mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
7f2b85b82b
- Support CPU frequency 360MHz - Support SOC ROOT clock source switch - Support LP SLOW clock source switch - Support clock calibration
223 lines
7.3 KiB
C
223 lines
7.3 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include <sys/lock.h>
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "esp_attr.h"
|
|
#include "soc/rtc.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "esp_rom_caps.h"
|
|
#include "esp_rom_sys.h"
|
|
#include "esp_private/esp_clk.h"
|
|
#include "hal/clk_tree_ll.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/rtc.h"
|
|
#include "esp32/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/rtc.h"
|
|
#include "esp32s2/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/rtc.h"
|
|
#include "esp32s3/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/rtc.h"
|
|
#include "esp32c3/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C2
|
|
#include "esp32c2/rom/rtc.h"
|
|
#include "esp32c2/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C6
|
|
#include "esp32c6/rom/rtc.h"
|
|
#include "esp32c6/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
#include "esp32h2/rom/rtc.h"
|
|
#include "esp32h2/rtc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32P4
|
|
#include "esp32p4/rom/rtc.h"
|
|
#include "esp32p4/rtc.h"
|
|
#endif
|
|
|
|
#define MHZ (1000000)
|
|
|
|
// g_ticks_us defined in ROMs for PRO and APP CPU
|
|
extern uint32_t g_ticks_per_us_pro;
|
|
|
|
static portMUX_TYPE s_esp_rtc_time_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
#if SOC_RTC_MEM_SUPPORTED
|
|
typedef struct {
|
|
uint64_t rtc_time_us;
|
|
uint64_t rtc_last_ticks;
|
|
uint32_t reserve;
|
|
uint32_t checksum;
|
|
} retain_mem_t;
|
|
_Static_assert(sizeof(retain_mem_t) == 24, "retain_mem_t must be 24 bytes");
|
|
_Static_assert(offsetof(retain_mem_t, checksum) == sizeof(retain_mem_t) - sizeof(uint32_t), "Wrong offset for checksum field in retain_mem_t structure");
|
|
|
|
static __attribute__((section(".rtc_timer_data_in_rtc_mem"))) retain_mem_t s_rtc_timer_retain_mem;
|
|
|
|
static uint32_t calc_checksum(void)
|
|
{
|
|
uint32_t checksum = 0;
|
|
uint32_t *data = (uint32_t*) &s_rtc_timer_retain_mem;
|
|
|
|
for (uint32_t i = 0; i < (sizeof(retain_mem_t) - sizeof(s_rtc_timer_retain_mem.checksum)) / 4; i++) {
|
|
checksum = ((checksum << 5) - checksum) ^ data[i];
|
|
}
|
|
return checksum;
|
|
}
|
|
#define IS_RETAIN_MEM_VALID() (s_rtc_timer_retain_mem.checksum == calc_checksum())
|
|
#endif // SOC_RTC_MEM_SUPPORTED
|
|
|
|
inline static int IRAM_ATTR s_get_cpu_freq_mhz(void)
|
|
{
|
|
#if ESP_ROM_GET_CLK_FREQ
|
|
return esp_rom_get_cpu_ticks_per_us();
|
|
#else
|
|
return g_ticks_per_us_pro;
|
|
#endif
|
|
}
|
|
|
|
int IRAM_ATTR esp_clk_cpu_freq(void)
|
|
{
|
|
return s_get_cpu_freq_mhz() * MHZ;
|
|
}
|
|
|
|
int IRAM_ATTR esp_clk_apb_freq(void)
|
|
{
|
|
// TODO: IDF-5173 Require cleanup, implementation should be unified
|
|
#if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32P4
|
|
return rtc_clk_apb_freq_get();
|
|
#else
|
|
return MIN(s_get_cpu_freq_mhz() * MHZ, APB_CLK_FREQ);
|
|
#endif
|
|
}
|
|
|
|
int IRAM_ATTR esp_clk_xtal_freq(void)
|
|
{
|
|
return rtc_clk_xtal_freq_get() * MHZ;
|
|
}
|
|
|
|
uint64_t esp_rtc_get_time_us(void)
|
|
{
|
|
portENTER_CRITICAL_SAFE(&s_esp_rtc_time_lock);
|
|
const uint32_t cal = esp_clk_slowclk_cal_get();
|
|
#if SOC_RTC_MEM_SUPPORTED
|
|
static bool first_call = true;
|
|
if (cal == 0 || (first_call && !IS_RETAIN_MEM_VALID())) {
|
|
/*
|
|
If cal is 0, then this is the first power-up. Cal is keeping valid
|
|
after reboot and deepsleep. If s_rtc_timer_retain_mem is invalid, it means
|
|
that something unexpected happened (the structure was moved around
|
|
after OTA update). To keep the system time valid even after OTA we
|
|
reset the s_rtc_timer_retain_mem. But the resetting can also lead to some
|
|
drift of the system time, because only the last current calibration
|
|
value will be applied to all rtc ticks. To mitigate this effect you
|
|
might need updating of the system time (via SNTP).
|
|
*/
|
|
memset(&s_rtc_timer_retain_mem, 0, sizeof(retain_mem_t));
|
|
}
|
|
first_call = false;
|
|
const uint64_t rtc_this_ticks = rtc_time_get();
|
|
const uint64_t ticks = rtc_this_ticks - s_rtc_timer_retain_mem.rtc_last_ticks;
|
|
#else
|
|
const uint64_t ticks = rtc_time_get();
|
|
#endif
|
|
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
|
|
* for a 32kHz clock. We need to calculate (assuming no overflow):
|
|
* (ticks * cal) >> RTC_CLK_CAL_FRACT
|
|
*
|
|
* An overflow in the (ticks * cal) multiplication would cause time to
|
|
* wrap around after approximately 13 days, which is probably not enough
|
|
* for some applications.
|
|
* Therefore multiplication is split into two terms, for the lower 32-bit
|
|
* and the upper 16-bit parts of "ticks", i.e.:
|
|
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
|
|
*/
|
|
const uint64_t ticks_low = ticks & UINT32_MAX;
|
|
const uint64_t ticks_high = ticks >> 32;
|
|
const uint64_t delta_time_us = ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
|
|
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
|
|
#if SOC_RTC_MEM_SUPPORTED
|
|
s_rtc_timer_retain_mem.rtc_time_us += delta_time_us;
|
|
s_rtc_timer_retain_mem.rtc_last_ticks = rtc_this_ticks;
|
|
s_rtc_timer_retain_mem.checksum = calc_checksum();
|
|
uint64_t esp_rtc_time_us = s_rtc_timer_retain_mem.rtc_time_us;
|
|
portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock);
|
|
return esp_rtc_time_us;
|
|
#else
|
|
uint64_t esp_rtc_time_us = delta_time_us + clk_ll_rtc_slow_load_rtc_fix_us();
|
|
portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock);
|
|
return esp_rtc_time_us;
|
|
#endif
|
|
}
|
|
|
|
void esp_clk_slowclk_cal_set(uint32_t new_cal)
|
|
{
|
|
#if defined(CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER)
|
|
/* To force monotonic time values even when clock calibration value changes,
|
|
* we adjust esp_rtc_time
|
|
*/
|
|
#if SOC_RTC_MEM_SUPPORTED
|
|
esp_rtc_get_time_us();
|
|
#else
|
|
portENTER_CRITICAL_SAFE(&s_esp_rtc_time_lock);
|
|
uint32_t old_cal = clk_ll_rtc_slow_load_cal();
|
|
if (old_cal != 0) {
|
|
/**
|
|
* The logic of time correction is:
|
|
* old_rtc_us = ticks * old_cal >> RTC_CLK_CAL_FRACT + old_fix_us
|
|
* new_rtc_us = ticks * new_cal >> RTC_CLK_CAL_FRACT + new_fix_us
|
|
*
|
|
* Keep "old_rtc_us == new_rtc_us" to make time monotonically increasing,
|
|
* then we can get new_fix_us:
|
|
* new_fix_us = (ticks * old_cal >> RTC_CLK_CAL_FRACT + old_fix_us) - (ticks * new_cal >> RTC_CLK_CAL_FRACT)
|
|
*/
|
|
uint64_t ticks = rtc_time_get();
|
|
const uint64_t ticks_low = ticks & UINT32_MAX;
|
|
const uint64_t ticks_high = ticks >> 32;
|
|
uint64_t old_fix_us = clk_ll_rtc_slow_load_rtc_fix_us();
|
|
uint64_t new_fix_us;
|
|
|
|
old_fix_us += ((ticks_low * old_cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * old_cal) << (32 - RTC_CLK_CAL_FRACT));
|
|
new_fix_us = ((ticks_low * new_cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * new_cal) << (32 - RTC_CLK_CAL_FRACT));
|
|
new_fix_us = old_fix_us - new_fix_us;
|
|
clk_ll_rtc_slow_store_rtc_fix_us(new_fix_us);
|
|
}
|
|
portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock);
|
|
#endif // SOC_RTC_MEM_SUPPORTED
|
|
#endif // CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER
|
|
clk_ll_rtc_slow_store_cal(new_cal);
|
|
}
|
|
|
|
uint32_t esp_clk_slowclk_cal_get(void)
|
|
{
|
|
return clk_ll_rtc_slow_load_cal();
|
|
}
|
|
|
|
uint64_t esp_clk_rtc_time(void)
|
|
{
|
|
#ifdef CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER
|
|
return esp_rtc_get_time_us();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void esp_clk_private_lock(void)
|
|
{
|
|
portENTER_CRITICAL(&s_esp_rtc_time_lock);
|
|
}
|
|
|
|
void esp_clk_private_unlock(void)
|
|
{
|
|
portEXIT_CRITICAL(&s_esp_rtc_time_lock);
|
|
}
|