esp-idf/components/driver/rmt/rmt_private.h
2022-05-09 11:26:30 +08:00

201 lines
8.1 KiB
C

/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_err.h"
#include "soc/soc_caps.h"
#include "hal/rmt_types.h"
#include "hal/rmt_hal.h"
#include "hal/dma_types.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "esp_pm.h"
#include "esp_attr.h"
#include "esp_private/gdma.h"
#include "driver/rmt_common.h"
#ifdef __cplusplus
extern "C" {
#endif
#if CONFIG_RMT_ISR_IRAM_SAFE
#define RMT_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
#else
#define RMT_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT
#endif
// RMT driver object is per-channel, the interrupt source is shared between channels
#if CONFIG_RMT_ISR_IRAM_SAFE
#define RMT_INTR_ALLOC_FLAG (ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_IRAM)
#else
#define RMT_INTR_ALLOC_FLAG ESP_INTR_FLAG_SHARED
#endif
// Hopefully the channel offset won't change in other targets
#define RMT_TX_CHANNEL_OFFSET_IN_GROUP 0
#define RMT_RX_CHANNEL_OFFSET_IN_GROUP (SOC_RMT_CHANNELS_PER_GROUP - SOC_RMT_TX_CANDIDATES_PER_GROUP)
// DMA buffer size must align to `rmt_symbol_word_t`
#define RMT_DMA_DESC_BUF_MAX_SIZE (DMA_DESCRIPTOR_BUFFER_MAX_SIZE & ~(sizeof(rmt_symbol_word_t) - 1))
#define RMT_DMA_NODES_PING_PONG 2 // two nodes ping-pong
#define RMT_PM_LOCK_NAME_LEN_MAX 16
typedef struct {
struct {
rmt_symbol_word_t symbols[SOC_RMT_MEM_WORDS_PER_CHANNEL];
} channels[SOC_RMT_CHANNELS_PER_GROUP];
} rmt_block_mem_t;
// RMTMEM address is declared in <target>.peripherals.ld
extern rmt_block_mem_t RMTMEM;
typedef enum {
RMT_CHANNEL_DIRECTION_TX,
RMT_CHANNEL_DIRECTION_RX,
} rmt_channel_direction_t;
typedef enum {
RMT_FSM_INIT,
RMT_FSM_ENABLE,
} rmt_fsm_t;
enum {
RMT_TX_QUEUE_READY,
RMT_TX_QUEUE_PROGRESS,
RMT_TX_QUEUE_COMPLETE,
RMT_TX_QUEUE_MAX,
};
typedef struct rmt_group_t rmt_group_t;
typedef struct rmt_channel_t rmt_channel_t;
typedef struct rmt_tx_channel_t rmt_tx_channel_t;
typedef struct rmt_rx_channel_t rmt_rx_channel_t;
typedef struct rmt_sync_manager_t rmt_sync_manager_t;
struct rmt_group_t {
int group_id; // group ID, index from 0
portMUX_TYPE spinlock; // to protect per-group register level concurrent access
rmt_hal_context_t hal; // hal layer for each group
rmt_clock_source_t clk_src; // record the group clock source, group clock is shared by all channels
uint32_t resolution_hz; // resolution of group clock
uint32_t occupy_mask; // a set bit in the mask indicates the channel is not available
rmt_tx_channel_t *tx_channels[SOC_RMT_TX_CANDIDATES_PER_GROUP]; // array of RMT TX channels
rmt_rx_channel_t *rx_channels[SOC_RMT_RX_CANDIDATES_PER_GROUP]; // array of RMT RX channels
rmt_sync_manager_t *sync_manager; // sync manager, this can be extended into an array if there're more sync controllers in one RMT group
};
struct rmt_channel_t {
int channel_id; // channel ID, index from 0
int gpio_num; // GPIO number used by RMT RX channel
uint32_t channel_mask; // mask of the memory blocks that occupied by the channel
size_t mem_block_num; // number of occupied RMT memory blocks
rmt_group_t *group; // which group the channel belongs to
portMUX_TYPE spinlock; // prevent channel resource accessing by user and interrupt concurrently
uint32_t resolution_hz; // channel clock resolution
intr_handle_t intr; // allocated interrupt handle for each channel
rmt_fsm_t fsm; // channel life cycle specific FSM
rmt_channel_direction_t direction; // channel direction
rmt_symbol_word_t *hw_mem_base; // base address of RMT channel hardware memory
rmt_symbol_word_t *dma_mem_base; // base address of RMT channel DMA buffer
gdma_channel_handle_t dma_chan; // DMA channel
esp_pm_lock_handle_t pm_lock; // power management lock
#if CONFIG_PM_ENABLE
char pm_lock_name[RMT_PM_LOCK_NAME_LEN_MAX]; // pm lock name
#endif
// RMT channel common interface
// The following IO functions will have per-implementation for TX and RX channel
esp_err_t (*del)(rmt_channel_t *channel);
esp_err_t (*set_carrier_action)(rmt_channel_t *channel, const rmt_carrier_config_t *config);
esp_err_t (*enable)(rmt_channel_t *channel);
esp_err_t (*disable)(rmt_channel_t *channel);
};
typedef struct {
rmt_encoder_handle_t encoder; // encode user payload into RMT symbols
const void *payload; // encoder payload
size_t payload_bytes; // payload size
int loop_count; // transaction can be continued in a loop for specific times
int remain_loop_count; // user required loop count may exceed hardware limitation, the driver will transfer them in batches
size_t transmitted_symbol_num; // track the number of transmitted symbols
struct {
uint32_t eot_level : 1; // Set the output level for the "End Of Transmission"
uint32_t encoding_done: 1; // Indicate whether the encoding has finished (not the encoding of transmission)
} flags;
} rmt_tx_trans_desc_t;
struct rmt_tx_channel_t {
rmt_channel_t base; // channel base class
size_t mem_off; // runtime argument, indicating the next writing position in the RMT hardware memory
size_t mem_end; // runtime argument, incidating the end of current writing region
size_t ping_pong_symbols; // ping-pong size (half of the RMT channel memory)
size_t queue_size; // size of transaction queue
size_t num_trans_inflight; // indicates the number of transactions that are undergoing but not recycled to ready_queue
void *queues_storage; // storage of transaction queues
QueueHandle_t trans_queues[RMT_TX_QUEUE_MAX]; // transaction queues
StaticQueue_t trans_queue_structs[RMT_TX_QUEUE_MAX]; // memory to store the static structure for trans_queues
rmt_tx_trans_desc_t *cur_trans; // points to current transaction
void *user_data; // user context
rmt_tx_done_callback_t on_trans_done; // callback, invoked on trans done
dma_descriptor_t dma_nodes[RMT_DMA_NODES_PING_PONG]; // DMA descriptor nodes, make up a circular link list
rmt_tx_trans_desc_t trans_desc_pool[]; // tranfer descriptor pool
};
typedef struct {
void *buffer; // buffer for saving the received symbols
size_t buffer_size; // size of the buffer, in bytes
size_t received_symbol_num; // track the number of received symbols
size_t copy_dest_off; // tracking offset in the copy destination
} rmt_rx_trans_desc_t;
struct rmt_rx_channel_t {
rmt_channel_t base; // channel base class
size_t mem_off; // starting offset to fetch the symbols in RMTMEM
size_t ping_pong_symbols; // ping-pong size (half of the RMT channel memory)
rmt_rx_done_callback_t on_recv_done; // callback, invoked on receive done
void *user_data; // user context
rmt_rx_trans_desc_t trans_desc; // transaction description
size_t num_dma_nodes; // number of DMA nodes, determined by how big the memory block that user configures
dma_descriptor_t dma_nodes[]; // DMA link nodes
};
/**
* @brief Acquire RMT group handle
*
* @param group_id Group ID
* @return RMT group handle
*/
rmt_group_t *rmt_acquire_group_handle(int group_id);
/**
* @brief Release RMT group handle
*
* @param group RMT group handle, returned from `rmt_acquire_group_handle`
*/
void rmt_release_group_handle(rmt_group_t *group);
/**
* @brief Set clock source for RMT peripheral
*
* @param chan RMT channel handle
* @param clk_src Clock source
* @return
* - ESP_OK: Set clock source successfully
* - ESP_ERR_NOT_SUPPORTED: Set clock source failed because the clk_src is not supported
* - ESP_ERR_INVALID_STATE: Set clock source failed because the clk_src is different from other RMT channel
* - ESP_FAIL: Set clock source failed because of other error
*/
esp_err_t rmt_select_periph_clock(rmt_channel_handle_t chan, rmt_clock_source_t clk_src);
#ifdef __cplusplus
}
#endif