esp-idf/components/ulp/test_apps/ulp_fsm/main/test_ulp.c
2022-08-04 12:19:28 +08:00

727 lines
30 KiB
C

/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#include <unity.h>
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_sleep.h"
#include "ulp.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/sens_reg.h"
#include "soc/rtc_io_reg.h"
#include "driver/rtc_io.h"
#include "sdkconfig.h"
#include "esp_rom_sys.h"
#include "ulp_test_app.h"
extern const uint8_t ulp_test_app_bin_start[] asm("_binary_ulp_test_app_bin_start");
extern const uint8_t ulp_test_app_bin_end[] asm("_binary_ulp_test_app_bin_end");
#define HEX_DUMP_DEBUG 0
static void hexdump(const uint32_t* src, size_t count) {
#if HEX_DUMP_DEBUG
for (size_t i = 0; i < count; ++i) {
printf("%08x ", *src);
++src;
if ((i + 1) % 4 == 0) {
printf("\n");
}
}
#else
(void)src;
(void)count;
#endif
}
TEST_CASE("ULP FSM addition test", "[ulp]")
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* ULP co-processor program to add data in 2 memory locations using ULP macros */
const ulp_insn_t program[] = {
I_MOVI(R3, 16), // r3 = 16
I_LD(R0, R3, 0), // r0 = mem[r3 + 0]
I_LD(R1, R3, 1), // r1 = mem[r3 + 1]
I_ADDR(R2, R0, R1), // r2 = r0 + r1
I_ST(R2, R3, 2), // mem[r3 + 2] = r2
I_HALT() // halt
};
/* Load the memory regions used by the ULP co-processor */
RTC_SLOW_MEM[16] = 10;
RTC_SLOW_MEM[17] = 11;
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
/* Wait for the ULP co-processor to finish up */
esp_rom_delay_us(1000);
hexdump(RTC_SLOW_MEM, 20);
/* Verify the test results */
TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff);
}
TEST_CASE("ULP FSM subtraction and branch test", "[ulp]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* ULP co-processor program to perform subtractions and branch to a label */
const ulp_insn_t program[] = {
I_MOVI(R0, 34), // r0 = 34
M_LABEL(1), // define a label with label number as 1
I_MOVI(R1, 32), // r1 = 32
I_LD(R1, R1, 0), // r1 = mem[32 + 0]
I_MOVI(R2, 33), // r2 = 33
I_LD(R2, R2, 0), // r2 = mem[33 + 0]
I_SUBR(R3, R1, R2), // r3 = r1 - r2
I_ST(R3, R0, 0), // mem[r0 + 0] = r3
I_ADDI(R0, R0, 1), // r0 = r0 + 1
M_BL(1, 64), // branch to label 1 if r0 < 64
I_HALT(), // halt
};
/* Load the memory regions used by the ULP co-processor */
RTC_SLOW_MEM[32] = 42;
RTC_SLOW_MEM[33] = 18;
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
printf("\n\n");
/* Wait for the ULP co-processor to finish up */
esp_rom_delay_us(1000);
hexdump(RTC_SLOW_MEM, 50);
/* Verify the test results */
for (int i = 34; i < 64; ++i) {
TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff);
}
TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]);
}
TEST_CASE("ULP FSM JUMPS instruction test", "[ulp]")
{
/*
* Load the ULP binary.
*
* This ULP program is written in assembly. Please refer associated .S file.
*/
esp_err_t err = ulp_load_binary(0, ulp_test_app_bin_start,
(ulp_test_app_bin_end - ulp_test_app_bin_start) / sizeof(uint32_t));
TEST_ESP_OK(err);
/* Clear ULP FSM raw interrupt */
REG_CLR_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW);
/* Run the ULP coprocessor */
TEST_ESP_OK(ulp_run(&ulp_test_jumps - RTC_SLOW_MEM));
/* Wait for the ULP co-processor to finish up */
esp_rom_delay_us(1000);
/* Verify that ULP FSM issued an interrupt to wake up the main CPU */
TEST_ASSERT_NOT_EQUAL(0, REG_GET_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW));
/* Verify the test results */
TEST_ASSERT_EQUAL(0, ulp_jumps_fail & UINT16_MAX);
TEST_ASSERT_EQUAL(1, ulp_jumps_pass & UINT16_MAX);
}
TEST_CASE("ULP FSM light-sleep wakeup test", "[ulp]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */
const ulp_insn_t program[] = {
I_MOVI(R1, 1024), // r1 = 1024
M_LABEL(1), // define label 1
I_DELAY(32000), // add a delay (NOP for 32000 cycles)
I_SUBI(R1, R1, 1), // r1 = r1 - 1
M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0)
I_RSHI(R3, R1, 5), // r3 = r1 / 32
I_ST(R1, R3, 16), // mem[r3 + 16] = r1
M_BX(1), // loop to label 1
M_LABEL(3), // define label 3
I_MOVI(R2, 42), // r2 = 42
I_MOVI(R3, 15), // r3 = 15
I_ST(R2, R3, 0), // mem[r3 + 0] = r2
I_WAKE(), // wake the SoC from deep-sleep
I_END(), // stop ULP timer
I_HALT() // halt
};
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
/* Setup wakeup triggers */
TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
/* Enter Light Sleep */
TEST_ASSERT(esp_light_sleep_start() == ESP_OK);
/* Wait for wakeup from ULP FSM Coprocessor */
printf("cause %d\r\n", esp_sleep_get_wakeup_cause());
TEST_ASSERT(esp_sleep_get_wakeup_cause() == ESP_SLEEP_WAKEUP_ULP);
}
TEST_CASE("ULP FSM deep-sleep wakeup test", "[ulp][reset=SW_CPU_RESET][ignore]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clearout the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */
const ulp_insn_t program[] = {
I_MOVI(R1, 1024), // r1 = 1024
M_LABEL(1), // define label 1
I_DELAY(32000), // add a delay (NOP for 32000 cycles)
I_SUBI(R1, R1, 1), // r1 = r1 - 1
M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0)
I_RSHI(R3, R1, 5), // r3 = r1 / 32
I_ST(R1, R3, 16), // mem[r3 + 16] = r1
M_BX(1), // loop to label 1
M_LABEL(3), // define label 3
I_MOVI(R2, 42), // r2 = 42
I_MOVI(R3, 15), // r3 = 15
I_ST(R2, R3, 0), // mem[r3 + 0] = r2
I_WAKE(), // wake the SoC from deep-sleep
I_END(), // stop ULP timer
I_HALT() // halt
};
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
/* Setup wakeup triggers */
TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
/* Enter Deep Sleep */
esp_deep_sleep_start();
UNITY_TEST_FAIL(__LINE__, "Should not get here!");
}
TEST_CASE("ULP FSM can write and read peripheral registers", "[ulp]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
/* Clear ULP timer */
CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
uint32_t rtc_store0 = REG_READ(RTC_CNTL_STORE0_REG);
uint32_t rtc_store1 = REG_READ(RTC_CNTL_STORE1_REG);
/* ULP co-processor program to read from and write to peripheral registers */
const ulp_insn_t program[] = {
I_MOVI(R1, 64), // r1 = 64
I_RD_REG(RTC_CNTL_STORE1_REG, 0, 15), // r0 = REG_READ(RTC_CNTL_STORE1_REG[15:0])
I_ST(R0, R1, 0), // mem[r1 + 0] = r0
I_RD_REG(RTC_CNTL_STORE1_REG, 4, 11), // r0 = REG_READ(RTC_CNTL_STORE1_REG[11:4])
I_ST(R0, R1, 1), // mem[r1 + 1] = r0
I_RD_REG(RTC_CNTL_STORE1_REG, 16, 31), // r0 = REG_READ(RTC_CNTL_STORE1_REG[31:16])
I_ST(R0, R1, 2), // mem[r1 + 2] = r0
I_RD_REG(RTC_CNTL_STORE1_REG, 20, 27), // r0 = REG_READ(RTC_CNTL_STORE1_REG[27:20])
I_ST(R0, R1, 3), // mem[r1 + 3] = r0
I_WR_REG(RTC_CNTL_STORE0_REG, 0, 7, 0x89), // REG_WRITE(RTC_CNTL_STORE0_REG[7:0], 0x89)
I_WR_REG(RTC_CNTL_STORE0_REG, 8, 15, 0xab), // REG_WRITE(RTC_CNTL_STORE0_REG[15:8], 0xab)
I_WR_REG(RTC_CNTL_STORE0_REG, 16, 23, 0xcd), // REG_WRITE(RTC_CNTL_STORE0_REG[23:16], 0xcd)
I_WR_REG(RTC_CNTL_STORE0_REG, 24, 31, 0xef), // REG_WRITE(RTC_CNTL_STORE0_REG[31:24], 0xef)
I_LD(R0, R1, 4), // r0 = mem[r1 + 4]
I_ADDI(R0, R0, 1), // r0 = r0 + 1
I_ST(R0, R1, 4), // mem[r1 + 4] = r0
I_END(), // stop ULP timer
I_HALT() // halt
};
/* Set data in the peripheral register to be read by the ULP co-processor */
REG_WRITE(RTC_CNTL_STORE1_REG, 0x89abcdef);
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
TEST_ESP_OK(ulp_run(0));
/* Wait for the ULP co-processor to finish up */
vTaskDelay(100/portTICK_PERIOD_MS);
/* Verify the test results */
TEST_ASSERT_EQUAL_HEX32(0xefcdab89, REG_READ(RTC_CNTL_STORE0_REG));
TEST_ASSERT_EQUAL_HEX16(0xcdef, RTC_SLOW_MEM[64] & 0xffff);
TEST_ASSERT_EQUAL_HEX16(0xde, RTC_SLOW_MEM[65] & 0xffff);
TEST_ASSERT_EQUAL_HEX16(0x89ab, RTC_SLOW_MEM[66] & 0xffff);
TEST_ASSERT_EQUAL_HEX16(0x9a, RTC_SLOW_MEM[67] & 0xffff);
TEST_ASSERT_EQUAL_HEX16(1, RTC_SLOW_MEM[68] & 0xffff);
/* Restore initial calibration values */
REG_WRITE(RTC_CNTL_STORE0_REG, rtc_store0);
REG_WRITE(RTC_CNTL_STORE1_REG, rtc_store1);
}
TEST_CASE("ULP FSM I_WR_REG instruction test", "[ulp]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* Define the test set */
typedef struct {
int low;
int width;
} wr_reg_test_item_t;
const wr_reg_test_item_t test_items[] = {
{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8},
{3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8},
{15, 1}, {15, 2}, {15, 3}, {15, 4}, {15, 5}, {15, 6}, {15, 7}, {15, 8},
{16, 1}, {16, 2}, {16, 3}, {16, 4}, {16, 5}, {16, 6}, {16, 7}, {16, 8},
{18, 1}, {18, 2}, {18, 3}, {18, 4}, {18, 5}, {18, 6}, {18, 7}, {18, 8},
{24, 1}, {24, 2}, {24, 3}, {24, 4}, {24, 5}, {24, 6}, {24, 7}, {24, 8},
};
const size_t test_items_count =
sizeof(test_items)/sizeof(test_items[0]);
for (size_t i = 0; i < test_items_count; ++i) {
const uint32_t mask = (uint32_t) (((1ULL << test_items[i].width) - 1) << test_items[i].low);
const uint32_t not_mask = ~mask;
printf("#%2d: low: %2d width: %2d mask: %08" PRIx32 " expected: %08" PRIx32 " ", i,
test_items[i].low, test_items[i].width,
mask, not_mask);
/* Set all bits in RTC_CNTL_STORE0_REG and reset all bits in RTC_CNTL_STORE1_REG */
uint32_t rtc_store0 = REG_READ(RTC_CNTL_STORE0_REG);
uint32_t rtc_store1 = REG_READ(RTC_CNTL_STORE1_REG);
REG_WRITE(RTC_CNTL_STORE0_REG, 0xffffffff);
REG_WRITE(RTC_CNTL_STORE1_REG, 0x00000000);
/* ULP co-processor program to write to peripheral registers */
const ulp_insn_t program[] = {
I_WR_REG(RTC_CNTL_STORE0_REG,
test_items[i].low,
test_items[i].low + test_items[i].width - 1,
0),
I_WR_REG(RTC_CNTL_STORE1_REG,
test_items[i].low,
test_items[i].low + test_items[i].width - 1,
0xff & ((1 << test_items[i].width) - 1)),
I_END(),
I_HALT()
};
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
TEST_ESP_OK(ulp_run(0));
/* Wait for the ULP co-processor to finish up */
vTaskDelay(10/portTICK_PERIOD_MS);
/* Verify the test results */
uint32_t clear = REG_READ(RTC_CNTL_STORE0_REG);
uint32_t set = REG_READ(RTC_CNTL_STORE1_REG);
printf("clear: %08" PRIx32 " set: %08" PRIx32 "\n", clear, set);
/* Restore initial calibration values */
REG_WRITE(RTC_CNTL_STORE0_REG, rtc_store0);
REG_WRITE(RTC_CNTL_STORE1_REG, rtc_store1);
TEST_ASSERT_EQUAL_HEX32(not_mask, clear);
TEST_ASSERT_EQUAL_HEX32(mask, set);
}
}
TEST_CASE("ULP FSM controls RTC_IO", "[ulp][ignore]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* ULP co-processor program to toggle LED */
const ulp_insn_t program[] = {
I_MOVI(R0, 0), // r0 is LED state
I_MOVI(R2, 16), // loop r2 from 16 down to 0
M_LABEL(4), // define label 4
I_SUBI(R2, R2, 1), // r2 = r2 - 1
M_BXZ(6), // branch to label 6 if r2 = 0
I_ADDI(R0, R0, 1), // r0 = (r0 + 1) % 2
I_ANDI(R0, R0, 0x1),
M_BL(0, 1), // if r0 < 1 goto 0
M_LABEL(1), // define label 1
I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 1), // RTC_GPIO12 = 1
M_BX(2), // goto 2
M_LABEL(0), // define label 0
I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 0), // RTC_GPIO12 = 0
M_LABEL(2), // define label 2
I_MOVI(R1, 100), // loop R1 from 100 down to 0
M_LABEL(3), // define label 3
I_SUBI(R1, R1, 1), // r1 = r1 - 1
M_BXZ(5), // branch to label 5 if r1 = 0
I_DELAY(32000), // delay for a while
M_BX(3), // goto 3
M_LABEL(5), // define label 5
M_BX(4), // loop back to label 4
M_LABEL(6), // define label 6
I_WAKE(), // wake up the SoC
I_END(), // stop ULP program timer
I_HALT()
};
/* Configure LED GPIOs */
const gpio_num_t led_gpios[] = {
GPIO_NUM_2,
GPIO_NUM_0,
GPIO_NUM_4
};
for (size_t i = 0; i < sizeof(led_gpios)/sizeof(led_gpios[0]); ++i) {
rtc_gpio_init(led_gpios[i]);
rtc_gpio_set_direction(led_gpios[i], RTC_GPIO_MODE_OUTPUT_ONLY);
rtc_gpio_set_level(led_gpios[i], 0);
}
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
TEST_ESP_OK(ulp_run(0));
/* Setup wakeup triggers */
TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
/* Enter Deep Sleep */
esp_deep_sleep_start();
UNITY_TEST_FAIL(__LINE__, "Should not get here!");
}
TEST_CASE("ULP FSM power consumption in deep sleep", "[ulp][ignore]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 4 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/* Put the ULP coprocessor in halt state */
ulp_insn_t insn = I_HALT();
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
memcpy(&RTC_SLOW_MEM[0], &insn, sizeof(insn));
#pragma GCC diagnostic pop
/* Set ULP timer */
ulp_set_wakeup_period(0, 0x8000);
/* Run the ULP coprocessor */
TEST_ESP_OK(ulp_run(0));
/* Setup wakeup triggers */
TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
/* Enter Deep Sleep */
esp_deep_sleep_start();
UNITY_TEST_FAIL(__LINE__, "Should not get here!");
}
TEST_CASE("ULP FSM timer setting", "[ulp]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
/*
* Run a simple ULP program which increments the counter, for one second.
* Program calls I_HALT each time and gets restarted by the timer.
* Compare the expected number of times the program runs with the actual.
*/
const int offset = 6;
const ulp_insn_t program[] = {
I_MOVI(R1, offset), // r1 <- offset
I_LD(R2, R1, 0), // load counter
I_ADDI(R2, R2, 1), // counter += 1
I_ST(R2, R1, 0), // save counter
I_HALT(),
};
/* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
assert(offset >= size && "data offset needs to be greater or equal to program size");
TEST_ESP_OK(ulp_run(0));
/* Disable the ULP program timer — we will enable it later */
ulp_timer_stop();
/* Define the test data */
const uint32_t cycles_to_test[] = { 10000, // 10 ms
20000, // 20 ms
50000, // 50 ms
100000, // 100 ms
200000, // 200 ms
500000, // 500 ms
1000000 }; // 1 sec
const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]);
for (size_t i = 0; i < tests_count; ++i) {
// zero out the counter
RTC_SLOW_MEM[offset] = 0;
// set the ulp timer period
ulp_set_wakeup_period(0, cycles_to_test[i]);
// enable the timer and wait for a second
ulp_timer_resume();
vTaskDelay(1000 / portTICK_PERIOD_MS);
// stop the timer and get the counter value
ulp_timer_stop();
uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff;
// calculate the expected counter value and allow a tolerance of 15%
uint32_t expected_counter = 1000000 / cycles_to_test[i];
uint32_t tolerance = (expected_counter * 15 / 100);
tolerance = tolerance ? tolerance : 1; // Keep a tolerance of at least 1 count
printf("expected: %" PRIu32 "\t tolerance: +/- %" PRIu32 "\t actual: %" PRIu32 "\n", expected_counter, tolerance, counter);
// Should be within 15%
TEST_ASSERT_INT_WITHIN(tolerance, expected_counter, counter);
}
}
#if !DISABLED_FOR_TARGETS(ESP32)
TEST_CASE("ULP FSM can use temperature sensor (TSENS) in deep sleep", "[ulp][ignore]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
// Allow TSENS to be controlled by the ULP
SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S);
#if CONFIG_IDF_TARGET_ESP32S2
SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, SENS_FORCE_XPD_SAR_FSM, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL2_REG, SENS_TSENS_CLKGATE_EN);
#elif CONFIG_IDF_TARGET_ESP32S3
SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_TSENS_CLK_EN);
#endif
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE);
// data start offset
size_t offset = 20;
// number of samples to collect
RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
// sample counter
RTC_SLOW_MEM[offset + 1] = 0;
/* ULP co-processor program to record temperature sensor readings */
const ulp_insn_t program[] = {
I_MOVI(R1, offset), // r1 <- offset
I_LD(R2, R1, 1), // r2 <- counter
I_LD(R3, R1, 0), // r3 <- length
I_SUBI(R3, R3, 1), // end = length - 1
I_SUBR(R3, R3, R2), // r3 = length - counter
M_BXF(1), // if overflow goto 1:
I_TSENS(R0, 16383), // r0 <- tsens
I_ST(R0, R2, offset + 4), // mem[r2 + offset +4] <- r0
I_ADDI(R2, R2, 1), // counter += 1
I_ST(R2, R1, 1), // save counter
I_HALT(), // enter sleep
M_LABEL(1), // done with measurements
I_END(), // stop ULP timer
I_WAKE(), // initiate wakeup
I_HALT()
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
assert(offset >= size);
/* Run the ULP coprocessor */
TEST_ESP_OK(ulp_run(0));
/* Setup wakeup triggers */
TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
/* Enter Deep Sleep */
esp_deep_sleep_start();
UNITY_TEST_FAIL(__LINE__, "Should not get here!");
}
#endif //#if !DISABLED_FOR_TARGETS(ESP32)
TEST_CASE("ULP FSM can use ADC in deep sleep", "[ulp][ignore]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
const int adc = 0;
const int channel = 0;
const int atten = 0;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"
/* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
#pragma GCC diagnostic pop
#if defined(CONFIG_IDF_TARGET_ESP32)
// Configure SAR ADCn resolution
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, 3, SENS_SAR1_BIT_WIDTH_S);
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, 3, SENS_SAR2_BIT_WIDTH_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, 0x3, SENS_SAR1_SAMPLE_BIT_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, 0x3, SENS_SAR2_SAMPLE_BIT_S);
// SAR ADCn is started by ULP FSM
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE);
// Use ULP FSM to power up SAR ADCn
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S);
// SAR ADCn invert result
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV);
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR2_DATA_INV);
// Set SAR ADCn pad enable bitmap to be controlled by ULP FSM
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M);
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
// SAR ADCn is started by ULP FSM
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS2_CTRL2_REG, SENS_MEAS2_START_FORCE);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS1_CTRL2_REG, SENS_MEAS1_START_FORCE);
// Use ULP FSM to power up/down SAR ADCn
SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS1_CTRL1_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S);
// SAR1 invert result
SET_PERI_REG_MASK(SENS_SAR_READER1_CTRL_REG, SENS_SAR1_DATA_INV);
SET_PERI_REG_MASK(SENS_SAR_READER2_CTRL_REG, SENS_SAR2_DATA_INV);
// Set SAR ADCn pad enable bitmap to be controlled by ULP FSM
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS1_CTRL2_REG, SENS_SAR1_EN_PAD_FORCE_M);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS2_CTRL2_REG, SENS_SAR2_EN_PAD_FORCE_M);
// Enable SAR ADCn clock gate on esp32s3
#if CONFIG_IDF_TARGET_ESP32S3
SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_SARADC_CLK_EN);
#endif
#endif
SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, 2 * channel); //set SAR1 attenuation
SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, atten, 2 * channel); //set SAR2 attenuation
// data start offset
size_t offset = 20;
// number of samples to collect
RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
// sample counter
RTC_SLOW_MEM[offset + 1] = 0;
const ulp_insn_t program[] = {
I_MOVI(R1, offset), // r1 <- offset
I_LD(R2, R1, 1), // r2 <- counter
I_LD(R3, R1, 0), // r3 <- length
I_SUBI(R3, R3, 1), // end = length - 1
I_SUBR(R3, R3, R2), // r3 = length - counter
M_BXF(1), // if overflow goto 1:
I_ADC(R0, adc, channel), // r0 <- ADC
I_ST(R0, R2, offset + 4), // mem[r2 + offset +4] = r0
I_ADDI(R2, R2, 1), // counter += 1
I_ST(R2, R1, 1), // save counter
I_HALT(), // enter sleep
M_LABEL(1), // done with measurements
I_END(), // stop ULP program timer
I_HALT()
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
assert(offset >= size);
/* Run the ULP coprocessor */
TEST_ESP_OK(ulp_run(0));
/* Setup wakeup triggers */
TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
/* Enter Deep Sleep */
esp_deep_sleep_start();
UNITY_TEST_FAIL(__LINE__, "Should not get here!");
}