esp-idf/components/lwip/netif/lowpan6.c
2018-05-29 20:07:45 +08:00

1197 lines
40 KiB
C

/**
* @file
*
* 6LowPAN output for IPv6. Uses ND tables for link-layer addressing. Fragments packets to 6LowPAN units.
*/
/*
* Copyright (c) 2015 Inico Technologies Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Ivan Delamer <delamer@inicotech.com>
*
*
* Please coordinate changes and requests with Ivan Delamer
* <delamer@inicotech.com>
*/
#include "netif/lowpan6.h"
#if LWIP_IPV6 && LWIP_6LOWPAN
#include "lwip/ip.h"
#include "lwip/pbuf.h"
#include "lwip/ip_addr.h"
#include "lwip/netif.h"
#include "lwip/nd6.h"
#include "lwip/mem.h"
#include "lwip/udp.h"
#include "lwip/tcpip.h"
#include "lwip/snmp.h"
#include <string.h>
struct ieee_802154_addr {
u8_t addr_len;
u8_t addr[8];
};
/** This is a helper struct.
*/
struct lowpan6_reass_helper {
struct pbuf *pbuf;
struct lowpan6_reass_helper *next_packet;
u8_t timer;
struct ieee_802154_addr sender_addr;
u16_t datagram_size;
u16_t datagram_tag;
};
static struct lowpan6_reass_helper * reass_list;
#if LWIP_6LOWPAN_NUM_CONTEXTS > 0
static ip6_addr_t lowpan6_context[LWIP_6LOWPAN_NUM_CONTEXTS];
#endif
static u16_t ieee_802154_pan_id;
static const struct ieee_802154_addr ieee_802154_broadcast = {2, {0xff, 0xff}};
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
static struct ieee_802154_addr short_mac_addr = {2, {0,0}};
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
static err_t dequeue_datagram(struct lowpan6_reass_helper *lrh);
/**
* Periodic timer for 6LowPAN functions:
*
* - Remove incomplete/old packets
*/
void
lowpan6_tmr(void)
{
struct lowpan6_reass_helper *lrh, *lrh_temp;
lrh = reass_list;
while (lrh != NULL) {
lrh_temp = lrh->next_packet;
if ((--lrh->timer) == 0) {
dequeue_datagram(lrh);
pbuf_free(lrh->pbuf);
mem_free(lrh);
}
lrh = lrh_temp;
}
}
/**
* Removes a datagram from the reassembly queue.
**/
static err_t
dequeue_datagram(struct lowpan6_reass_helper *lrh)
{
struct lowpan6_reass_helper *lrh_temp;
if (reass_list == lrh) {
reass_list = reass_list->next_packet;
} else {
lrh_temp = reass_list;
while (lrh_temp != NULL) {
if (lrh_temp->next_packet == lrh) {
lrh_temp->next_packet = lrh->next_packet;
break;
}
lrh_temp = lrh_temp->next_packet;
}
}
return ERR_OK;
}
static s8_t
lowpan6_context_lookup(const ip6_addr_t *ip6addr)
{
s8_t i;
for (i = 0; i < LWIP_6LOWPAN_NUM_CONTEXTS; i++) {
if (ip6_addr_netcmp(&lowpan6_context[i], ip6addr)) {
return i;
}
}
return -1;
}
/* Determine compression mode for unicast address. */
static s8_t
lowpan6_get_address_mode(const ip6_addr_t *ip6addr, const struct ieee_802154_addr *mac_addr)
{
if (mac_addr->addr_len == 2) {
if ((ip6addr->addr[2] == (u32_t)PP_HTONL(0x000000ff)) &&
((ip6addr->addr[3] & PP_HTONL(0xffff0000)) == PP_NTOHL(0xfe000000))) {
if ((ip6addr->addr[3] & PP_HTONL(0x0000ffff)) == ntohl((mac_addr->addr[0] << 8) | mac_addr->addr[1])) {
return 3;
}
}
} else if (mac_addr->addr_len == 8) {
if ((ip6addr->addr[2] == ntohl(((mac_addr->addr[0] ^ 2) << 24) | (mac_addr->addr[1] << 16) | mac_addr->addr[2] << 8 | mac_addr->addr[3])) &&
(ip6addr->addr[3] == ntohl((mac_addr->addr[4] << 24) | (mac_addr->addr[5] << 16) | mac_addr->addr[6] << 8 | mac_addr->addr[7]))) {
return 3;
}
}
if ((ip6addr->addr[2] == PP_HTONL(0x000000ffUL)) &&
((ip6addr->addr[3] & PP_HTONL(0xffff0000)) == PP_NTOHL(0xfe000000UL))) {
return 2;
}
return 1;
}
/* Determine compression mode for multicast address. */
static s8_t
lowpan6_get_address_mode_mc(const ip6_addr_t *ip6addr)
{
if ((ip6addr->addr[0] == PP_HTONL(0xff020000)) &&
(ip6addr->addr[1] == 0) &&
(ip6addr->addr[2] == 0) &&
((ip6addr->addr[3] & PP_HTONL(0xffffff00)) == 0)) {
return 3;
} else if (((ip6addr->addr[0] & PP_HTONL(0xff00ffff)) == PP_HTONL(0xff000000)) &&
(ip6addr->addr[1] == 0)) {
if ((ip6addr->addr[2] == 0) &&
((ip6addr->addr[3] & PP_HTONL(0xff000000)) == 0)) {
return 2;
} else if ((ip6addr->addr[2] & PP_HTONL(0xffffff00)) == 0) {
return 1;
}
}
return 0;
}
/*
* Encapsulates data into IEEE 802.15.4 frames.
* Fragments an IPv6 datagram into 6LowPAN units, which fit into IEEE 802.15.4 frames.
* If configured, will compress IPv6 and or UDP headers.
* */
static err_t
lowpan6_frag(struct netif *netif, struct pbuf *p, const struct ieee_802154_addr *src, const struct ieee_802154_addr *dst)
{
struct pbuf * p_frag;
u16_t frag_len, remaining_len;
u8_t * buffer;
u8_t ieee_header_len;
u8_t lowpan6_header_len;
s8_t i;
static u8_t frame_seq_num;
static u16_t datagram_tag;
u16_t datagram_offset;
err_t err = ERR_IF;
/* We'll use a dedicated pbuf for building 6LowPAN fragments. */
p_frag = pbuf_alloc(PBUF_RAW, 127, PBUF_RAM);
if (p_frag == NULL) {
MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
return ERR_MEM;
}
/* Write IEEE 802.15.4 header. */
buffer = (u8_t*)p_frag->payload;
ieee_header_len = 0;
if (dst == &ieee_802154_broadcast) {
buffer[ieee_header_len++] = 0x01; /* data packet, no ack required. */
} else {
buffer[ieee_header_len++] = 0x21; /* data packet, ack required. */
}
buffer[ieee_header_len] = (0x00 << 4); /* 2003 frame version */
buffer[ieee_header_len] |= (dst->addr_len == 2) ? (0x02 << 2) : (0x03 << 2); /* destination addressing mode */
buffer[ieee_header_len] |= (src->addr_len == 2) ? (0x02 << 6) : (0x03 << 6); /* source addressing mode */
ieee_header_len++;
buffer[ieee_header_len++] = frame_seq_num++;
buffer[ieee_header_len++] = ieee_802154_pan_id & 0xff; /* pan id */
buffer[ieee_header_len++] = (ieee_802154_pan_id >> 8) & 0xff; /* pan id */
i = dst->addr_len;
while (i-- > 0) {
buffer[ieee_header_len++] = dst->addr[i];
}
buffer[ieee_header_len++] = ieee_802154_pan_id & 0xff; /* pan id */
buffer[ieee_header_len++] = (ieee_802154_pan_id >> 8) & 0xff; /* pan id */
i = src->addr_len;
while (i-- > 0) {
buffer[ieee_header_len++] = src->addr[i];
}
#if LWIP_6LOWPAN_IPHC
/* Perform 6LowPAN IPv6 header compression according to RFC 6282 */
{
struct ip6_hdr *ip6hdr;
/* Point to ip6 header and align copies of src/dest addresses. */
ip6hdr = (struct ip6_hdr *)p->payload;
ip_addr_copy_from_ip6(ip_data.current_iphdr_dest, ip6hdr->dest);
ip_addr_copy_from_ip6(ip_data.current_iphdr_src, ip6hdr->src);
/* Basic length of 6LowPAN header, set dispatch and clear fields. */
lowpan6_header_len = 2;
buffer[ieee_header_len] = 0x60;
buffer[ieee_header_len + 1] = 0;
/* Determine whether there will be a Context Identifier Extension byte or not.
* If so, set it already. */
#if LWIP_6LOWPAN_NUM_CONTEXTS > 0
buffer[ieee_header_len + 2] = 0;
i = lowpan6_context_lookup(ip_2_ip6(&ip_data.current_iphdr_src));
if (i >= 0) {
/* Stateful source address compression. */
buffer[ieee_header_len + 1] |= 0x40;
buffer[ieee_header_len + 2] |= (i & 0x0f) << 4;
}
i = lowpan6_context_lookup(ip_2_ip6(&ip_data.current_iphdr_dest));
if (i >= 0) {
/* Stateful destination address compression. */
buffer[ieee_header_len + 1] |= 0x04;
buffer[ieee_header_len + 2] |= i & 0x0f;
}
if (buffer[ieee_header_len + 2] != 0x00) {
/* Context identifier extension byte is appended. */
buffer[ieee_header_len + 1] |= 0x80;
lowpan6_header_len++;
}
#endif /* LWIP_6LOWPAN_NUM_CONTEXTS > 0 */
/* Determine TF field: Traffic Class, Flow Label */
if (IP6H_FL(ip6hdr) == 0) {
/* Flow label is elided. */
buffer[ieee_header_len] |= 0x10;
if (IP6H_TC(ip6hdr) == 0) {
/* Traffic class (ECN+DSCP) elided too. */
buffer[ieee_header_len] |= 0x08;
} else {
/* Traffic class (ECN+DSCP) appended. */
buffer[ieee_header_len + lowpan6_header_len++] = IP6H_TC(ip6hdr);
}
} else {
if (((IP6H_TC(ip6hdr) & 0x3f) == 0)) {
/* DSCP portion of Traffic Class is elided, ECN and FL are appended (3 bytes) */
buffer[ieee_header_len] |= 0x08;
buffer[ieee_header_len + lowpan6_header_len] = IP6H_TC(ip6hdr) & 0xc0;
buffer[ieee_header_len + lowpan6_header_len++] |= (IP6H_FL(ip6hdr) >> 16) & 0x0f;
buffer[ieee_header_len + lowpan6_header_len++] = (IP6H_FL(ip6hdr) >> 8) & 0xff;
buffer[ieee_header_len + lowpan6_header_len++] = IP6H_FL(ip6hdr) & 0xff;
} else {
/* Traffic class and flow label are appended (4 bytes) */
buffer[ieee_header_len + lowpan6_header_len++] = IP6H_TC(ip6hdr);
buffer[ieee_header_len + lowpan6_header_len++] = (IP6H_FL(ip6hdr) >> 16) & 0x0f;
buffer[ieee_header_len + lowpan6_header_len++] = (IP6H_FL(ip6hdr) >> 8) & 0xff;
buffer[ieee_header_len + lowpan6_header_len++] = IP6H_FL(ip6hdr) & 0xff;
}
}
/* Compress NH?
* Only if UDP for now. TODO support other NH compression. */
if (IP6H_NEXTH(ip6hdr) == IP6_NEXTH_UDP) {
buffer[ieee_header_len] |= 0x04;
} else {
/* append nexth. */
buffer[ieee_header_len + lowpan6_header_len++] = IP6H_NEXTH(ip6hdr);
}
/* Compress hop limit? */
if (IP6H_HOPLIM(ip6hdr) == 255) {
buffer[ieee_header_len] |= 0x03;
} else if (IP6H_HOPLIM(ip6hdr) == 64) {
buffer[ieee_header_len] |= 0x02;
} else if (IP6H_HOPLIM(ip6hdr) == 1) {
buffer[ieee_header_len] |= 0x01;
} else {
/* append hop limit */
buffer[ieee_header_len + lowpan6_header_len++] = IP6H_HOPLIM(ip6hdr);
}
/* Compress source address */
if (((buffer[ieee_header_len + 1] & 0x40) != 0) ||
(ip6_addr_islinklocal(ip_2_ip6(&ip_data.current_iphdr_src)))) {
/* Context-based or link-local source address compression. */
i = lowpan6_get_address_mode(ip_2_ip6(&ip_data.current_iphdr_src), src);
buffer[ieee_header_len + 1] |= (i & 0x03) << 4;
if (i == 1) {
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 16, 8);
lowpan6_header_len += 8;
} else if (i == 2) {
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 22, 2);
lowpan6_header_len += 2;
}
} else if (ip6_addr_isany(ip_2_ip6(&ip_data.current_iphdr_src))) {
/* Special case: mark SAC and leave SAM=0 */
buffer[ieee_header_len + 1] |= 0x40;
} else {
/* Append full address. */
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 8, 16);
lowpan6_header_len += 16;
}
/* Compress destination address */
if (ip6_addr_ismulticast(ip_2_ip6(&ip_data.current_iphdr_dest))) {
/* TODO support stateful multicast address compression */
buffer[ieee_header_len + 1] |= 0x08;
i = lowpan6_get_address_mode_mc(ip_2_ip6(&ip_data.current_iphdr_dest));
buffer[ieee_header_len + 1] |= i & 0x03;
if (i == 0) {
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 24, 16);
lowpan6_header_len += 16;
} else if (i == 1) {
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[25];
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 35, 5);
lowpan6_header_len += 5;
} else if (i == 2) {
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[25];
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 37, 3);
lowpan6_header_len += 3;
} else if (i == 3) {
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[39];
}
} else if (((buffer[ieee_header_len + 1] & 0x04) != 0) ||
(ip6_addr_islinklocal(ip_2_ip6(&ip_data.current_iphdr_dest)))) {
/* Context-based or link-local destination address compression. */
i = lowpan6_get_address_mode(ip_2_ip6(&ip_data.current_iphdr_dest), dst);
buffer[ieee_header_len + 1] |= i & 0x03;
if (i == 1) {
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 32, 8);
lowpan6_header_len += 8;
} else if (i == 2) {
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 38, 2);
lowpan6_header_len += 2;
}
} else {
/* Append full address. */
MEMCPY(buffer + ieee_header_len + lowpan6_header_len, (u8_t*)p->payload + 24, 16);
lowpan6_header_len += 16;
}
/* Move to payload. */
pbuf_header(p, -IP6_HLEN);
/* Compress UDP header? */
if (IP6H_NEXTH(ip6hdr) == IP6_NEXTH_UDP) {
/* TODO support optional checksum compression */
buffer[ieee_header_len + lowpan6_header_len] = 0xf0;
/* determine port compression mode. */
if ((((u8_t *)p->payload)[0] == 0xf0) && ((((u8_t *)p->payload)[1] & 0xf0) == 0xb0) &&
(((u8_t *)p->payload)[2] == 0xf0) && ((((u8_t *)p->payload)[3] & 0xf0) == 0xb0)) {
/* Compress source and dest ports. */
buffer[ieee_header_len + lowpan6_header_len++] |= 0x03;
buffer[ieee_header_len + lowpan6_header_len++] = ((((u8_t *)p->payload)[1] & 0x0f) << 4) | (((u8_t *)p->payload)[3] & 0x0f);
} else if (((u8_t *)p->payload)[0] == 0xf0) {
/* Compress source port. */
buffer[ieee_header_len + lowpan6_header_len++] |= 0x02;
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[1];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[2];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[3];
} else if (((u8_t *)p->payload)[2] == 0xf0) {
/* Compress dest port. */
buffer[ieee_header_len + lowpan6_header_len++] |= 0x01;
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[0];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[1];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[3];
} else {
/* append full ports. */
lowpan6_header_len++;
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[0];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[1];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[2];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[3];
}
/* elide length and copy checksum */
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[6];
buffer[ieee_header_len + lowpan6_header_len++] = ((u8_t *)p->payload)[7];
pbuf_header(p, -UDP_HLEN);
}
}
#else /* LWIP_6LOWPAN_HC */
/* Send uncompressed IPv6 header with appropriate dispatch byte. */
lowpan6_header_len = 1;
buffer[ieee_header_len] = 0x41; /* IPv6 dispatch */
#endif /* LWIP_6LOWPAN_HC */
/* Calculate remaining packet length */
remaining_len = p->tot_len;
if (remaining_len > 0x7FF) {
MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
/* datagram_size must fit into 11 bit */
pbuf_free(p_frag);
return ERR_VAL;
}
/* Fragment, or 1 packet? */
if (remaining_len > (127 - ieee_header_len - lowpan6_header_len - 3)) { /* 127 - header - 1 byte dispatch - 2 bytes CRC */
/* We must move the 6LowPAN header to make room for the FRAG header. */
i = lowpan6_header_len;
while (i-- != 0) {
buffer[ieee_header_len + i + 4] = buffer[ieee_header_len + i];
}
/* Now we need to fragment the packet. FRAG1 header first */
buffer[ieee_header_len] = 0xc0 | (((p->tot_len + lowpan6_header_len) >> 8) & 0x7);
buffer[ieee_header_len + 1] = (p->tot_len + lowpan6_header_len) & 0xff;
datagram_tag++;
buffer[ieee_header_len + 2] = datagram_tag & 0xff;
buffer[ieee_header_len + 3] = (datagram_tag >> 8) & 0xff;
/* Fragment follows. */
frag_len = (127 - ieee_header_len - 4 - 2) & 0xf8;
pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len + 4, frag_len - lowpan6_header_len, 0);
remaining_len -= frag_len - lowpan6_header_len;
datagram_offset = frag_len;
/* 2 bytes CRC */
#if LWIP_6LOWPAN_HW_CRC
/* Leave blank, will be filled by HW. */
#else /* LWIP_6LOWPAN_HW_CRC */
/* TODO calculate CRC */
#endif /* LWIP_6LOWPAN_HW_CRC */
/* Calculate frame length */
p_frag->len = p_frag->tot_len = ieee_header_len + 4 + frag_len + 2; /* add 2 dummy bytes for crc*/
/* send the packet */
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len);
LWIP_DEBUGF(LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p));
err = netif->linkoutput(netif, p_frag);
while ((remaining_len > 0) && (err == ERR_OK)) {
/* new frame, new seq num for ACK */
buffer[2] = frame_seq_num++;
buffer[ieee_header_len] |= 0x20; /* Change FRAG1 to FRAGN */
buffer[ieee_header_len + 4] = (u8_t)(datagram_offset >> 3); /* datagram offset in FRAGN header (datagram_offset is max. 11 bit) */
frag_len = (127 - ieee_header_len - 5 - 2) & 0xf8;
if (frag_len > remaining_len) {
frag_len = remaining_len;
}
pbuf_copy_partial(p, buffer + ieee_header_len + 5, frag_len, p->tot_len - remaining_len);
remaining_len -= frag_len;
datagram_offset += frag_len;
/* 2 bytes CRC */
#if LWIP_6LOWPAN_HW_CRC
/* Leave blank, will be filled by HW. */
#else /* LWIP_6LOWPAN_HW_CRC */
/* TODO calculate CRC */
#endif /* LWIP_6LOWPAN_HW_CRC */
/* Calculate frame length */
p_frag->len = p_frag->tot_len = frag_len + 5 + ieee_header_len + 2;
/* send the packet */
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len);
LWIP_DEBUGF(LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p));
err = netif->linkoutput(netif, p_frag);
}
} else {
/* It fits in one frame. */
frag_len = remaining_len;
/* Copy IPv6 packet */
pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len, frag_len, 0);
remaining_len = 0;
/* 2 bytes CRC */
#if LWIP_6LOWPAN_HW_CRC
/* Leave blank, will be filled by HW. */
#else /* LWIP_6LOWPAN_HW_CRC */
/* TODO calculate CRC */
#endif /* LWIP_6LOWPAN_HW_CRC */
/* Calculate frame length */
p_frag->len = p_frag->tot_len = frag_len + lowpan6_header_len + ieee_header_len + 2;
/* send the packet */
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len);
LWIP_DEBUGF(LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p));
err = netif->linkoutput(netif, p_frag);
}
pbuf_free(p_frag);
return err;
}
err_t
lowpan6_set_context(u8_t idx, const ip6_addr_t * context)
{
if (idx >= LWIP_6LOWPAN_NUM_CONTEXTS) {
return ERR_ARG;
}
ip6_addr_set(&lowpan6_context[idx], context);
return ERR_OK;
}
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
err_t
lowpan6_set_short_addr(u8_t addr_high, u8_t addr_low)
{
short_mac_addr.addr[0] = addr_high;
short_mac_addr.addr[1] = addr_low;
return ERR_OK;
}
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
#if LWIP_IPV4
err_t
lowpan4_output(struct netif *netif, struct pbuf *q, const ip4_addr_t *ipaddr)
{
(void)netif;
(void)q;
(void)ipaddr;
return ERR_IF;
}
#endif /* LWIP_IPV4 */
/**
* Resolve and fill-in IEEE 802.15.4 address header for outgoing IPv6 packet.
*
* Perform Header Compression and fragment if necessary.
*
* @param netif The lwIP network interface which the IP packet will be sent on.
* @param q The pbuf(s) containing the IP packet to be sent.
* @param ip6addr The IP address of the packet destination.
*
* @return
*/
err_t
lowpan6_output(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr)
{
s8_t i;
struct ieee_802154_addr src, dest;
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
ip6_addr_t ip6_src;
struct ip6_hdr * ip6_hdr;
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
/* Check if we can compress source address (use aligned copy) */
ip6_hdr = (struct ip6_hdr *)q->payload;
ip6_addr_set(&ip6_src, &ip6_hdr->src);
if (lowpan6_get_address_mode(&ip6_src, &short_mac_addr) == 3) {
src.addr_len = 2;
src.addr[0] = short_mac_addr.addr[0];
src.addr[1] = short_mac_addr.addr[1];
} else
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
{
src.addr_len = netif->hwaddr_len;
SMEMCPY(src.addr, netif->hwaddr, netif->hwaddr_len);
}
/* multicast destination IP address? */
if (ip6_addr_ismulticast(ip6addr)) {
MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts);
/* We need to send to the broadcast address.*/
return lowpan6_frag(netif, q, &src, &ieee_802154_broadcast);
}
/* We have a unicast destination IP address */
/* TODO anycast? */
#if LWIP_6LOWPAN_INFER_SHORT_ADDRESS
if (src.addr_len == 2) {
/* If source address was compressable to short_mac_addr, and dest has same subnet and
* is also compressable to 2-bytes, assume we can infer dest as a short address too. */
dest.addr_len = 2;
dest.addr[0] = ((u8_t *)q->payload)[38];
dest.addr[1] = ((u8_t *)q->payload)[39];
if ((src.addr_len == 2) && (ip6_addr_netcmp(&ip6_hdr->src, &ip6_hdr->dest)) &&
(lowpan6_get_address_mode(ip6addr, &dest) == 3)) {
MIB2_STATS_NETIF_INC(netif, ifoutucastpkts);
return lowpan6_frag(netif, q, &src, &dest);
}
}
#endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */
/* Get next hop record. */
i = nd6_get_next_hop_entry(ip6addr, netif);
if (i < 0) {
MIB2_STATS_NETIF_INC(netif, ifoutdiscards);
/* failed to get a next hop neighbor record. */
return ERR_MEM;
}
/* Now that we have a destination record, send or queue the packet. */
if (neighbor_cache[i].state == ND6_STALE) {
/* Switch to delay state. */
neighbor_cache[i].state = ND6_DELAY;
neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME;
}
/* TODO should we send or queue if PROBE? send for now, to let unicast NS pass. */
if ((neighbor_cache[i].state == ND6_REACHABLE) ||
(neighbor_cache[i].state == ND6_DELAY) ||
(neighbor_cache[i].state == ND6_PROBE)) {
/* Send out. */
dest.addr_len = netif->hwaddr_len;
SMEMCPY(dest.addr, neighbor_cache[i].lladdr, netif->hwaddr_len);
MIB2_STATS_NETIF_INC(netif, ifoutucastpkts);
return lowpan6_frag(netif, q, &src, &dest);
}
/* We should queue packet on this interface. */
return nd6_queue_packet(i, q);
}
static struct pbuf *
lowpan6_decompress(struct pbuf * p, struct ieee_802154_addr * src, struct ieee_802154_addr * dest)
{
struct pbuf * q;
u8_t * lowpan6_buffer;
s8_t lowpan6_offset;
struct ip6_hdr *ip6hdr;
s8_t i;
s8_t ip6_offset = IP6_HLEN;
q = pbuf_alloc(PBUF_IP, p->len + IP6_HLEN + UDP_HLEN, PBUF_POOL);
if (q == NULL) {
pbuf_free(p);
return NULL;
}
lowpan6_buffer = (u8_t *)p->payload;
ip6hdr = (struct ip6_hdr *)q->payload;
lowpan6_offset = 2;
if (lowpan6_buffer[1] & 0x80) {
lowpan6_offset++;
}
/* Set IPv6 version, traffic class and flow label. */
if ((lowpan6_buffer[0] & 0x18) == 0x00) {
IP6H_VTCFL_SET(ip6hdr, 6, lowpan6_buffer[lowpan6_offset], ((lowpan6_buffer[lowpan6_offset+1] & 0x0f) << 16) | (lowpan6_buffer[lowpan6_offset + 2] << 8) | lowpan6_buffer[lowpan6_offset+3]);
lowpan6_offset += 4;
} else if ((lowpan6_buffer[0] & 0x18) == 0x08) {
IP6H_VTCFL_SET(ip6hdr, 6, lowpan6_buffer[lowpan6_offset] & 0xc0, ((lowpan6_buffer[lowpan6_offset] & 0x0f) << 16) | (lowpan6_buffer[lowpan6_offset + 1] << 8) | lowpan6_buffer[lowpan6_offset+2]);
lowpan6_offset += 3;
} else if ((lowpan6_buffer[0] & 0x18) == 0x10) {
IP6H_VTCFL_SET(ip6hdr, 6, lowpan6_buffer[lowpan6_offset],0);
lowpan6_offset += 1;
} else if ((lowpan6_buffer[0] & 0x18) == 0x18) {
IP6H_VTCFL_SET(ip6hdr, 6, 0, 0);
}
/* Set Next Header */
if ((lowpan6_buffer[0] & 0x04) == 0x00) {
IP6H_NEXTH_SET(ip6hdr, lowpan6_buffer[lowpan6_offset++]);
} else {
/* We should fill this later with NHC decoding */
IP6H_NEXTH_SET(ip6hdr, 0);
}
/* Set Hop Limit */
if ((lowpan6_buffer[0] & 0x03) == 0x00) {
IP6H_HOPLIM_SET(ip6hdr, lowpan6_buffer[lowpan6_offset++]);
} else if ((lowpan6_buffer[0] & 0x03) == 0x01) {
IP6H_HOPLIM_SET(ip6hdr, 1);
} else if ((lowpan6_buffer[0] & 0x03) == 0x02) {
IP6H_HOPLIM_SET(ip6hdr, 64);
} else if ((lowpan6_buffer[0] & 0x03) == 0x03) {
IP6H_HOPLIM_SET(ip6hdr, 255);
}
/* Source address decoding. */
if ((lowpan6_buffer[1] & 0x40) == 0x00) {
/* Stateless compression */
if ((lowpan6_buffer[1] & 0x30) == 0x00) {
/* copy full address */
MEMCPY(&ip6hdr->src.addr[0], lowpan6_buffer + lowpan6_offset, 16);
lowpan6_offset += 16;
} else if ((lowpan6_buffer[1] & 0x30) == 0x10) {
ip6hdr->src.addr[0] = PP_HTONL(0xfe800000UL);
ip6hdr->src.addr[1] = 0;
MEMCPY(&ip6hdr->src.addr[2], lowpan6_buffer + lowpan6_offset, 8);
lowpan6_offset += 8;
} else if ((lowpan6_buffer[1] & 0x30) == 0x20) {
ip6hdr->src.addr[0] = PP_HTONL(0xfe800000UL);
ip6hdr->src.addr[1] = 0;
ip6hdr->src.addr[2] = PP_HTONL(0x000000ffUL);
ip6hdr->src.addr[3] = htonl(0xfe000000UL | (lowpan6_buffer[lowpan6_offset] << 8) |
lowpan6_buffer[lowpan6_offset+1]);
lowpan6_offset += 2;
} else if ((lowpan6_buffer[1] & 0x30) == 0x30) {
ip6hdr->src.addr[0] = PP_HTONL(0xfe800000UL);
ip6hdr->src.addr[1] = 0;
if (src->addr_len == 2) {
ip6hdr->src.addr[2] = PP_HTONL(0x000000ffUL);
ip6hdr->src.addr[3] = htonl(0xfe000000UL | (src->addr[0] << 8) | src->addr[1]);
} else {
ip6hdr->src.addr[2] = htonl(((src->addr[0] ^ 2) << 24) | (src->addr[1] << 16) |
(src->addr[2] << 8) | src->addr[3]);
ip6hdr->src.addr[3] = htonl((src->addr[4] << 24) | (src->addr[5] << 16) |
(src->addr[6] << 8) | src->addr[7]);
}
}
} else {
/* Stateful compression */
if ((lowpan6_buffer[1] & 0x30) == 0x00) {
/* ANY address */
ip6hdr->src.addr[0] = 0;
ip6hdr->src.addr[1] = 0;
ip6hdr->src.addr[2] = 0;
ip6hdr->src.addr[3] = 0;
} else {
/* Set prefix from context info */
if (lowpan6_buffer[1] & 0x80) {
i = (lowpan6_buffer[2] >> 4) & 0x0f;
} else {
i = 0;
}
if (i >= LWIP_6LOWPAN_NUM_CONTEXTS) {
/* Error */
pbuf_free(p);
pbuf_free(q);
return NULL;
}
ip6hdr->src.addr[0] = lowpan6_context[i].addr[0];
ip6hdr->src.addr[1] = lowpan6_context[i].addr[1];
}
if ((lowpan6_buffer[1] & 0x30) == 0x10) {
MEMCPY(&ip6hdr->src.addr[2], lowpan6_buffer + lowpan6_offset, 8);
lowpan6_offset += 8;
} else if ((lowpan6_buffer[1] & 0x30) == 0x20) {
ip6hdr->src.addr[2] = PP_HTONL(0x000000ffUL);
ip6hdr->src.addr[3] = htonl(0xfe000000UL | (lowpan6_buffer[lowpan6_offset] << 8) | lowpan6_buffer[lowpan6_offset+1]);
lowpan6_offset += 2;
} else if ((lowpan6_buffer[1] & 0x30) == 0x30) {
if (src->addr_len == 2) {
ip6hdr->src.addr[2] = PP_HTONL(0x000000ffUL);
ip6hdr->src.addr[3] = htonl(0xfe000000UL | (src->addr[0] << 8) | src->addr[1]);
} else {
ip6hdr->src.addr[2] = htonl(((src->addr[0] ^ 2) << 24) | (src->addr[1] << 16) | (src->addr[2] << 8) | src->addr[3]);
ip6hdr->src.addr[3] = htonl((src->addr[4] << 24) | (src->addr[5] << 16) | (src->addr[6] << 8) | src->addr[7]);
}
}
}
/* Destination address decoding. */
if (lowpan6_buffer[1] & 0x08) {
/* Multicast destination */
if (lowpan6_buffer[1] & 0x04) {
/* TODO support stateful multicast addressing */
pbuf_free(p);
pbuf_free(q);
return NULL;
}
if ((lowpan6_buffer[1] & 0x03) == 0x00) {
/* copy full address */
MEMCPY(&ip6hdr->dest.addr[0], lowpan6_buffer + lowpan6_offset, 16);
lowpan6_offset += 16;
} else if ((lowpan6_buffer[1] & 0x03) == 0x01) {
ip6hdr->dest.addr[0] = htonl(0xff000000UL | (lowpan6_buffer[lowpan6_offset++] << 16));
ip6hdr->dest.addr[1] = 0;
ip6hdr->dest.addr[2] = htonl(lowpan6_buffer[lowpan6_offset++]);
ip6hdr->dest.addr[3] = htonl((lowpan6_buffer[lowpan6_offset] << 24) | (lowpan6_buffer[lowpan6_offset + 1] << 16) | (lowpan6_buffer[lowpan6_offset + 2] << 8) | lowpan6_buffer[lowpan6_offset + 3]);
lowpan6_offset += 4;
} else if ((lowpan6_buffer[1] & 0x03) == 0x02) {
ip6hdr->dest.addr[0] = htonl(0xff000000UL | lowpan6_buffer[lowpan6_offset++]);
ip6hdr->dest.addr[1] = 0;
ip6hdr->dest.addr[2] = 0;
ip6hdr->dest.addr[3] = htonl((lowpan6_buffer[lowpan6_offset] << 16) | (lowpan6_buffer[lowpan6_offset + 1] << 8) | lowpan6_buffer[lowpan6_offset + 2]);
lowpan6_offset += 3;
} else if ((lowpan6_buffer[1] & 0x03) == 0x03) {
ip6hdr->dest.addr[0] = PP_HTONL(0xff020000UL);
ip6hdr->dest.addr[1] = 0;
ip6hdr->dest.addr[2] = 0;
ip6hdr->dest.addr[3] = htonl(lowpan6_buffer[lowpan6_offset++]);
}
} else {
if (lowpan6_buffer[1] & 0x04) {
/* Stateful destination compression */
/* Set prefix from context info */
if (lowpan6_buffer[1] & 0x80) {
i = lowpan6_buffer[2] & 0x0f;
} else {
i = 0;
}
if (i >= LWIP_6LOWPAN_NUM_CONTEXTS) {
/* Error */
pbuf_free(p);
pbuf_free(q);
return NULL;
}
ip6hdr->dest.addr[0] = lowpan6_context[i].addr[0];
ip6hdr->dest.addr[1] = lowpan6_context[i].addr[1];
} else {
/* Link local address compression */
ip6hdr->dest.addr[0] = PP_HTONL(0xfe800000UL);
ip6hdr->dest.addr[1] = 0;
}
if ((lowpan6_buffer[1] & 0x03) == 0x00) {
/* copy full address */
MEMCPY(&ip6hdr->dest.addr[0], lowpan6_buffer + lowpan6_offset, 16);
lowpan6_offset += 16;
} else if ((lowpan6_buffer[1] & 0x03) == 0x01) {
MEMCPY(&ip6hdr->dest.addr[2], lowpan6_buffer + lowpan6_offset, 8);
lowpan6_offset += 8;
} else if ((lowpan6_buffer[1] & 0x03) == 0x02) {
ip6hdr->dest.addr[2] = PP_HTONL(0x000000ffUL);
ip6hdr->dest.addr[3] = htonl(0xfe000000UL | (lowpan6_buffer[lowpan6_offset] << 8) | lowpan6_buffer[lowpan6_offset + 1]);
lowpan6_offset += 2;
} else if ((lowpan6_buffer[1] & 0x03) == 0x03) {
if (dest->addr_len == 2) {
ip6hdr->dest.addr[2] = PP_HTONL(0x000000ffUL);
ip6hdr->dest.addr[3] = htonl(0xfe000000UL | (dest->addr[0] << 8) | dest->addr[1]);
} else {
ip6hdr->dest.addr[2] = htonl(((dest->addr[0] ^ 2) << 24) | (dest->addr[1] << 16) | dest->addr[2] << 8 | dest->addr[3]);
ip6hdr->dest.addr[3] = htonl((dest->addr[4] << 24) | (dest->addr[5] << 16) | dest->addr[6] << 8 | dest->addr[7]);
}
}
}
/* Next Header Compression (NHC) decoding? */
if (lowpan6_buffer[0] & 0x04) {
if ((lowpan6_buffer[lowpan6_offset] & 0xf8) == 0xf0) {
struct udp_hdr *udphdr;
/* UDP compression */
IP6H_NEXTH_SET(ip6hdr, IP6_NEXTH_UDP);
udphdr = (struct udp_hdr *)((u8_t *)q->payload + ip6_offset);
if (lowpan6_buffer[lowpan6_offset] & 0x04) {
/* TODO support checksum decompress */
pbuf_free(p);
pbuf_free(q);
return NULL;
}
/* Decompress ports */
i = lowpan6_buffer[lowpan6_offset++] & 0x03;
if (i == 0) {
udphdr->src = htons(lowpan6_buffer[lowpan6_offset] << 8 | lowpan6_buffer[lowpan6_offset + 1]);
udphdr->dest = htons(lowpan6_buffer[lowpan6_offset + 2] << 8 | lowpan6_buffer[lowpan6_offset + 3]);
lowpan6_offset += 4;
} else if (i == 0x01) {
udphdr->src = htons(lowpan6_buffer[lowpan6_offset] << 8 | lowpan6_buffer[lowpan6_offset + 1]);
udphdr->dest = htons(0xf000 | lowpan6_buffer[lowpan6_offset + 2]);
lowpan6_offset += 3;
} else if (i == 0x02) {
udphdr->src = htons(0xf000 | lowpan6_buffer[lowpan6_offset]);
udphdr->dest = htons(lowpan6_buffer[lowpan6_offset + 1] << 8 | lowpan6_buffer[lowpan6_offset + 2]);
lowpan6_offset += 3;
} else if (i == 0x03) {
udphdr->src = htons(0xf0b0 | ((lowpan6_buffer[lowpan6_offset] >> 4) & 0x0f));
udphdr->dest = htons(0xf0b0 | (lowpan6_buffer[lowpan6_offset] & 0x0f));
lowpan6_offset += 1;
}
udphdr->chksum = htons(lowpan6_buffer[lowpan6_offset] << 8 | lowpan6_buffer[lowpan6_offset + 1]);
lowpan6_offset += 2;
udphdr->len = htons(p->tot_len - lowpan6_offset + UDP_HLEN);
ip6_offset += UDP_HLEN;
} else {
/* TODO support NHC other than UDP */
pbuf_free(p);
pbuf_free(q);
return NULL;
}
}
/* Now we copy leftover contents from p to q, so we have all L2 and L3 headers (and L4?) in a single PBUF.
* Replace p with q, and free p */
pbuf_header(p, -lowpan6_offset);
MEMCPY((u8_t*)q->payload + ip6_offset, p->payload, p->len);
q->len = q->tot_len = ip6_offset + p->len;
if (p->next != NULL) {
pbuf_cat(q, p->next);
}
p->next = NULL;
pbuf_free(p);
/* Infer IPv6 payload length for header */
IP6H_PLEN_SET(ip6hdr, q->tot_len - IP6_HLEN);
/* all done */
return q;
}
err_t
lowpan6_input(struct pbuf * p, struct netif *netif)
{
u8_t * puc;
s8_t i;
struct ieee_802154_addr src, dest;
u16_t datagram_size, datagram_offset, datagram_tag;
struct lowpan6_reass_helper *lrh, *lrh_temp;
MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len);
/* Analyze header. TODO validate. */
puc = (u8_t*)p->payload;
datagram_offset = 5;
if ((puc[1] & 0x0c) == 0x0c) {
dest.addr_len = 8;
for (i = 0; i < 8; i++) {
dest.addr[i] = puc[datagram_offset + 7 - i];
}
datagram_offset += 8;
} else {
dest.addr_len = 2;
dest.addr[0] = puc[datagram_offset + 1];
dest.addr[1] = puc[datagram_offset];
datagram_offset += 2;
}
datagram_offset += 2; /* skip PAN ID. */
if ((puc[1] & 0xc0) == 0xc0) {
src.addr_len = 8;
for (i = 0; i < 8; i++) {
src.addr[i] = puc[datagram_offset + 7 - i];
}
datagram_offset += 8;
} else {
src.addr_len = 2;
src.addr[0] = puc[datagram_offset + 1];
src.addr[1] = puc[datagram_offset];
datagram_offset += 2;
}
pbuf_header(p, -datagram_offset); /* hide IEEE802.15.4 header. */
/* Check dispatch. */
puc = (u8_t*)p->payload;
if ((*puc & 0xf8) == 0xc0) {
/* FRAG1 dispatch. add this packet to reassembly list. */
datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1];
datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3];
/* check for duplicate */
lrh = reass_list;
while (lrh != NULL) {
if ((lrh->sender_addr.addr_len == src.addr_len) &&
(memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0)) {
/* address match with packet in reassembly. */
if ((datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) {
MIB2_STATS_NETIF_INC(netif, ifindiscards);
/* duplicate fragment. */
pbuf_free(p);
return ERR_OK;
} else {
/* We are receiving the start of a new datagram. Discard old one (incomplete). */
lrh_temp = lrh->next_packet;
dequeue_datagram(lrh);
pbuf_free(lrh->pbuf);
mem_free(lrh);
/* Check next datagram in queue. */
lrh = lrh_temp;
}
} else {
/* Check next datagram in queue. */
lrh = lrh->next_packet;
}
}
pbuf_header(p, -4); /* hide frag1 dispatch */
lrh = (struct lowpan6_reass_helper *) mem_malloc(sizeof(struct lowpan6_reass_helper));
if (lrh == NULL) {
MIB2_STATS_NETIF_INC(netif, ifindiscards);
pbuf_free(p);
return ERR_MEM;
}
lrh->sender_addr.addr_len = src.addr_len;
for (i = 0; i < src.addr_len; i++) {
lrh->sender_addr.addr[i] = src.addr[i];
}
lrh->datagram_size = datagram_size;
lrh->datagram_tag = datagram_tag;
lrh->pbuf = p;
lrh->next_packet = reass_list;
lrh->timer = 2;
reass_list = lrh;
return ERR_OK;
} else if ((*puc & 0xf8) == 0xe0) {
/* FRAGN dispatch, find packet being reassembled. */
datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1];
datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3];
datagram_offset = (u16_t)puc[4] << 3;
pbuf_header(p, -5); /* hide frag1 dispatch */
for (lrh = reass_list; lrh != NULL; lrh = lrh->next_packet) {
if ((lrh->sender_addr.addr_len == src.addr_len) &&
(memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0) &&
(datagram_tag == lrh->datagram_tag) &&
(datagram_size == lrh->datagram_size)) {
break;
}
}
if (lrh == NULL) {
/* rogue fragment */
MIB2_STATS_NETIF_INC(netif, ifindiscards);
pbuf_free(p);
return ERR_OK;
}
if (lrh->pbuf->tot_len < datagram_offset) {
/* duplicate, ignore. */
pbuf_free(p);
return ERR_OK;
} else if (lrh->pbuf->tot_len > datagram_offset) {
MIB2_STATS_NETIF_INC(netif, ifindiscards);
/* We have missed a fragment. Delete whole reassembly. */
dequeue_datagram(lrh);
pbuf_free(lrh->pbuf);
mem_free(lrh);
pbuf_free(p);
return ERR_OK;
}
pbuf_cat(lrh->pbuf, p);
p = NULL;
/* is packet now complete?*/
if (lrh->pbuf->tot_len >= lrh->datagram_size) {
/* dequeue from reass list. */
dequeue_datagram(lrh);
/* get pbuf */
p = lrh->pbuf;
/* release helper */
mem_free(lrh);
} else {
return ERR_OK;
}
}
if (p == NULL) {
return ERR_OK;
}
/* We have a complete packet, check dispatch for headers. */
puc = (u8_t*)p->payload;
if (*puc == 0x41) {
/* This is a complete IPv6 packet, just skip dispatch byte. */
pbuf_header(p, -1); /* hide dispatch byte. */
} else if ((*puc & 0xe0 )== 0x60) {
/* IPv6 headers are compressed using IPHC. */
p = lowpan6_decompress(p, &src, &dest);
if (p == NULL) {
MIB2_STATS_NETIF_INC(netif, ifindiscards);
return ERR_OK;
}
} else {
MIB2_STATS_NETIF_INC(netif, ifindiscards);
pbuf_free(p);
return ERR_OK;
}
/* @todo: distinguish unicast/multicast */
MIB2_STATS_NETIF_INC(netif, ifinucastpkts);
return ip6_input(p, netif);
}
err_t
lowpan6_if_init(struct netif *netif)
{
netif->name[0] = 'L';
netif->name[1] = '6';
#if LWIP_IPV4
netif->output = lowpan4_output;
#endif /* LWIP_IPV4 */
netif->output_ip6 = lowpan6_output;
MIB2_INIT_NETIF(netif, snmp_ifType_other, 0);
/* maximum transfer unit */
netif->mtu = 1280;
/* broadcast capability */
netif->flags = NETIF_FLAG_BROADCAST /* | NETIF_FLAG_LOWPAN6 */;
return ERR_OK;
}
err_t
lowpan6_set_pan_id(u16_t pan_id)
{
ieee_802154_pan_id = pan_id;
return ERR_OK;
}
/**
* Pass a received packet to tcpip_thread for input processing
*
* @param p the received packet, p->payload pointing to the
* IEEE 802.15.4 header.
* @param inp the network interface on which the packet was received
*/
err_t
tcpip_6lowpan_input(struct pbuf *p, struct netif *inp)
{
return tcpip_inpkt(p, inp, lowpan6_input);
}
#endif /* LWIP_IPV6 && LWIP_6LOWPAN */