreID ]->uxCriticalNesting )++;
/* This is not the interrupt safe version of the enter critical
* function so assert() if it is being called from an interrupt
* context. Only API functions that end in "FromISR" can be used in an
* interrupt. Only assert if the critical nesting count is 1 to
* protect against recursive calls if the assert function also uses a
* critical section. */
if( pxCurrentTCBs[ xCurCoreID ]->uxCriticalNesting == 1 )
{
portASSERT_IF_IN_ISR();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
void vTaskExitCritical( void )
{
if( xSchedulerRunning != pdFALSE )
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
if( pxCurrentTCBs[ xCurCoreID ]->uxCriticalNesting > 0U )
{
( pxCurrentTCBs[ xCurCoreID ]->uxCriticalNesting )--;
if( pxCurrentTCBs[ xCurCoreID ]->uxCriticalNesting == 0U )
{
portENABLE_INTERRUPTS();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/
#if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName )
{
size_t x;
/* Start by copying the entire string. */
strcpy( pcBuffer, pcTaskName );
/* Pad the end of the string with spaces to ensure columns line up when
* printed out. */
for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
{
pcBuffer[ x ] = ' ';
}
/* Terminate. */
pcBuffer[ x ] = ( char ) 0x00;
/* Return the new end of string. */
return &( pcBuffer[ x ] );
}
#endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
void vTaskList( char * pcWriteBuffer )
{
TaskStatus_t * pxTaskStatusArray;
UBaseType_t uxArraySize, x;
char cStatus;
/*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many
* of the demo applications. Do not consider it to be part of the
* scheduler.
*
* vTaskList() calls uxTaskGetSystemState(), then formats part of the
* uxTaskGetSystemState() output into a human readable table that
* displays task: names, states, priority, stack usage and task number.
* Stack usage specified as the number of unused StackType_t words stack can hold
* on top of stack - not the number of bytes.
*
* vTaskList() has a dependency on the sprintf() C library function that
* might bloat the code size, use a lot of stack, and provide different
* results on different platforms. An alternative, tiny, third party,
* and limited functionality implementation of sprintf() is provided in
* many of the FreeRTOS/Demo sub-directories in a file called
* printf-stdarg.c (note printf-stdarg.c does not provide a full
* snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly
* through a call to vTaskList().
*/
/* Make sure the write buffer does not contain a string. */
*pcWriteBuffer = ( char ) 0x00;
/* Take a snapshot of the number of tasks in case it changes while this
* function is executing. */
uxArraySize = uxCurrentNumberOfTasks;
/* Allocate an array index for each task. NOTE! if
* configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
* equate to NULL. */
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
if( pxTaskStatusArray != NULL )
{
/* Generate the (binary) data. */
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
/* Create a human readable table from the binary data. */
for( x = 0; x < uxArraySize; x++ )
{
switch( pxTaskStatusArray[ x ].eCurrentState )
{
case eRunning:
cStatus = tskRUNNING_CHAR;
break;
case eReady:
cStatus = tskREADY_CHAR;
break;
case eBlocked:
cStatus = tskBLOCKED_CHAR;
break;
case eSuspended:
cStatus = tskSUSPENDED_CHAR;
break;
case eDeleted:
cStatus = tskDELETED_CHAR;
break;
case eInvalid: /* Fall through. */
default: /* Should not get here, but it is included
* to prevent static checking errors. */
cStatus = ( char ) 0x00;
break;
}
/* Write the task name to the string, padding with spaces so it
* can be printed in tabular form more easily. */
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
/* Write the rest of the string. */
#if ( configTASKLIST_INCLUDE_COREID == 1 )
{
const BaseType_t xCoreID = ( pxTaskStatusArray[ x ].xCoreID == tskNO_AFFINITY ) ? -1 : pxTaskStatusArray[ x ].xCoreID;
sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\t%d\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( int ) xCoreID ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
}
#else /* configTASKLIST_INCLUDE_COREID == 1 */
{
sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
}
#endif /* configTASKLIST_INCLUDE_COREID == 1 */
pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
}
/* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
* is 0 then vPortFree() will be #defined to nothing. */
vPortFree( pxTaskStatusArray );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) )
void vTaskGetRunTimeStats( char * pcWriteBuffer )
{
TaskStatus_t * pxTaskStatusArray;
UBaseType_t uxArraySize, x;
configRUN_TIME_COUNTER_TYPE ulTotalTime, ulStatsAsPercentage;
/*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many
* of the demo applications. Do not consider it to be part of the
* scheduler.
*
* vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
* of the uxTaskGetSystemState() output into a human readable table that
* displays the amount of time each task has spent in the Running state
* in both absolute and percentage terms.
*
* vTaskGetRunTimeStats() has a dependency on the sprintf() C library
* function that might bloat the code size, use a lot of stack, and
* provide different results on different platforms. An alternative,
* tiny, third party, and limited functionality implementation of
* sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
* a file called printf-stdarg.c (note printf-stdarg.c does not provide
* a full snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly
* through a call to vTaskGetRunTimeStats().
*/
/* Make sure the write buffer does not contain a string. */
*pcWriteBuffer = ( char ) 0x00;
/* Take a snapshot of the number of tasks in case it changes while this
* function is executing. */
uxArraySize = uxCurrentNumberOfTasks;
/* Allocate an array index for each task. NOTE! If
* configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
* equate to NULL. */
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
if( pxTaskStatusArray != NULL )
{
/* Generate the (binary) data. */
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
/* For percentage calculations. */
ulTotalTime /= 100UL;
/* Avoid divide by zero errors. */
if( ulTotalTime > 0UL )
{
/* Create a human readable table from the binary data. */
for( x = 0; x < uxArraySize; x++ )
{
/* What percentage of the total run time has the task used?
* This will always be rounded down to the nearest integer.
* ulTotalRunTime has already been divided by 100. */
ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
/* Write the task name to the string, padding with
* spaces so it can be printed in tabular form more
* easily. */
pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
if( ulStatsAsPercentage > 0UL )
{
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
{
sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
}
#else
{
/* sizeof( int ) == sizeof( long ) so a smaller
* printf() library can be used. */
sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
}
#endif
}
else
{
/* If the percentage is zero here then the task has
* consumed less than 1% of the total run time. */
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
{
sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
}
#else
{
/* sizeof( int ) == sizeof( long ) so a smaller
* printf() library can be used. */
sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
}
#endif
}
pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
* is 0 then vPortFree() will be #defined to nothing. */
vPortFree( pxTaskStatusArray );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/
TickType_t uxTaskResetEventItemValue( void )
{
TickType_t uxReturn;
/* For SMP, we need to take the kernel lock here to ensure nothing else
* modifies the task's event item value simultaneously. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCBs[ xCurCoreID ]->xEventListItem ) );
/* Reset the event list item to its normal value - so it can be used with
* queues and semaphores. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCBs[ xCurCoreID ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCBs[ xCurCoreID ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
/* Release the previously taken kernel lock. */
return uxReturn;
}
/*-----------------------------------------------------------*/
#if ( configUSE_MUTEXES == 1 )
TaskHandle_t pvTaskIncrementMutexHeldCount( void )
{
TaskHandle_t xReturn;
/* For SMP, we need to take the kernel lock here as we are about to
* access kernel data structures. */
prvENTER_CRITICAL_SMP_ONLY( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* If xSemaphoreCreateMutex() is called before any tasks have been created
* then pxCurrentTCBs will be NULL. */
if( pxCurrentTCBs[ xCurCoreID ] != NULL )
{
( pxCurrentTCBs[ xCurCoreID ]->uxMutexesHeld )++;
}
xReturn = pxCurrentTCBs[ xCurCoreID ];
}
/* Release the previously taken kernel lock. */
prvEXIT_CRITICAL_SMP_ONLY( &xKernelLock );
return xReturn;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
BaseType_t xClearCountOnExit,
TickType_t xTicksToWait )
{
uint32_t ulReturn;
configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* Only block if the notification count is not already non-zero. */
if( pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ] == 0UL )
{
/* Mark this task as waiting for a notification. */
pxCurrentTCBs[ xCurCoreID ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
if( xTicksToWait > ( TickType_t ) 0 )
{
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
/* All ports are written to allow a yield in a critical
* section (some will yield immediately, others wait until the
* critical section exits) - but it is not something that
* application code should ever do. */
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
traceTASK_NOTIFY_TAKE( uxIndexToWait );
ulReturn = pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ];
if( ulReturn != 0UL )
{
if( xClearCountOnExit != pdFALSE )
{
pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ] = 0UL;
}
else
{
pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxCurrentTCBs[ xCurCoreID ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
}
taskEXIT_CRITICAL( &xKernelLock );
return ulReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
uint32_t ulBitsToClearOnEntry,
uint32_t ulBitsToClearOnExit,
uint32_t * pulNotificationValue,
TickType_t xTicksToWait )
{
BaseType_t xReturn;
configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
/* Only block if a notification is not already pending. */
if( pxCurrentTCBs[ xCurCoreID ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
{
/* Clear bits in the task's notification value as bits may get
* set by the notifying task or interrupt. This can be used to
* clear the value to zero. */
pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
/* Mark this task as waiting for a notification. */
pxCurrentTCBs[ xCurCoreID ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
if( xTicksToWait > ( TickType_t ) 0 )
{
prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
/* All ports are written to allow a yield in a critical
* section (some will yield immediately, others wait until the
* critical section exits) - but it is not something that
* application code should ever do. */
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
taskENTER_CRITICAL( &xKernelLock );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
traceTASK_NOTIFY_WAIT( uxIndexToWait );
if( pulNotificationValue != NULL )
{
/* Output the current notification value, which may or may not
* have changed. */
*pulNotificationValue = pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ];
}
/* If ucNotifyValue is set then either the task never entered the
* blocked state (because a notification was already pending) or the
* task unblocked because of a notification. Otherwise the task
* unblocked because of a timeout. */
if( pxCurrentTCBs[ xCurCoreID ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
{
/* A notification was not received. */
xReturn = pdFALSE;
}
else
{
/* A notification was already pending or a notification was
* received while the task was waiting. */
pxCurrentTCBs[ xCurCoreID ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
xReturn = pdTRUE;
}
pxCurrentTCBs[ xCurCoreID ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
}
taskEXIT_CRITICAL( &xKernelLock );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
uint32_t ulValue,
eNotifyAction eAction,
uint32_t * pulPreviousNotificationValue )
{
TCB_t * pxTCB;
BaseType_t xReturn = pdPASS;
uint8_t ucOriginalNotifyState;
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
configASSERT( xTaskToNotify );
pxTCB = xTaskToNotify;
taskENTER_CRITICAL( &xKernelLock );
{
if( pulPreviousNotificationValue != NULL )
{
*pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
}
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
switch( eAction )
{
case eSetBits:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
break;
case eIncrement:
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
break;
case eSetValueWithOverwrite:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
break;
case eSetValueWithoutOverwrite:
if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
{
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
}
else
{
/* The value could not be written to the task. */
xReturn = pdFAIL;
}
break;
case eNoAction:
/* The task is being notified without its notify value being
* updated. */
break;
default:
/* Should not get here if all enums are handled.
* Artificially force an assert by testing a value the
* compiler can't assume is const. */
configASSERT( xTickCount == ( TickType_t ) 0 );
break;
}
traceTASK_NOTIFY( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
#if ( configUSE_TICKLESS_IDLE != 0 )
{
/* If a task is blocked waiting for a notification then
* xNextTaskUnblockTime might be set to the blocked task's time
* out time. If the task is unblocked for a reason other than
* a timeout xNextTaskUnblockTime is normally left unchanged,
* because it will automatically get reset to a new value when
* the tick count equals xNextTaskUnblockTime. However if
* tickless idling is used it might be more important to enter
* sleep mode at the earliest possible time - so reset
* xNextTaskUnblockTime here to ensure it is updated at the
* earliest possible time. */
prvResetNextTaskUnblockTime();
}
#endif
if( taskIS_YIELD_REQUIRED( pxTCB, pdFALSE ) == pdTRUE )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
taskYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xKernelLock );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
uint32_t ulValue,
eNotifyAction eAction,
uint32_t * pulPreviousNotificationValue,
BaseType_t * pxHigherPriorityTaskWoken )
{
TCB_t * pxTCB;
uint8_t ucOriginalNotifyState;
BaseType_t xReturn = pdPASS;
UBaseType_t uxSavedInterruptStatus;
configASSERT( xTaskToNotify );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
pxTCB = xTaskToNotify;
prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
if( pulPreviousNotificationValue != NULL )
{
*pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
}
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
switch( eAction )
{
case eSetBits:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
break;
case eIncrement:
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
break;
case eSetValueWithOverwrite:
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
break;
case eSetValueWithoutOverwrite:
if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
{
pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
}
else
{
/* The value could not be written to the task. */
xReturn = pdFAIL;
}
break;
case eNoAction:
/* The task is being notified without its notify value being
* updated. */
break;
default:
/* Should not get here if all enums are handled.
* Artificially force an assert by testing a value the
* compiler can't assume is const. */
configASSERT( xTickCount == ( TickType_t ) 0 );
break;
}
traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
if( taskCAN_BE_SCHEDULED( pxTCB ) == pdTRUE )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed and ready lists cannot be accessed, so hold
* this task pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList[ xCurCoreID ] ), &( pxTCB->xEventListItem ) );
}
if( taskIS_YIELD_REQUIRED( pxTCB, pdFALSE ) == pdTRUE )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
/* Mark that a yield is pending in case the user is not
* using the "xHigherPriorityTaskWoken" parameter to an ISR
* safe FreeRTOS function. */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
UBaseType_t uxIndexToNotify,
BaseType_t * pxHigherPriorityTaskWoken )
{
TCB_t * pxTCB;
uint8_t ucOriginalNotifyState;
UBaseType_t uxSavedInterruptStatus;
configASSERT( xTaskToNotify );
configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
pxTCB = xTaskToNotify;
prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
{
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
/* 'Giving' is equivalent to incrementing a count in a counting
* semaphore. */
( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
/* If the task is in the blocked state specifically to wait for a
* notification then unblock it now. */
if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
{
/* The task should not have been on an event list. */
configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
if( taskCAN_BE_SCHEDULED( pxTCB ) == pdTRUE )
{
listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed and ready lists cannot be accessed, so hold
* this task pending until the scheduler is resumed. */
listINSERT_END( &( xPendingReadyList[ xCurCoreID ] ), &( pxTCB->xEventListItem ) );
}
if( taskIS_YIELD_REQUIRED( pxTCB, pdFALSE ) == pdTRUE )
{
/* The notified task has a priority above the currently
* executing task so a yield is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
/* Mark that a yield is pending in case the user is not
* using the "xHigherPriorityTaskWoken" parameter in an ISR
* safe FreeRTOS function. */
xYieldPending[ xCurCoreID ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
UBaseType_t uxIndexToClear )
{
TCB_t * pxTCB;
BaseType_t xReturn;
configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
/* If null is passed in here then it is the calling task that is having
* its notification state cleared. */
pxTCB = prvGetTCBFromHandle( xTask );
taskENTER_CRITICAL( &xKernelLock );
{
if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
{
pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
taskEXIT_CRITICAL( &xKernelLock );
return xReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
UBaseType_t uxIndexToClear,
uint32_t ulBitsToClear )
{
TCB_t * pxTCB;
uint32_t ulReturn;
/* If null is passed in here then it is the calling task that is having
* its notification state cleared. */
pxTCB = prvGetTCBFromHandle( xTask );
taskENTER_CRITICAL( &xKernelLock );
{
/* Return the notification as it was before the bits were cleared,
* then clear the bit mask. */
ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
}
taskEXIT_CRITICAL( &xKernelLock );
return ulReturn;
}
#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void )
{
return ulTaskGetIdleRunTimeCounterForCore( portGET_CORE_ID() );
}
#endif
/*-----------------------------------------------------------*/
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void )
{
return ulTaskGetIdleRunTimePercentForCore( portGET_CORE_ID() );
}
#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*-----------------------------------------------------------*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely )
{
TickType_t xTimeToWake;
const TickType_t xConstTickCount = xTickCount;
/* Get current core ID as we can no longer be preempted. */
const BaseType_t xCurCoreID = portGET_CORE_ID();
#if ( configNUMBER_OF_CORES > 1 )
{
if( listIS_CONTAINED_WITHIN( &xTasksWaitingTermination, &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) ) == pdTRUE )
{
/* In SMP, it is possible that another core has already deleted the
* current task (via vTaskDelete()) which will result in the current
* task being placed on the waiting termination list. In this case,
* we do nothing and return, the current task will yield as soon
* as it re-enables interrupts. */
return;
}
}
#endif /* configNUMBER_OF_CORES > 1 */
#if ( INCLUDE_xTaskAbortDelay == 1 )
{
/* About to enter a delayed list, so ensure the ucDelayAborted flag is
* reset to pdFALSE so it can be detected as having been set to pdTRUE
* when the task leaves the Blocked state. */
pxCurrentTCBs[ xCurCoreID ]->ucDelayAborted = pdFALSE;
}
#endif
/* Remove the task from the ready list before adding it to the blocked list
* as the same list item is used for both lists. */
if( uxListRemove( &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* The current task must be in a ready list, so there is no need to
* check, and the port reset macro can be called directly. */
portRESET_READY_PRIORITY( pxCurrentTCBs[ xCurCoreID ]->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCBs cannot change as it is the calling task. pxCurrentTCBs->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
#if ( INCLUDE_vTaskSuspend == 1 )
{
if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
{
/* Add the task to the suspended task list instead of a delayed task
* list to ensure it is not woken by a timing event. It will block
* indefinitely. */
listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) );
}
else
{
/* Calculate the time at which the task should be woken if the event
* does not occur. This may overflow but this doesn't matter, the
* kernel will manage it correctly. */
xTimeToWake = xConstTickCount + xTicksToWait;
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ), xTimeToWake );
if( xTimeToWake < xConstTickCount )
{
/* Wake time has overflowed. Place this item in the overflow
* list. */
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) );
}
else
{
/* The wake time has not overflowed, so the current block list
* is used. */
vListInsert( pxDelayedTaskList, &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) );
/* If the task entering the blocked state was placed at the
* head of the list of blocked tasks then xNextTaskUnblockTime
* needs to be updated too. */
if( xTimeToWake < xNextTaskUnblockTime )
{
xNextTaskUnblockTime = xTimeToWake;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
}
#else /* INCLUDE_vTaskSuspend */
{
/* Calculate the time at which the task should be woken if the event
* does not occur. This may overflow but this doesn't matter, the kernel
* will manage it correctly. */
xTimeToWake = xConstTickCount + xTicksToWait;
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ), xTimeToWake );
if( xTimeToWake < xConstTickCount )
{
/* Wake time has overflowed. Place this item in the overflow list. */
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) );
}
else
{
/* The wake time has not overflowed, so the current block list is used. */
vListInsert( pxDelayedTaskList, &( pxCurrentTCBs[ xCurCoreID ]->xStateListItem ) );
/* If the task entering the blocked state was placed at the head of the
* list of blocked tasks then xNextTaskUnblockTime needs to be updated
* too. */
if( xTimeToWake < xNextTaskUnblockTime )
{
xNextTaskUnblockTime = xTimeToWake;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
( void ) xCanBlockIndefinitely;
}
#endif /* INCLUDE_vTaskSuspend */
}
/* Code below here allows additional code to be inserted into this source file,
* especially where access to file scope functions and data is needed (for example
* when performing module tests). */
#ifdef FREERTOS_MODULE_TEST
#include "tasks_test_access_functions.h"
#endif
#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
#include "freertos_tasks_c_additions.h"
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void )
{
FREERTOS_TASKS_C_ADDITIONS_INIT();
}
#endif
#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */