mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
1442 lines
48 KiB
C
1442 lines
48 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
|
|
#include "esp_memory_utils.h"
|
|
#include "spi_flash_chip_driver.h"
|
|
#include "memspi_host_driver.h"
|
|
#include "esp_log.h"
|
|
#include "sdkconfig.h"
|
|
#include "esp_flash_internal.h"
|
|
#include "spi_flash_defs.h"
|
|
#include "spi_flash_mmap.h"
|
|
#include "esp_rom_caps.h"
|
|
#include "esp_rom_spiflash.h"
|
|
#include "esp_private/esp_clk.h"
|
|
#include "esp_spi_flash_counters.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp_crypto_lock.h" // for locking flash encryption peripheral
|
|
#endif //CONFIG_IDF_TARGET_ESP32S2
|
|
|
|
DRAM_ATTR static const char TAG[] = "spi_flash";
|
|
|
|
#ifdef CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
|
|
#define MAX_WRITE_CHUNK CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE /* write in chunks */
|
|
#else
|
|
#define MAX_WRITE_CHUNK 8192 /* write in chunks */
|
|
#endif // CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
|
|
|
|
#define MAX_READ_CHUNK 16384
|
|
#define VERIFY_BUF_LEN 64
|
|
|
|
|
|
#ifdef CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS
|
|
#define UNSAFE_WRITE_ADDRESS abort()
|
|
#else
|
|
#define UNSAFE_WRITE_ADDRESS return ESP_ERR_INVALID_ARG
|
|
#endif
|
|
|
|
/* CHECK_WRITE_ADDRESS macro to fail writes which land in the
|
|
bootloader, partition table, or running application region.
|
|
*/
|
|
#define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE) do { \
|
|
if (CHIP && CHIP->os_func->region_protected) { \
|
|
esp_err_t ret = CHIP->os_func->region_protected(CHIP->os_func_data, ADDR, SIZE); \
|
|
if (ret == ESP_ERR_NOT_ALLOWED) { \
|
|
return ret; /* ESP_ERR_NOT_ALLOWED from read-only partition check */ \
|
|
} else if (ret != ESP_OK) { \
|
|
UNSAFE_WRITE_ADDRESS; /* FAILS or ABORTS */ \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
/* Convenience macro for beginning of all API functions.
|
|
* Check the return value of `rom_spiflash_api_funcs->chip_check` is correct,
|
|
* and the chip supports the operation in question.
|
|
*/
|
|
#define VERIFY_CHIP_OP(op) do { \
|
|
if (err != ESP_OK) return err; \
|
|
if (chip->chip_drv->op == NULL) { \
|
|
return ESP_ERR_FLASH_UNSUPPORTED_CHIP; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
|
|
static esp_flash_counters_t esp_flash_stats;
|
|
|
|
#define COUNTER_START() uint32_t ts_begin = esp_cpu_get_cycle_count()
|
|
#define COUNTER_STOP(counter) \
|
|
do{ \
|
|
esp_flash_stats.counter.count++; \
|
|
esp_flash_stats.counter.time += (esp_cpu_get_cycle_count() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \
|
|
} while(0)
|
|
|
|
#define COUNTER_ADD_BYTES(counter, size) \
|
|
do { \
|
|
esp_flash_stats.counter.bytes += size; \
|
|
} while (0)
|
|
|
|
|
|
|
|
const esp_flash_counters_t *esp_flash_get_counters(void)
|
|
{
|
|
return &esp_flash_stats;
|
|
}
|
|
|
|
void esp_flash_reset_counters(void)
|
|
{
|
|
memset(&esp_flash_stats, 0, sizeof(esp_flash_stats));
|
|
}
|
|
|
|
void esp_flash_dump_counters(FILE* stream)
|
|
{
|
|
if (stream != NULL) {
|
|
fprintf(stream, " read: count=%8ld time=%8ldus bytes=%8ld\n", esp_flash_stats.read.count, esp_flash_stats.read.time, esp_flash_stats.read.bytes);
|
|
fprintf(stream, "write: count=%8ld time=%8ldus bytes=%8ld\n", esp_flash_stats.write.count, esp_flash_stats.write.time, esp_flash_stats.write.bytes);
|
|
fprintf(stream, "erase: count=%8ld time=%8ldus bytes=%8ld\n", esp_flash_stats.erase.count, esp_flash_stats.erase.time, esp_flash_stats.erase.bytes);
|
|
}
|
|
}
|
|
|
|
|
|
const spi_flash_counters_t *spi_flash_get_counters(void)
|
|
{
|
|
return (spi_flash_counters_t *)esp_flash_get_counters();
|
|
}
|
|
|
|
void spi_flash_reset_counters(void)
|
|
{
|
|
esp_flash_reset_counters();
|
|
}
|
|
|
|
void spi_flash_dump_counters(void)
|
|
{
|
|
esp_flash_dump_counters(stdout);
|
|
}
|
|
|
|
#else
|
|
#define COUNTER_START()
|
|
#define COUNTER_STOP(counter)
|
|
#define COUNTER_ADD_BYTES(counter, size)
|
|
|
|
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
|
|
|
|
#define IO_STR_LEN 10
|
|
|
|
static const char io_mode_str[][IO_STR_LEN] = {
|
|
"slowrd",
|
|
"fastrd",
|
|
"dout",
|
|
"dio",
|
|
"qout",
|
|
"qio",
|
|
[6 ... 15] = "not used", // reserved io mode for future, not used currently.
|
|
"opi_str",
|
|
"opi_dtr",
|
|
};
|
|
|
|
_Static_assert(sizeof(io_mode_str)/IO_STR_LEN == SPI_FLASH_READ_MODE_MAX, "the io_mode_str should be consistent with the esp_flash_io_mode_t defined in spi_flash_types.h");
|
|
|
|
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id);
|
|
|
|
#if !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
static esp_err_t spiflash_start_default(esp_flash_t *chip);
|
|
static esp_err_t spiflash_end_default(esp_flash_t *chip, esp_err_t err);
|
|
static esp_err_t check_chip_pointer_default(esp_flash_t **inout_chip);
|
|
static esp_err_t flash_end_flush_cache(esp_flash_t* chip, esp_err_t err, bool bus_acquired, uint32_t address, uint32_t length);
|
|
#endif // !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
|
|
typedef struct {
|
|
esp_err_t (*start)(esp_flash_t *chip);
|
|
esp_err_t (*end)(esp_flash_t *chip, esp_err_t err);
|
|
esp_err_t (*chip_check)(esp_flash_t **inout_chip);
|
|
esp_err_t (*flash_end_flush_cache)(esp_flash_t* chip, esp_err_t err, bool bus_acquired, uint32_t address, uint32_t length);
|
|
} rom_spiflash_api_func_t;
|
|
|
|
#if !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
// These functions can be placed in the ROM. For now we use the code in IDF.
|
|
DRAM_ATTR static rom_spiflash_api_func_t default_spiflash_rom_api = {
|
|
.start = spiflash_start_default,
|
|
.end = spiflash_end_default,
|
|
.chip_check = check_chip_pointer_default,
|
|
.flash_end_flush_cache = flash_end_flush_cache,
|
|
};
|
|
|
|
DRAM_ATTR rom_spiflash_api_func_t *rom_spiflash_api_funcs = &default_spiflash_rom_api;
|
|
#else
|
|
extern rom_spiflash_api_func_t *esp_flash_api_funcs;
|
|
#define rom_spiflash_api_funcs esp_flash_api_funcs
|
|
#endif // !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
|
|
/* Static function to notify OS of a new SPI flash operation.
|
|
|
|
If returns an error result, caller must abort. If returns ESP_OK, caller must
|
|
call rom_spiflash_api_funcs->end() before returning.
|
|
*/
|
|
#if !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
static esp_err_t IRAM_ATTR spiflash_start_default(esp_flash_t *chip)
|
|
{
|
|
if (chip->os_func != NULL && chip->os_func->start != NULL) {
|
|
esp_err_t err = chip->os_func->start(chip->os_func_data);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
chip->host->driver->dev_config(chip->host);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/* Static function to notify OS that SPI flash operation is complete.
|
|
*/
|
|
static esp_err_t IRAM_ATTR spiflash_end_default(esp_flash_t *chip, esp_err_t err)
|
|
{
|
|
if (chip->os_func != NULL
|
|
&& chip->os_func->end != NULL) {
|
|
esp_err_t end_err = chip->os_func->end(chip->os_func_data);
|
|
if (err == ESP_OK) {
|
|
err = end_err; // Only return the 'end' error if we haven't already failed
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
// check that the 'chip' parameter is properly initialised
|
|
static IRAM_ATTR esp_err_t check_chip_pointer_default(esp_flash_t **inout_chip)
|
|
{
|
|
esp_flash_t *chip = *inout_chip;
|
|
if (chip == NULL) {
|
|
chip = esp_flash_default_chip;
|
|
}
|
|
*inout_chip = chip;
|
|
if (chip == NULL || !esp_flash_chip_driver_initialized(chip)) {
|
|
return ESP_ERR_FLASH_NOT_INITIALISED;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static IRAM_ATTR esp_err_t flash_end_flush_cache(esp_flash_t* chip, esp_err_t err, bool bus_acquired, uint32_t address, uint32_t length)
|
|
{
|
|
if (!bus_acquired) {
|
|
// Try to acquire the bus again to flush the cache before exit.
|
|
esp_err_t acquire_err = rom_spiflash_api_funcs->start(chip);
|
|
if (acquire_err != ESP_OK) {
|
|
return (err == ESP_OK)? acquire_err: err;
|
|
}
|
|
}
|
|
|
|
if (chip->host->driver->flush_cache) {
|
|
esp_err_t flush_err = chip->host->driver->flush_cache(chip->host, address, length);
|
|
if (err == ESP_OK) {
|
|
err = flush_err;
|
|
}
|
|
}
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
#endif // !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
|
|
/* Top-level API functions, calling into chip_drv functions via chip->drv */
|
|
|
|
static esp_err_t detect_spi_flash_chip(esp_flash_t *chip);
|
|
|
|
bool IRAM_ATTR esp_flash_chip_driver_initialized(const esp_flash_t *chip)
|
|
{
|
|
if (!chip->chip_drv) return false;
|
|
return true;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_init(esp_flash_t *chip)
|
|
{
|
|
// Chip init flow
|
|
// 1. Read chip id
|
|
// 2. (optional) Detect chip vendor
|
|
// 3. Get basic parameters of the chip (size, dummy count, etc.)
|
|
// 4. Init chip into desired mode (without breaking the cache!)
|
|
esp_err_t err = ESP_OK;
|
|
if (chip == NULL || chip->host == NULL || chip->host->driver == NULL ||
|
|
((memspi_host_inst_t*)chip->host)->spi == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
//read chip id
|
|
uint32_t flash_id;
|
|
int retries = 10;
|
|
do {
|
|
err = esp_flash_read_chip_id(chip, &flash_id);
|
|
} while (err == ESP_ERR_FLASH_NOT_INITIALISED && retries-- > 0);
|
|
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
chip->chip_id = flash_id;
|
|
|
|
if (!esp_flash_chip_driver_initialized(chip)) {
|
|
// Detect chip_drv
|
|
err = detect_spi_flash_chip(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
// Detect flash size
|
|
uint32_t size;
|
|
err = esp_flash_get_physical_size(chip, &size);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "failed to get chip size");
|
|
return err;
|
|
}
|
|
|
|
if (chip->chip_drv->get_chip_caps == NULL) {
|
|
// chip caps get failed, pass the flash capability check.
|
|
ESP_EARLY_LOGW(TAG, "get_chip_caps function pointer hasn't been initialized");
|
|
} else {
|
|
if (((chip->chip_drv->get_chip_caps(chip) & SPI_FLASH_CHIP_CAP_32MB_SUPPORT) == 0) && (size > (16 *1024 * 1024))) {
|
|
ESP_EARLY_LOGW(TAG, "Detected flash size > 16 MB, but access beyond 16 MB is not supported for this flash model yet.");
|
|
size = (16 * 1024 * 1024);
|
|
}
|
|
}
|
|
|
|
ESP_LOGI(TAG, "flash io: %s", io_mode_str[chip->read_mode]);
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (err == ESP_OK) {
|
|
// Try to set the flash mode to whatever default mode was chosen
|
|
err = chip->chip_drv->set_io_mode(chip);
|
|
if (err == ESP_ERR_FLASH_NO_RESPONSE && !esp_flash_is_quad_mode(chip)) {
|
|
//some chips (e.g. Winbond) don't support to clear QE, treat as success
|
|
err = ESP_OK;
|
|
}
|
|
}
|
|
// Done: all fields on 'chip' are initialised
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
// Note: This function is only used for internal. Only call this function to initialize the main flash.
|
|
// (flash chip on SPI1 CS0)
|
|
esp_err_t IRAM_ATTR esp_flash_init_main(esp_flash_t *chip)
|
|
{
|
|
// Chip init flow
|
|
// 1. Read chip id
|
|
// 2. (optional) Detect chip vendor
|
|
// 3. Get basic parameters of the chip (size, dummy count, etc.)
|
|
// 4. Init chip into desired mode (without breaking the cache!)
|
|
esp_err_t err = ESP_OK;
|
|
bool octal_mode;
|
|
|
|
if (chip == NULL || chip->host == NULL || chip->host->driver == NULL ||
|
|
((memspi_host_inst_t*)chip->host)->spi == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
octal_mode = (chip->read_mode >= SPI_FLASH_OPI_FLAG);
|
|
//read chip id
|
|
// This can indicate the MSPI support OPI, if the flash works on MSPI in OPI mode, we directly bypass read id.
|
|
uint32_t flash_id = 0;
|
|
if (octal_mode) {
|
|
// bypass the reading but get the flash_id from the ROM variable, to avoid resetting the chip to QSPI mode and read the ID again
|
|
flash_id = g_rom_flashchip.device_id;
|
|
} else {
|
|
int retries = 10;
|
|
do {
|
|
err = esp_flash_read_chip_id(chip, &flash_id);
|
|
} while (err == ESP_ERR_FLASH_NOT_INITIALISED && retries-- > 0);
|
|
}
|
|
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
chip->chip_id = flash_id;
|
|
|
|
if (!esp_flash_chip_driver_initialized(chip)) {
|
|
// Detect chip_drv
|
|
err = detect_spi_flash_chip(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
// Detect flash size
|
|
uint32_t size;
|
|
err = esp_flash_get_physical_size(chip, &size);
|
|
if (err != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "failed to get chip size");
|
|
return err;
|
|
}
|
|
|
|
if (chip->chip_drv->get_chip_caps == NULL) {
|
|
// chip caps get failed, pass the flash capability check.
|
|
ESP_EARLY_LOGW(TAG, "get_chip_caps function pointer hasn't been initialized");
|
|
} else {
|
|
if (((chip->chip_drv->get_chip_caps(chip) & SPI_FLASH_CHIP_CAP_32MB_SUPPORT) == 0) && (size > (16 *1024 * 1024))) {
|
|
ESP_EARLY_LOGW(TAG, "Detected flash size > 16 MB, but access beyond 16 MB is not supported for this flash model yet.");
|
|
size = (16 * 1024 * 1024);
|
|
}
|
|
}
|
|
|
|
ESP_EARLY_LOGI(TAG, "flash io: %s", io_mode_str[chip->read_mode]);
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (err == ESP_OK && !octal_mode) {
|
|
// Try to set the flash mode to whatever default mode was chosen
|
|
err = chip->chip_drv->set_io_mode(chip);
|
|
if (err == ESP_ERR_FLASH_NO_RESPONSE && !esp_flash_is_quad_mode(chip)) {
|
|
//some chips (e.g. Winbond) don't support to clear QE, treat as success
|
|
err = ESP_OK;
|
|
}
|
|
}
|
|
// Done: all fields on 'chip' are initialised
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
static esp_err_t IRAM_ATTR read_id_core(esp_flash_t* chip, uint32_t* out_id, bool sanity_check)
|
|
{
|
|
bool installed = esp_flash_chip_driver_initialized(chip);
|
|
esp_err_t err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
esp_err_t (*read_id_func)(void*, uint32_t*);
|
|
void* read_id_arg;
|
|
if (installed && chip->chip_drv->read_id) {
|
|
read_id_func = (void*)chip->chip_drv->read_id;
|
|
read_id_arg = (void*)chip;
|
|
} else {
|
|
//default option if the chip is not detected/chosen yet.
|
|
read_id_func = (void*)chip->host->driver->read_id;
|
|
read_id_arg = (void*)chip->host;
|
|
}
|
|
|
|
// Inner function fails if it sees all-ones or all-zeroes.
|
|
err = read_id_func(read_id_arg, out_id);
|
|
|
|
if (sanity_check && err == ESP_OK) {
|
|
// Send RDID command twice, check for a matching result and retry in case we just powered on
|
|
uint32_t new_id;
|
|
err = read_id_func(read_id_arg, &new_id);
|
|
if (err == ESP_OK && (new_id != *out_id)) {
|
|
err = ESP_ERR_FLASH_NOT_INITIALISED;
|
|
}
|
|
}
|
|
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
// Faster version with sanity check.
|
|
// Called in esp_flash_init and unit test (though not public)
|
|
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* out_id)
|
|
{
|
|
return read_id_core(chip, out_id, true);
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_FLASH_ROM_IMPL
|
|
esp_err_t esp_flash_read_id(esp_flash_t* chip, uint32_t* out_id)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
//Accept uninitialized chip when reading chip id
|
|
if (err != ESP_OK && !(err == ESP_ERR_FLASH_NOT_INITIALISED && chip != NULL)) return err;
|
|
if (out_id == NULL) return ESP_ERR_INVALID_ARG;
|
|
|
|
return read_id_core(chip, out_id, false);
|
|
}
|
|
#endif //CONFIG_SPI_FLASH_ROM_IMPL
|
|
|
|
static esp_err_t IRAM_ATTR NOINLINE_ATTR read_unique_id(esp_flash_t* chip, uint64_t* out_uid)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->read_unique_id(chip, out_uid);
|
|
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
esp_err_t esp_flash_read_unique_chip_id(esp_flash_t *chip, uint64_t* out_uid)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (chip->chip_drv->get_chip_caps == NULL) {
|
|
// chip caps get failed, pass the flash capability check.
|
|
ESP_EARLY_LOGW(TAG, "get_chip_caps function pointer hasn't been initialized");
|
|
} else {
|
|
if ((chip->chip_drv->get_chip_caps(chip) & SPI_FLASH_CHIP_CAP_UNIQUE_ID) == 0) {
|
|
ESP_EARLY_LOGE(TAG, "chip %s doesn't support reading unique id", chip->chip_drv->name);
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
if (out_uid == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
};
|
|
|
|
return read_unique_id(chip, out_uid);
|
|
}
|
|
|
|
static esp_err_t IRAM_ATTR detect_spi_flash_chip(esp_flash_t *chip)
|
|
{
|
|
esp_err_t err;
|
|
uint32_t flash_id = chip->chip_id;
|
|
|
|
// Detect the chip and set the chip_drv structure for it
|
|
const spi_flash_chip_t **drivers = esp_flash_registered_chips;
|
|
while (*drivers != NULL && !esp_flash_chip_driver_initialized(chip)) {
|
|
chip->chip_drv = *drivers;
|
|
// start/end SPI operation each time, for multitasking
|
|
// and also so esp_flash_registered_flash_drivers can live in flash
|
|
ESP_EARLY_LOGD(TAG, "trying chip: %s", chip->chip_drv->name);
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (chip->chip_drv->probe(chip, flash_id) != ESP_OK) {
|
|
chip->chip_drv = NULL;
|
|
}
|
|
// if probe succeeded, chip->drv stays set
|
|
drivers++;
|
|
|
|
err = rom_spiflash_api_funcs->end(chip, err);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
if (!esp_flash_chip_driver_initialized(chip)) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "detected chip: %s", chip->chip_drv->name);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_physical_size(esp_flash_t *chip, uint32_t *flash_size)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
VERIFY_CHIP_OP(detect_size);
|
|
if (flash_size == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint32_t detect_size;
|
|
err = chip->chip_drv->detect_size(chip, &detect_size);
|
|
if (err == ESP_OK) {
|
|
if (chip->size == 0) {
|
|
// chip->size will not be changed if detected, it will always be equal to configured flash size.
|
|
chip->size = detect_size;
|
|
}
|
|
*flash_size = detect_size;
|
|
}
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_FLASH_ROM_IMPL
|
|
|
|
/* Return true if regions 'a' and 'b' overlap at all, based on their start offsets and lengths. */
|
|
inline static bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len);
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_size(esp_flash_t *chip, uint32_t *out_size)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (out_size == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (chip->size != 0) {
|
|
*out_size = chip->size;
|
|
return ESP_OK;
|
|
}
|
|
//Return flash chip physical size, when this API is called before flash initialisation,
|
|
//After initialization will return available size.
|
|
return esp_flash_get_physical_size(chip, out_size);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_erase_chip(esp_flash_t *chip)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
uint32_t size = 0;
|
|
err = esp_flash_get_size(chip, &size);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "esp_flash_get_size failed, flash error code: %d", err);
|
|
return err;
|
|
}
|
|
err = esp_flash_erase_region(chip, 0, size);
|
|
return err;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(erase_sector);
|
|
VERIFY_CHIP_OP(erase_block);
|
|
CHECK_WRITE_ADDRESS(chip, start, len);
|
|
|
|
uint32_t block_erase_size = chip->chip_drv->erase_block == NULL ? 0 : chip->chip_drv->block_erase_size;
|
|
uint32_t sector_size = chip->chip_drv->sector_size;
|
|
|
|
COUNTER_START();
|
|
|
|
if (sector_size == 0 || (block_erase_size % sector_size) != 0) {
|
|
return ESP_ERR_FLASH_NOT_INITIALISED;
|
|
}
|
|
if (start > chip->size || start + len > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if ((start % chip->chip_drv->sector_size) != 0 || (len % chip->chip_drv->sector_size) != 0) {
|
|
// Can only erase multiples of the sector size, starting at sector boundary
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (len == 0) {
|
|
return ESP_OK;
|
|
}
|
|
|
|
err = ESP_OK;
|
|
// Check for write protected regions overlapping the erase region
|
|
if (chip->chip_drv->get_protected_regions != NULL &&
|
|
chip->chip_drv->num_protectable_regions > 0) {
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint64_t protected = 0;
|
|
err = chip->chip_drv->get_protected_regions(chip, &protected);
|
|
if (err == ESP_OK && protected != 0) {
|
|
for (int i = 0; i < chip->chip_drv->num_protectable_regions && err == ESP_OK; i++) {
|
|
const esp_flash_region_t *region = &chip->chip_drv->protectable_regions[i];
|
|
if ((protected & BIT64(i))
|
|
&& regions_overlap(start, len, region->offset, region->size)) {
|
|
err = ESP_ERR_FLASH_PROTECTED;
|
|
}
|
|
}
|
|
}
|
|
// Don't lock the SPI flash for the entire erase, as this may be very long
|
|
err = rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
uint32_t erase_addr = start;
|
|
uint32_t len_remain = len;
|
|
// Indicate whether the bus is acquired by the driver, needs to be released before return
|
|
bool bus_acquired = false;
|
|
while (1) {
|
|
//check before the operation, in case this is called too close to the last operation
|
|
if (chip->chip_drv->yield) {
|
|
err = chip->chip_drv->yield(chip, 0);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
break;
|
|
}
|
|
bus_acquired = true;
|
|
|
|
#ifndef CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
|
|
// If possible erase an entire multi-sector block
|
|
if (block_erase_size > 0 && len_remain >= block_erase_size && (erase_addr % block_erase_size) == 0) {
|
|
err = chip->chip_drv->erase_block(chip, erase_addr);
|
|
erase_addr += block_erase_size;
|
|
len_remain -= block_erase_size;
|
|
COUNTER_ADD_BYTES(erase, block_erase_size);
|
|
} else
|
|
#endif
|
|
{
|
|
// Otherwise erase individual sector only
|
|
err = chip->chip_drv->erase_sector(chip, erase_addr);
|
|
erase_addr += sector_size;
|
|
len_remain -= sector_size;
|
|
COUNTER_ADD_BYTES(erase, sector_size);
|
|
}
|
|
|
|
assert(len_remain < len);
|
|
|
|
if (err != ESP_OK || len_remain == 0) {
|
|
// On ESP32, the cache re-enable is in the end() function, while flush_cache should
|
|
// happen when the cache is still disabled on ESP32. Break before the end() function and
|
|
// do end() later
|
|
assert(bus_acquired);
|
|
break;
|
|
}
|
|
|
|
err = rom_spiflash_api_funcs->end(chip, ESP_OK);
|
|
if (err != ESP_OK) {
|
|
break;
|
|
}
|
|
bus_acquired = false;
|
|
}
|
|
|
|
COUNTER_STOP(erase);
|
|
|
|
return rom_spiflash_api_funcs->flash_end_flush_cache(chip, err, bus_acquired, start, len);
|
|
}
|
|
|
|
#endif // !CONFIG_SPI_FLASH_ROM_IMPL
|
|
|
|
#if defined(CONFIG_SPI_FLASH_ROM_IMPL) && ESP_ROM_HAS_ERASE_0_REGION_BUG
|
|
|
|
/* ROM esp_flash_erase_region implementation doesn't handle 0 erase size correctly.
|
|
* Check the size and call ROM function instead of overriding it completely.
|
|
* The behavior is slightly different from esp_flash_erase_region above, thought:
|
|
* here the check for 0 size is done first, but in esp_flash_erase_region the check is
|
|
* done after the other arguments are checked.
|
|
*/
|
|
extern esp_err_t rom_esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len);
|
|
esp_err_t IRAM_ATTR esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len)
|
|
{
|
|
if (len == 0) {
|
|
return ESP_OK;
|
|
}
|
|
return rom_esp_flash_erase_region(chip, start, len);
|
|
}
|
|
#endif // defined(CONFIG_SPI_FLASH_ROM_IMPL) && ESP_ROM_HAS_ERASE_0_REGION_BUG
|
|
|
|
#ifndef CONFIG_SPI_FLASH_ROM_IMPL
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_chip_write_protect(esp_flash_t *chip, bool *out_write_protected)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(get_chip_write_protect);
|
|
if (out_write_protected == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->get_chip_write_protect(chip, out_write_protected);
|
|
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_set_chip_write_protect(esp_flash_t *chip, bool write_protect)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(set_chip_write_protect);
|
|
//TODO: skip writing if already locked or unlocked
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->set_chip_write_protect(chip, write_protect);
|
|
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
esp_err_t esp_flash_get_protectable_regions(const esp_flash_t *chip, const esp_flash_region_t **out_regions, uint32_t *out_num_regions)
|
|
{
|
|
if(out_num_regions != NULL) {
|
|
*out_num_regions = 0; // In case caller doesn't check result
|
|
}
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check((esp_flash_t **)&chip);
|
|
VERIFY_CHIP_OP(get_protected_regions);
|
|
|
|
if(out_regions == NULL || out_num_regions == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
*out_num_regions = chip->chip_drv->num_protectable_regions;
|
|
*out_regions = chip->chip_drv->protectable_regions;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t find_region(const esp_flash_t *chip, const esp_flash_region_t *region, uint8_t *index)
|
|
{
|
|
if (region == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
for(*index = 0; *index < chip->chip_drv->num_protectable_regions; (*index)++) {
|
|
if (memcmp(&chip->chip_drv->protectable_regions[*index],
|
|
region, sizeof(esp_flash_region_t)) == 0) {
|
|
return ESP_OK;
|
|
}
|
|
}
|
|
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool *out_protected)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(get_protected_regions);
|
|
|
|
if (out_protected == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
uint8_t index;
|
|
err = find_region(chip, region, &index);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
uint64_t protection_mask = 0;
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->get_protected_regions(chip, &protection_mask);
|
|
if (err == ESP_OK) {
|
|
*out_protected = protection_mask & (1LL << index);
|
|
}
|
|
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_set_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool protect)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(set_protected_regions);
|
|
|
|
uint8_t index;
|
|
err = find_region(chip, region, &index);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
uint64_t protection_mask = 0;
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->get_protected_regions(chip, &protection_mask);
|
|
if (err == ESP_OK) {
|
|
if (protect) {
|
|
protection_mask |= (1LL << index);
|
|
} else {
|
|
protection_mask &= ~(1LL << index);
|
|
}
|
|
err = chip->chip_drv->set_protected_regions(chip, protection_mask);
|
|
}
|
|
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(read);
|
|
if (buffer == NULL || address > chip->size || address+length > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (length == 0) {
|
|
return ESP_OK;
|
|
}
|
|
|
|
//when the cache is disabled, only the DRAM can be read, check whether we need to receive in another buffer in DRAM.
|
|
bool direct_read = false;
|
|
//If the buffer is internal already, it's ok to use it directly
|
|
direct_read |= esp_ptr_in_dram(buffer);
|
|
//If not, we need to check if the HW support direct write
|
|
direct_read |= chip->host->driver->supports_direct_read(chip->host, buffer);
|
|
uint8_t* temp_buffer = NULL;
|
|
|
|
//each time, we at most read this length
|
|
//after that, we release the lock to allow some other operations
|
|
size_t read_chunk_size = MIN(MAX_READ_CHUNK, length);
|
|
|
|
if (!direct_read) {
|
|
size_t actual_len = 0;
|
|
if (chip->os_func->get_temp_buffer != NULL) {
|
|
temp_buffer = chip->os_func->get_temp_buffer(chip->os_func_data, read_chunk_size, &actual_len);
|
|
read_chunk_size = actual_len;
|
|
}
|
|
if (temp_buffer == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
}
|
|
|
|
COUNTER_START();
|
|
|
|
err = ESP_OK;
|
|
do {
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
break;
|
|
}
|
|
//if required (dma buffer allocated), read to the buffer instead of the original buffer
|
|
uint8_t* buffer_to_read = (temp_buffer)? temp_buffer : buffer;
|
|
|
|
// Length we will read this iteration is either the chunk size or the remaining length, whichever is smaller
|
|
size_t length_to_read = MIN(read_chunk_size, length);
|
|
|
|
if (err == ESP_OK) {
|
|
err = chip->chip_drv->read(chip, buffer_to_read, address, length_to_read);
|
|
}
|
|
if (err != ESP_OK) {
|
|
rom_spiflash_api_funcs->end(chip, err);
|
|
break;
|
|
}
|
|
//even if this is failed, the data is still valid, copy before quit
|
|
err = rom_spiflash_api_funcs->end(chip, err);
|
|
|
|
//copy back to the original buffer
|
|
if (temp_buffer) {
|
|
memcpy(buffer, temp_buffer, length_to_read);
|
|
}
|
|
address += length_to_read;
|
|
length -= length_to_read;
|
|
buffer = (void*)((intptr_t)buffer + length_to_read);
|
|
COUNTER_ADD_BYTES(read, length_to_read);
|
|
} while (err == ESP_OK && length > 0);
|
|
|
|
if (chip->os_func->release_temp_buffer != NULL) {
|
|
chip->os_func->release_temp_buffer(chip->os_func_data, temp_buffer);
|
|
}
|
|
|
|
COUNTER_STOP(read);
|
|
return err;
|
|
}
|
|
|
|
#if CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
|
|
static esp_err_t IRAM_ATTR s_check_setting_zero_to_one(esp_flash_t *chip, uint32_t verify_address, uint32_t remain_verify_len, const uint32_t *to_write_buf, bool is_encrypted)
|
|
{
|
|
esp_err_t err = ESP_FAIL;
|
|
uint8_t verify_buffer[VERIFY_BUF_LEN];
|
|
uint32_t *val_in_flash = (uint32_t *)verify_buffer;
|
|
|
|
while (remain_verify_len) {
|
|
uint32_t this_len = MIN(remain_verify_len, VERIFY_BUF_LEN);
|
|
|
|
err = chip->chip_drv->read(chip, verify_buffer, verify_address, this_len);
|
|
if (err != ESP_OK) {
|
|
ESP_DRAM_LOGE(TAG, "failed to read flash to verify if setting zero to one, err: 0x%x", err);
|
|
return err;
|
|
}
|
|
|
|
for (int r = 0; r < this_len / sizeof(uint32_t); r++) {
|
|
if (is_encrypted) {
|
|
(void)to_write_buf;
|
|
if (val_in_flash[r] != 0xFFFFFFFF) {
|
|
ESP_DRAM_LOGW(TAG, "Write at offset 0x%x but not erased (0x%08x)",
|
|
verify_address + r, val_in_flash[r]);
|
|
}
|
|
} else {
|
|
if ((val_in_flash[r] & to_write_buf[r]) != to_write_buf[r]) {
|
|
ESP_DRAM_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x",
|
|
verify_address + r, to_write_buf[r], val_in_flash[r], (val_in_flash[r] & to_write_buf[r]));
|
|
}
|
|
}
|
|
}
|
|
|
|
remain_verify_len -= this_len;
|
|
verify_address += this_len;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
#endif //#if CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
|
|
|
|
#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
static esp_err_t IRAM_ATTR s_verify_write(esp_flash_t *chip, uint32_t verify_address, uint32_t remain_verify_len, const uint32_t *expected_buf, bool is_encrypted)
|
|
{
|
|
esp_err_t err = ESP_FAIL;
|
|
uint8_t verify_buffer[VERIFY_BUF_LEN];
|
|
uint32_t *val_in_flash = (uint32_t *)verify_buffer;
|
|
|
|
while (remain_verify_len) {
|
|
uint32_t this_len = MIN(remain_verify_len, VERIFY_BUF_LEN);
|
|
|
|
if (is_encrypted) {
|
|
err = esp_flash_read_encrypted(chip, verify_address, verify_buffer, this_len);
|
|
} else {
|
|
err = chip->chip_drv->read(chip, verify_buffer, verify_address, this_len);
|
|
}
|
|
if (err != ESP_OK) {
|
|
ESP_DRAM_LOGE(TAG, "failed to read flash to verify previous write, err: 0x%x", err);
|
|
return err;
|
|
}
|
|
|
|
for (int r = 0; r < this_len / sizeof(uint32_t); r++) {
|
|
if (val_in_flash[r] != expected_buf[r]) {
|
|
#if CONFIG_SPI_FLASH_LOG_FAILED_WRITE
|
|
ESP_DRAM_LOGE(TAG, "Bad write at %d offset: 0x%x, expected: 0x%08x, readback: 0x%08x", r, verify_address + r, expected_buf[r], val_in_flash[r]);
|
|
#endif //#if CONFIG_SPI_FLASH_LOG_FAILED_WRITE
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
|
|
expected_buf = (uint32_t *)((void *)expected_buf + this_len);
|
|
remain_verify_len -= this_len;
|
|
verify_address += this_len;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
#endif //#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
//used for verify write
|
|
bool is_encrypted = false;
|
|
#endif //CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(write);
|
|
CHECK_WRITE_ADDRESS(chip, address, length);
|
|
if (buffer == NULL || address > chip->size || address+length > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (length == 0) {
|
|
return ESP_OK;
|
|
}
|
|
|
|
//when the cache is disabled, only the DRAM can be read, check whether we need to copy the data first
|
|
bool direct_write = false;
|
|
//If the buffer is internal already, it's ok to write it directly
|
|
direct_write |= esp_ptr_in_dram(buffer);
|
|
//If not, we need to check if the HW support direct write
|
|
direct_write |= chip->host->driver->supports_direct_write(chip->host, buffer);
|
|
|
|
// Indicate whether the bus is acquired by the driver, needs to be released before return
|
|
bool bus_acquired = false;
|
|
err = ESP_OK;
|
|
|
|
COUNTER_START();
|
|
|
|
/* Write output in chunks, either by buffering on stack or
|
|
by artificially cutting into MAX_WRITE_CHUNK parts (in an OS
|
|
environment, this prevents writing from causing interrupt or higher priority task
|
|
starvation.) */
|
|
uint32_t write_addr = address;
|
|
uint32_t len_remain = length;
|
|
while (1) {
|
|
uint32_t write_len;
|
|
const void *write_buf;
|
|
uint32_t temp_buf[8];
|
|
if (direct_write) {
|
|
write_len = MIN(len_remain, MAX_WRITE_CHUNK);
|
|
write_buf = buffer;
|
|
} else {
|
|
write_len = MIN(len_remain, sizeof(temp_buf));
|
|
memcpy(temp_buf, buffer, write_len);
|
|
write_buf = temp_buf;
|
|
}
|
|
|
|
//check before the operation, in case this is called too close to the last operation
|
|
if (chip->chip_drv->yield) {
|
|
err = chip->chip_drv->yield(chip, 0);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
goto restore_cache;
|
|
}
|
|
bus_acquired = true;
|
|
|
|
#if CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
|
|
err = s_check_setting_zero_to_one(chip, write_addr, write_len, write_buf, is_encrypted);
|
|
if (err != ESP_OK) {
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
#endif //#if CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
|
|
|
|
err = chip->chip_drv->write(chip, write_buf, write_addr, write_len);
|
|
len_remain -= write_len;
|
|
assert(len_remain < length);
|
|
COUNTER_ADD_BYTES(write, write_len);
|
|
|
|
if (err != ESP_OK) {
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
assert(bus_acquired);
|
|
goto restore_cache;
|
|
}
|
|
|
|
#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
err = s_verify_write(chip, write_addr, write_len, write_buf, is_encrypted);
|
|
if (err != ESP_OK) {
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
#endif //#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
|
|
|
|
if (len_remain == 0) {
|
|
//Flash operation done
|
|
break;
|
|
}
|
|
|
|
err = rom_spiflash_api_funcs->end(chip, err);
|
|
if (err != ESP_OK) {
|
|
goto restore_cache;
|
|
}
|
|
bus_acquired = false;
|
|
|
|
write_addr += write_len;
|
|
buffer = (void *)((intptr_t)buffer + write_len);
|
|
}
|
|
|
|
COUNTER_STOP(write);
|
|
err = rom_spiflash_api_funcs->flash_end_flush_cache(chip, err, bus_acquired, address, length);
|
|
|
|
return err;
|
|
|
|
restore_cache:
|
|
COUNTER_STOP(write);
|
|
ret = rom_spiflash_api_funcs->flash_end_flush_cache(chip, err, bus_acquired, address, length);
|
|
if (ret != ESP_OK) {
|
|
ESP_DRAM_LOGE(TAG, "restore cache fail\n");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
inline static IRAM_ATTR bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len)
|
|
{
|
|
uint32_t a_end = a_start + a_len;
|
|
uint32_t b_end = b_start + b_len;
|
|
return (a_end > b_start && b_end > a_start);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_read_encrypted(esp_flash_t *chip, uint32_t address, void *out_buffer, uint32_t length)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
if (err != ESP_OK) return err;
|
|
if (address + length > g_rom_flashchip.chip_size) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
if (length == 0) {
|
|
return ESP_OK;
|
|
}
|
|
if (out_buffer == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
COUNTER_START();
|
|
const uint8_t *map;
|
|
spi_flash_mmap_handle_t map_handle;
|
|
size_t map_src = address & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
|
|
size_t map_size = length + (address - map_src);
|
|
|
|
err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
memcpy(out_buffer, map + (address - map_src), length);
|
|
spi_flash_munmap(map_handle);
|
|
|
|
COUNTER_ADD_BYTES(read, length);
|
|
COUNTER_STOP(read);
|
|
return err;
|
|
}
|
|
|
|
// test only, non-public
|
|
IRAM_ATTR esp_err_t esp_flash_get_io_mode(esp_flash_t* chip, bool* qe)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(get_io_mode);
|
|
esp_flash_io_mode_t io_mode;
|
|
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
err = chip->chip_drv->get_io_mode(chip, &io_mode);
|
|
err = rom_spiflash_api_funcs->end(chip, err);
|
|
if (err == ESP_OK) {
|
|
*qe = (io_mode == SPI_FLASH_QOUT);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
IRAM_ATTR esp_err_t esp_flash_set_io_mode(esp_flash_t* chip, bool qe)
|
|
{
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(set_io_mode);
|
|
|
|
chip->read_mode = (qe? SPI_FLASH_QOUT: SPI_FLASH_SLOWRD);
|
|
err = rom_spiflash_api_funcs->start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
err = chip->chip_drv->set_io_mode(chip);
|
|
return rom_spiflash_api_funcs->end(chip, err);
|
|
}
|
|
#endif //CONFIG_SPI_FLASH_ROM_IMPL
|
|
|
|
FORCE_INLINE_ATTR esp_err_t s_encryption_write_lock(esp_flash_t *chip) {
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
esp_crypto_dma_lock_acquire();
|
|
#endif //CONFIG_IDF_TARGET_ESP32S2
|
|
return rom_spiflash_api_funcs->start(chip);
|
|
}
|
|
|
|
FORCE_INLINE_ATTR esp_err_t s_encryption_write_unlock(esp_flash_t *chip) {
|
|
esp_err_t err = rom_spiflash_api_funcs->end(chip, ESP_OK);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
esp_crypto_dma_lock_release();
|
|
#endif //CONFIG_IDF_TARGET_ESP32S2
|
|
return err;
|
|
}
|
|
|
|
|
|
#if !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
// use `esp_flash_write_encrypted` ROM version not in C3 and S3
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_write_encrypted(esp_flash_t *chip, uint32_t address, const void *buffer, uint32_t length)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
//used for verify write
|
|
bool is_encrypted = true;
|
|
#endif //CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
|
|
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
|
|
VERIFY_CHIP_OP(write);
|
|
// Flash encryption only support on main flash.
|
|
if (chip != esp_flash_default_chip) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
CHECK_WRITE_ADDRESS(chip, address, length);
|
|
|
|
if (buffer == NULL || address + length > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if ((address % 16) != 0) {
|
|
ESP_DRAM_LOGE(TAG, "flash encrypted write address must be 16 bytes aligned");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (length == 0) {
|
|
return ESP_OK;
|
|
}
|
|
|
|
if ((length % 16) != 0) {
|
|
ESP_DRAM_LOGE(TAG, "flash encrypted write length must be multiple of 16");
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
|
|
bool bus_acquired = false;
|
|
|
|
bool lock_once = true;
|
|
const uint8_t *ssrc = (const uint8_t *)buffer;
|
|
|
|
/* For buffer in internal RAM already, we only need to lock only once.
|
|
While for buffer in flash, we need to copy data from flash to internal RAM before
|
|
encrypted write every time. That means we need to lock/unlock before/after encrypted
|
|
write every time.
|
|
*/
|
|
lock_once = esp_ptr_in_dram(buffer);
|
|
|
|
COUNTER_START();
|
|
|
|
/* On ESP32, write_encrypted encrypts data in RAM as it writes,
|
|
so copy to a temporary buffer - 32 bytes at a time.
|
|
|
|
Each call to write_encrypted takes a 32 byte "row" of
|
|
data to encrypt, and each row is two 16 byte AES blocks
|
|
that share a key (as derived from flash address).
|
|
|
|
On ESP32-S2 and later, the temporary buffer need to be
|
|
seperated into 16-bytes, 32-bytes, 64-bytes(if supported).
|
|
|
|
So, on ESP32-S2 and later, here has a totally different
|
|
data prepare implementation.
|
|
*/
|
|
uint8_t encrypt_buf[64] __attribute__((aligned(4)));
|
|
uint32_t row_size_length;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
uint8_t pre_buf[16] = {0};
|
|
uint8_t post_buf[16] = {0};
|
|
|
|
if((address % 32) != 0) {
|
|
esp_flash_read_encrypted(chip, address - 16, pre_buf, 16);
|
|
}
|
|
if(((address + length) % 32) != 0) {
|
|
esp_flash_read_encrypted(chip, address + length, post_buf, 16);
|
|
}
|
|
#endif
|
|
|
|
if (lock_once == true) {
|
|
err = s_encryption_write_lock(chip);
|
|
if (err != ESP_OK) {
|
|
ESP_DRAM_LOGE(TAG, "flash acquire lock failed");
|
|
return err;
|
|
}
|
|
bus_acquired = true;
|
|
}
|
|
|
|
for (size_t i = 0; i < length; i += row_size_length) {
|
|
uint32_t row_addr = address + i;
|
|
uint8_t row_size;
|
|
uint8_t encrypt_byte;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
if (i == 0 && (row_addr % 32) != 0) {
|
|
/* writing to second block of a 32 byte row */
|
|
row_size = 16;
|
|
row_addr -= 16;
|
|
/* copy to second block in buffer */
|
|
memcpy(encrypt_buf + 16, ssrc + i, row_size);
|
|
/* decrypt the first block from flash, will reencrypt to same bytes */
|
|
memcpy(encrypt_buf, pre_buf, 16);
|
|
} else if (length - i == 16) {
|
|
/* 16 bytes left, is first block of a 32 byte row */
|
|
row_size = 16;
|
|
/* copy to first block in buffer */
|
|
memcpy(encrypt_buf, ssrc + i, row_size);
|
|
/* decrypt the second block from flash, will reencrypt to same bytes */
|
|
memcpy(encrypt_buf + 16, post_buf, 16);
|
|
} else {
|
|
/* Writing a full 32 byte row (2 blocks) */
|
|
row_size = 32;
|
|
memcpy(encrypt_buf, ssrc + i, row_size);
|
|
}
|
|
encrypt_byte = 32;
|
|
row_size_length = row_size;
|
|
#else // FOR ESP32-S2, ESP32-S3, ESP32-C3
|
|
if ((row_addr % 64) == 0 && (length - i) >= 64 && SOC_FLASH_ENCRYPTED_XTS_AES_BLOCK_MAX == 64) {
|
|
row_size = 64;
|
|
memcpy(encrypt_buf, ssrc + i, row_size);
|
|
} else if ((row_addr % 32) == 0 && (length - i) >= 32) {
|
|
row_size = 32;
|
|
memcpy(encrypt_buf, ssrc + i, row_size);
|
|
} else {
|
|
row_size = 16;
|
|
memcpy(encrypt_buf, ssrc + i, row_size);
|
|
}
|
|
encrypt_byte = row_size;
|
|
row_size_length = row_size;
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
|
|
#if CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
|
|
err = s_check_setting_zero_to_one(chip, row_addr, encrypt_byte, NULL, is_encrypted);
|
|
if (err != ESP_OK) {
|
|
rom_spiflash_api_funcs->end(chip, ESP_OK);
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
esp_crypto_dma_lock_release();
|
|
#endif //CONFIG_IDF_TARGET_ESP32S2
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
#endif //#if CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
|
|
|
|
if (lock_once == false) {
|
|
err = s_encryption_write_lock(chip);
|
|
if (err != ESP_OK) {
|
|
goto restore_cache;
|
|
}
|
|
bus_acquired = true;
|
|
}
|
|
|
|
err = chip->chip_drv->write_encrypted(chip, (uint32_t *)encrypt_buf, row_addr, encrypt_byte);
|
|
if (err!= ESP_OK) {
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
if (lock_once == false) {
|
|
err = s_encryption_write_unlock(chip);
|
|
if (err != ESP_OK) {
|
|
bus_acquired = false;
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
bus_acquired = false;
|
|
}
|
|
|
|
COUNTER_ADD_BYTES(write, encrypt_byte);
|
|
|
|
#if CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
err = s_verify_write(chip, row_addr, encrypt_byte, (uint32_t *)encrypt_buf, is_encrypted);
|
|
if (err != ESP_OK) {
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
#endif //CONFIG_SPI_FLASH_VERIFY_WRITE
|
|
}
|
|
|
|
if (lock_once == true) {
|
|
err = s_encryption_write_unlock(chip);
|
|
if (err != ESP_OK) {
|
|
bus_acquired = false;
|
|
//Error happens, we end flash operation. Re-enable cache and flush it
|
|
goto restore_cache;
|
|
}
|
|
}
|
|
|
|
bus_acquired = false;
|
|
|
|
COUNTER_STOP(write);
|
|
err = rom_spiflash_api_funcs->flash_end_flush_cache(chip, err, bus_acquired, address, length);
|
|
|
|
return err;
|
|
|
|
restore_cache:
|
|
s_encryption_write_unlock(chip);
|
|
bus_acquired = false;
|
|
COUNTER_STOP(write);
|
|
ret = rom_spiflash_api_funcs->flash_end_flush_cache(chip, err, bus_acquired, address, length);
|
|
if (ret != ESP_OK) {
|
|
ESP_DRAM_LOGE(TAG, "restore cache fail\n");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
#endif // !CONFIG_SPI_FLASH_ROM_IMPL || ESP_ROM_HAS_ENCRYPTED_WRITES_USING_LEGACY_DRV
|
|
|
|
//init suspend mode cmd, uses internal.
|
|
esp_err_t esp_flash_suspend_cmd_init(esp_flash_t* chip)
|
|
{
|
|
ESP_EARLY_LOGW(TAG, "Flash suspend feature is enabled");
|
|
if (chip->chip_drv->get_chip_caps == NULL) {
|
|
// chip caps get failed, pass the flash capability check.
|
|
ESP_EARLY_LOGW(TAG, "get_chip_caps function pointer hasn't been initialized");
|
|
} else {
|
|
if ((chip->chip_drv->get_chip_caps(chip) & SPI_FLASH_CHIP_CAP_SUSPEND) == 0) {
|
|
ESP_EARLY_LOGW(TAG, "Suspend and resume may not supported for this flash model yet.");
|
|
}
|
|
}
|
|
return chip->chip_drv->sus_setup(chip);
|
|
}
|
|
|
|
esp_err_t esp_flash_app_disable_protect(bool disable)
|
|
{
|
|
if (disable) {
|
|
return esp_flash_app_disable_os_functions(esp_flash_default_chip);
|
|
} else {
|
|
return esp_flash_app_enable_os_functions(esp_flash_default_chip);
|
|
}
|
|
}
|