Sachin Parekh d634970ed1 ecdsa: Support multiple ECDSA keys
Add provision to choose which efuse block should be used as ECDSA
private key
2023-04-07 14:55:21 +05:30

278 lines
8.5 KiB
C

/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "hal/ecdsa_hal.h"
#include "esp_efuse.h"
#include "mbedtls/ecp.h"
#include "mbedtls/ecdsa.h"
#include "mbedtls/platform_util.h"
#include "esp_private/periph_ctrl.h"
#include "ecdsa/ecdsa_alt.h"
#define ECDSA_KEY_MAGIC 0xECD5A
#define ECDSA_SHA_LEN 32
#define MAX_ECDSA_COMPONENT_LEN 32
__attribute__((unused)) static const char *TAG = "ecdsa_alt";
static _lock_t s_crypto_ecdsa_lock;
static void esp_ecdsa_acquire_hardware(void)
{
_lock_acquire(&s_crypto_ecdsa_lock);
periph_module_enable(PERIPH_ECDSA_MODULE);
}
static void esp_ecdsa_release_hardware(void)
{
periph_module_disable(PERIPH_ECDSA_MODULE);
_lock_release(&s_crypto_ecdsa_lock);
}
static void ecdsa_be_to_le(const uint8_t* be_point, uint8_t *le_point, uint8_t len)
{
/* When the size is 24 bytes, it should be padded with 0 bytes*/
memset(le_point, 0x0, 32);
for(int i = 0; i < len; i++) {
le_point[i] = be_point[len - i - 1];
}
}
#ifdef CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN
int esp_ecdsa_privkey_load_mpi(mbedtls_mpi *key, int efuse_blk)
{
if (!key) {
ESP_LOGE(TAG, "Invalid memory");
return -1;
}
if (efuse_blk < EFUSE_BLK_KEY0 || efuse_blk >= EFUSE_BLK_KEY_MAX) {
ESP_LOGE(TAG, "Invalid efuse block");
return -1;
}
mbedtls_mpi_init(key);
/* We use the mbedtls_mpi struct to pass our own context to hardware ECDSA peripheral
* MPI struct expects `s` to be either 1 or -1, by setting it to 0xECD5A, we ensure that it does
* not collide with a valid MPI. This is done to differentiate between using the private key stored in efuse
* or using the private key provided by software
*
* `n` is used to store the efuse block which should be used as key
*/
key->MBEDTLS_PRIVATE(s) = ECDSA_KEY_MAGIC;
key->MBEDTLS_PRIVATE(n) = efuse_blk;
key->MBEDTLS_PRIVATE(p) = NULL;
return 0;
}
int esp_ecdsa_privkey_load_pk_context(mbedtls_pk_context *key_ctx, int efuse_blk)
{
const mbedtls_pk_info_t *pk_info;
mbedtls_ecp_keypair *keypair;
if (!key_ctx) {
ESP_LOGE(TAG, "Invalid memory");
return -1;
}
if (efuse_blk < EFUSE_BLK_KEY0 || efuse_blk >= EFUSE_BLK_KEY_MAX) {
ESP_LOGE(TAG, "Invalid efuse block");
return -1;
}
mbedtls_pk_init(key_ctx);
pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_ECDSA);
mbedtls_pk_setup(key_ctx, pk_info);
keypair = mbedtls_pk_ec(*key_ctx);
return esp_ecdsa_privkey_load_mpi(&(keypair->MBEDTLS_PRIVATE(d)), efuse_blk);
}
static int esp_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi* r, mbedtls_mpi* s,
const mbedtls_mpi *d, const unsigned char* msg, size_t msg_len)
{
ecdsa_curve_t curve;
esp_efuse_block_t blk;
uint16_t len;
uint8_t zeroes[MAX_ECDSA_COMPONENT_LEN] = {0};
uint8_t sha_le[ECDSA_SHA_LEN];
uint8_t r_le[MAX_ECDSA_COMPONENT_LEN];
uint8_t s_le[MAX_ECDSA_COMPONENT_LEN];
if (!grp || !r || !s || !d || !msg) {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
if (msg_len != ECDSA_SHA_LEN) {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
if (grp->id == MBEDTLS_ECP_DP_SECP192R1) {
curve = ECDSA_CURVE_SECP192R1;
len = 24;
} else if (grp->id == MBEDTLS_ECP_DP_SECP256R1) {
curve = ECDSA_CURVE_SECP256R1;
len = 32;
} else {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
if (!esp_efuse_find_purpose(ESP_EFUSE_KEY_PURPOSE_ECDSA_KEY, &blk)) {
ESP_LOGE(TAG, "No efuse block with purpose ECDSA_KEY found");
return MBEDTLS_ERR_ECP_INVALID_KEY;
}
ecdsa_be_to_le(msg, sha_le, len);
esp_ecdsa_acquire_hardware();
do {
ecdsa_hal_config_t conf = {
.mode = ECDSA_MODE_SIGN_GEN,
.curve = curve,
.k_mode = ECDSA_K_USE_TRNG,
.sha_mode = ECDSA_Z_USER_PROVIDED,
.efuse_key_blk = d->MBEDTLS_PRIVATE(n),
};
ecdsa_hal_gen_signature(&conf, NULL, sha_le, r_le, s_le, len);
} while (!memcmp(r_le, zeroes, len) || !memcmp(s_le, zeroes, len));
esp_ecdsa_release_hardware();
mbedtls_mpi_read_binary_le(r, r_le, len);
mbedtls_mpi_read_binary_le(s, s_le, len);
return 0;
}
/*
* Compute ECDSA signature of a hashed message;
*/
extern int __real_mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
int __wrap_mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
int __wrap_mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
/*
* Check `d` whether it contains the hardware key
*/
if (d->MBEDTLS_PRIVATE(s) == ECDSA_KEY_MAGIC) {
// Use hardware ECDSA peripheral
return esp_ecdsa_sign(grp, r, s, d, buf, blen);
} else {
return __real_mbedtls_ecdsa_sign(grp, r, s, d, buf, blen, f_rng, p_rng);
}
}
#endif /* CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN */
#ifdef CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY
static int esp_ecdsa_verify(mbedtls_ecp_group *grp,
const unsigned char *buf, size_t blen,
const mbedtls_ecp_point *Q,
const mbedtls_mpi *r,
const mbedtls_mpi *s)
{
ecdsa_curve_t curve;
uint16_t len;
uint8_t r_le[MAX_ECDSA_COMPONENT_LEN];
uint8_t s_le[MAX_ECDSA_COMPONENT_LEN];
uint8_t qx_le[MAX_ECDSA_COMPONENT_LEN];
uint8_t qy_le[MAX_ECDSA_COMPONENT_LEN];
uint8_t sha_le[ECDSA_SHA_LEN];
if (!grp || !buf || !Q || !r || !s) {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
if (blen != ECDSA_SHA_LEN) {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
if (grp->id == MBEDTLS_ECP_DP_SECP192R1) {
curve = ECDSA_CURVE_SECP192R1;
len = 24;
} else if (grp->id == MBEDTLS_ECP_DP_SECP256R1) {
curve = ECDSA_CURVE_SECP256R1;
len = 32;
} else {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 ||
mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0 )
{
return MBEDTLS_ERR_ECP_VERIFY_FAILED;
}
ecdsa_be_to_le(buf, sha_le, len);
mbedtls_mpi_write_binary_le(&Q->MBEDTLS_PRIVATE(X), qx_le, len);
mbedtls_mpi_write_binary_le(&Q->MBEDTLS_PRIVATE(Y), qy_le, len);
mbedtls_mpi_write_binary_le(r, r_le, len);
mbedtls_mpi_write_binary_le(s, s_le, len);
esp_ecdsa_acquire_hardware();
ecdsa_hal_config_t conf = {
.mode = ECDSA_MODE_SIGN_VERIFY,
.curve = curve,
.k_mode = ECDSA_K_USE_TRNG,
.sha_mode = ECDSA_Z_USER_PROVIDED,
};
int ret = ecdsa_hal_verify_signature(&conf, sha_le, r_le, s_le, qx_le, qy_le, len);
esp_ecdsa_release_hardware();
if (ret != 0) {
return MBEDTLS_ERR_ECP_VERIFY_FAILED;
}
return ret;
}
/*
* Verify ECDSA signature of hashed message
*/
extern int __real_mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
const unsigned char *buf, size_t blen,
const mbedtls_ecp_point *Q,
const mbedtls_mpi *r,
const mbedtls_mpi *s);
int __wrap_mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
const unsigned char *buf, size_t blen,
const mbedtls_ecp_point *Q,
const mbedtls_mpi *r,
const mbedtls_mpi *s);
int __wrap_mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
const unsigned char *buf, size_t blen,
const mbedtls_ecp_point *Q,
const mbedtls_mpi *r,
const mbedtls_mpi *s)
{
if (grp->id == MBEDTLS_ECP_DP_SECP192R1 || grp->id == MBEDTLS_ECP_DP_SECP256R1) {
return esp_ecdsa_verify(grp, buf, blen, Q, r, s);
} else {
return __real_mbedtls_ecdsa_verify(grp, buf, blen, Q, r, s);
}
}
#endif /* CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY */