fl0wl0w 90d1dcfd76 feat(freertos): Introduced new Kconfig option CONFIG_FREERTOS_NUMBER_OF_CORES
This commit replaces the use of portNUM_PROCESSORS and configNUM_CORES
macros in all of ESP-IDF. These macros are needed to realize an SMP
scenario by fetching the number of active cores FreeRTOS is running on.
Instead, a new Kconfig option, CONFIG_FREERTOS_NUMBER_OF_CORES, has been
added as a proxy for the FreeRTOS config option, configNUMBER_OF_CORES.
This new commit is now used to realize an SMP scenario in various places
in ESP-IDF.

[Sudeep Mohanty: Added new Kconfig option CONFIG_FREERTOS_NUMBER_OF_CORES]

Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>
2024-02-09 09:11:28 +01:00

905 lines
26 KiB
C

/*
* SPDX-FileCopyrightText: 2018-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <time.h>
#include <errno.h>
#include <pthread.h>
#include <string.h>
#include "esp_err.h"
#include "esp_attr.h"
#include "esp_cpu.h"
#include "sys/queue.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_private/startup_internal.h"
#if CONFIG_SPIRAM
#include "esp_private/freertos_idf_additions_priv.h"
#endif
#include "esp_heap_caps.h"
#include "soc/soc_memory_layout.h"
#include "pthread_internal.h"
#include "esp_pthread.h"
#include "esp_log.h"
const static char *TAG = "pthread";
/** task state */
enum esp_pthread_task_state {
PTHREAD_TASK_STATE_RUN,
PTHREAD_TASK_STATE_EXIT
};
/** pthread thread FreeRTOS wrapper */
typedef struct esp_pthread_entry {
SLIST_ENTRY(esp_pthread_entry) list_node; ///< Tasks list node struct.
TaskHandle_t handle; ///< FreeRTOS task handle
TaskHandle_t join_task; ///< Handle of the task waiting to join
enum esp_pthread_task_state state; ///< pthread task state
bool detached; ///< True if pthread is detached
void *retval; ///< Value supplied to calling thread during join
void *task_arg; ///< Task arguments
} esp_pthread_t;
/** pthread wrapper task arg */
typedef struct {
void *(*func)(void *); ///< user task entry
void *arg; ///< user task argument
esp_pthread_cfg_t cfg; ///< pthread configuration
} esp_pthread_task_arg_t;
/** pthread mutex FreeRTOS wrapper */
typedef struct {
SemaphoreHandle_t sem; ///< Handle of the task waiting to join
int type; ///< Mutex type. Currently supported PTHREAD_MUTEX_NORMAL and PTHREAD_MUTEX_RECURSIVE
} esp_pthread_mutex_t;
static SemaphoreHandle_t s_threads_mux = NULL;
portMUX_TYPE pthread_lazy_init_lock = portMUX_INITIALIZER_UNLOCKED; // Used for mutexes and cond vars and rwlocks
static SLIST_HEAD(esp_thread_list_head, esp_pthread_entry) s_threads_list
= SLIST_HEAD_INITIALIZER(s_threads_list);
static pthread_key_t s_pthread_cfg_key;
static int pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo);
static void esp_pthread_cfg_key_destructor(void *value)
{
free(value);
}
ESP_SYSTEM_INIT_FN(init_pthread, CORE, BIT(0), 120)
{
return esp_pthread_init();
}
esp_err_t esp_pthread_init(void)
{
if (pthread_key_create(&s_pthread_cfg_key, esp_pthread_cfg_key_destructor) != 0) {
return ESP_ERR_NO_MEM;
}
s_threads_mux = xSemaphoreCreateMutex();
if (s_threads_mux == NULL) {
pthread_key_delete(s_pthread_cfg_key);
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
static void *pthread_list_find_item(void *(*item_check)(esp_pthread_t *, void *arg), void *check_arg)
{
esp_pthread_t *it;
SLIST_FOREACH(it, &s_threads_list, list_node) {
void *val = item_check(it, check_arg);
if (val) {
return val;
}
}
return NULL;
}
static void *pthread_get_handle_by_desc(esp_pthread_t *item, void *desc)
{
if (item == desc) {
return item->handle;
}
return NULL;
}
static void *pthread_get_desc_by_handle(esp_pthread_t *item, void *hnd)
{
if (hnd == item->handle) {
return item;
}
return NULL;
}
static inline TaskHandle_t pthread_find_handle(pthread_t thread)
{
return pthread_list_find_item(pthread_get_handle_by_desc, (void *)thread);
}
static esp_pthread_t *pthread_find(TaskHandle_t task_handle)
{
return pthread_list_find_item(pthread_get_desc_by_handle, task_handle);
}
static void pthread_delete(esp_pthread_t *pthread)
{
SLIST_REMOVE(&s_threads_list, pthread, esp_pthread_entry, list_node);
free(pthread);
}
/* Call this function to configure pthread stacks in Pthreads */
esp_err_t esp_pthread_set_cfg(const esp_pthread_cfg_t *cfg)
{
if (cfg->stack_size < PTHREAD_STACK_MIN) {
return ESP_ERR_INVALID_ARG;
}
// 0 is treated as default value, hence change caps to MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL in that case
int heap_caps;
if (cfg->stack_alloc_caps == 0) {
heap_caps = MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL;
} else {
// Check that memory is 8-bit capable
if (!(cfg->stack_alloc_caps & MALLOC_CAP_8BIT)) {
return ESP_ERR_INVALID_ARG;
}
heap_caps = cfg->stack_alloc_caps;
}
/* If a value is already set, update that value */
esp_pthread_cfg_t *p = pthread_getspecific(s_pthread_cfg_key);
if (!p) {
p = malloc(sizeof(esp_pthread_cfg_t));
if (!p) {
return ESP_ERR_NO_MEM;
}
}
*p = *cfg;
p->stack_alloc_caps = heap_caps;
pthread_setspecific(s_pthread_cfg_key, p);
return 0;
}
esp_err_t esp_pthread_get_cfg(esp_pthread_cfg_t *p)
{
esp_pthread_cfg_t *cfg = pthread_getspecific(s_pthread_cfg_key);
if (cfg) {
*p = *cfg;
return ESP_OK;
}
memset(p, 0, sizeof(*p));
return ESP_ERR_NOT_FOUND;
}
static int get_default_pthread_core(void)
{
return CONFIG_PTHREAD_TASK_CORE_DEFAULT == -1 ? tskNO_AFFINITY : CONFIG_PTHREAD_TASK_CORE_DEFAULT;
}
esp_pthread_cfg_t esp_pthread_get_default_config(void)
{
esp_pthread_cfg_t cfg = {
.stack_size = CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT,
.prio = CONFIG_PTHREAD_TASK_PRIO_DEFAULT,
.inherit_cfg = false,
.thread_name = NULL,
.pin_to_core = get_default_pthread_core(),
.stack_alloc_caps = MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT,
};
return cfg;
}
static void pthread_task_func(void *arg)
{
void *rval = NULL;
esp_pthread_task_arg_t *task_arg = (esp_pthread_task_arg_t *)arg;
ESP_LOGV(TAG, "%s ENTER %p", __FUNCTION__, task_arg->func);
// wait for start
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
if (task_arg->cfg.inherit_cfg) {
/* If inherit option is set, then do a set_cfg() ourselves for future forks,
but first set thread_name to NULL to enable inheritance of the name too.
(This also to prevents dangling pointers to name of tasks that might
possibly have been deleted when we use the configuration).*/
esp_pthread_cfg_t *cfg = &task_arg->cfg;
cfg->thread_name = NULL;
esp_pthread_set_cfg(cfg);
}
ESP_LOGV(TAG, "%s START %p", __FUNCTION__, task_arg->func);
rval = task_arg->func(task_arg->arg);
ESP_LOGV(TAG, "%s END %p", __FUNCTION__, task_arg->func);
pthread_exit(rval);
ESP_LOGV(TAG, "%s EXIT", __FUNCTION__);
}
#if CONFIG_SPIRAM && CONFIG_FREERTOS_SMP
static UBaseType_t coreID_to_AffinityMask(BaseType_t core_id)
{
UBaseType_t affinity_mask = tskNO_AFFINITY;
if (core_id != tskNO_AFFINITY) {
affinity_mask = 1 << core_id;
}
return affinity_mask;
}
#endif
static BaseType_t pthread_create_freertos_task_with_caps(TaskFunction_t pxTaskCode,
const char * const pcName,
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
BaseType_t core_id,
UBaseType_t uxStackMemoryCaps,
TaskHandle_t * const pxCreatedTask)
{
#if CONFIG_SPIRAM
#if CONFIG_FREERTOS_SMP
return prvTaskCreateDynamicAffinitySetWithCaps(pxTaskCode,
pcName,
usStackDepth,
pvParameters,
uxPriority,
coreID_to_AffinityMask(core_id),
uxStackMemoryCaps,
pxCreatedTask);
#else
return prvTaskCreateDynamicPinnedToCoreWithCaps(pxTaskCode,
pcName,
usStackDepth,
pvParameters,
uxPriority,
core_id,
uxStackMemoryCaps,
pxCreatedTask);
#endif
#else
return xTaskCreatePinnedToCore(pxTaskCode,
pcName,
usStackDepth,
pvParameters,
uxPriority,
pxCreatedTask,
core_id);
#endif
}
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg)
{
TaskHandle_t xHandle = NULL;
ESP_LOGV(TAG, "%s", __FUNCTION__);
esp_pthread_task_arg_t *task_arg = calloc(1, sizeof(esp_pthread_task_arg_t));
if (task_arg == NULL) {
ESP_LOGE(TAG, "Failed to allocate task args!");
return ENOMEM;
}
esp_pthread_t *pthread = calloc(1, sizeof(esp_pthread_t));
if (pthread == NULL) {
ESP_LOGE(TAG, "Failed to allocate pthread data!");
free(task_arg);
return ENOMEM;
}
uint32_t stack_size = CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT;
BaseType_t prio = CONFIG_PTHREAD_TASK_PRIO_DEFAULT;
BaseType_t core_id = get_default_pthread_core();
const char *task_name = CONFIG_PTHREAD_TASK_NAME_DEFAULT;
uint32_t stack_alloc_caps = MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT;
esp_pthread_cfg_t *pthread_cfg = pthread_getspecific(s_pthread_cfg_key);
if (pthread_cfg) {
if (pthread_cfg->stack_size) {
stack_size = pthread_cfg->stack_size;
}
if (pthread_cfg->prio && pthread_cfg->prio < configMAX_PRIORITIES) {
prio = pthread_cfg->prio;
}
if (pthread_cfg->inherit_cfg) {
if (pthread_cfg->thread_name == NULL) {
// Inherit task name from current task.
task_name = pcTaskGetName(NULL);
} else {
// Inheriting, but new task name.
task_name = pthread_cfg->thread_name;
}
} else if (pthread_cfg->thread_name == NULL) {
task_name = CONFIG_PTHREAD_TASK_NAME_DEFAULT;
} else {
task_name = pthread_cfg->thread_name;
}
if (pthread_cfg->pin_to_core >= 0 && pthread_cfg->pin_to_core < CONFIG_FREERTOS_NUMBER_OF_CORES) {
core_id = pthread_cfg->pin_to_core;
}
// Note: validity has been checked during esp_pthread_set_cfg()
stack_alloc_caps = pthread_cfg->stack_alloc_caps;
task_arg->cfg = *pthread_cfg;
}
if (attr) {
/* Overwrite attributes */
stack_size = attr->stacksize;
switch (attr->detachstate) {
case PTHREAD_CREATE_DETACHED:
pthread->detached = true;
break;
case PTHREAD_CREATE_JOINABLE:
default:
pthread->detached = false;
}
}
// stack_size is in bytes. This transformation ensures that the units are
// transformed to the units used in FreeRTOS.
// Note: float division of ceil(m / n) ==
// integer division of (m + n - 1) / n
stack_size = (stack_size + sizeof(StackType_t) - 1) / sizeof(StackType_t);
task_arg->func = start_routine;
task_arg->arg = arg;
pthread->task_arg = task_arg;
BaseType_t res = pthread_create_freertos_task_with_caps(&pthread_task_func,
task_name,
stack_size,
task_arg,
prio,
core_id,
stack_alloc_caps,
&xHandle);
if (res != pdPASS) {
ESP_LOGE(TAG, "Failed to create task!");
free(pthread);
free(task_arg);
if (res == errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY) {
return ENOMEM;
} else {
return EAGAIN;
}
}
pthread->handle = xHandle;
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
SLIST_INSERT_HEAD(&s_threads_list, pthread, list_node);
xSemaphoreGive(s_threads_mux);
// start task
xTaskNotify(xHandle, 0, eNoAction);
*thread = (pthread_t)pthread; // pointer value fit into pthread_t (uint32_t)
ESP_LOGV(TAG, "Created task %"PRIx32, (uint32_t)xHandle);
return 0;
}
int pthread_join(pthread_t thread, void **retval)
{
esp_pthread_t *pthread = (esp_pthread_t *)thread;
int ret = 0;
bool wait = false;
void *child_task_retval = 0;
ESP_LOGV(TAG, "%s %p", __FUNCTION__, pthread);
// find task
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
TaskHandle_t handle = pthread_find_handle(thread);
if (!handle) {
// not found
ret = ESRCH;
} else if (pthread->detached) {
// Thread is detached
ret = EDEADLK;
} else if (pthread->join_task) {
// already have waiting task to join
ret = EINVAL;
} else if (handle == xTaskGetCurrentTaskHandle()) {
// join to self not allowed
ret = EDEADLK;
} else {
esp_pthread_t *cur_pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (cur_pthread && cur_pthread->join_task == handle) {
// join to each other not allowed
ret = EDEADLK;
} else {
if (pthread->state == PTHREAD_TASK_STATE_RUN) {
pthread->join_task = xTaskGetCurrentTaskHandle();
wait = true;
} else { // thread has exited and task is already suspended, or about to be suspended
child_task_retval = pthread->retval;
pthread_delete(pthread);
}
}
}
xSemaphoreGive(s_threads_mux);
if (ret == 0) {
if (wait) {
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
child_task_retval = pthread->retval;
pthread_delete(pthread);
xSemaphoreGive(s_threads_mux);
}
/* clean up thread local storage before task deletion */
pthread_internal_local_storage_destructor_callback(handle);
vTaskDelete(handle);
}
if (retval) {
*retval = child_task_retval;
}
ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret);
return ret;
}
int pthread_detach(pthread_t thread)
{
esp_pthread_t *pthread = (esp_pthread_t *)thread;
int ret = 0;
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
TaskHandle_t handle = pthread_find_handle(thread);
if (!handle) {
ret = ESRCH;
} else if (pthread->detached) {
// already detached
ret = EINVAL;
} else if (pthread->join_task) {
// already have waiting task to join
ret = EINVAL;
} else if (pthread->state == PTHREAD_TASK_STATE_RUN) {
// pthread still running
pthread->detached = true;
} else {
// pthread already stopped
pthread_delete(pthread);
/* clean up thread local storage before task deletion */
pthread_internal_local_storage_destructor_callback(handle);
vTaskDelete(handle);
}
xSemaphoreGive(s_threads_mux);
ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret);
return ret;
}
void pthread_exit(void *value_ptr)
{
bool detached = false;
/* clean up thread local storage before task deletion */
pthread_internal_local_storage_destructor_callback(NULL);
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (!pthread) {
assert(false && "Failed to find pthread for current task!");
}
if (pthread->task_arg) {
free(pthread->task_arg);
}
if (pthread->detached) {
// auto-free for detached threads
pthread_delete(pthread);
detached = true;
} else {
// Set return value
pthread->retval = value_ptr;
// Remove from list, it indicates that task has exited
if (pthread->join_task) {
// notify join
xTaskNotify(pthread->join_task, 0, eNoAction);
} else {
pthread->state = PTHREAD_TASK_STATE_EXIT;
}
}
ESP_LOGD(TAG, "Task stk_wm = %d", (int)uxTaskGetStackHighWaterMark(NULL));
xSemaphoreGive(s_threads_mux);
// note: if this thread is joinable then after giving back s_threads_mux
// this task could be deleted at any time, so don't take another lock or
// do anything that might lock (such as printing to stdout)
if (detached) {
vTaskDelete(NULL);
} else {
vTaskSuspend(NULL);
}
// Should never be reached
abort();
}
int pthread_cancel(pthread_t thread)
{
ESP_LOGE(TAG, "%s: not supported!", __FUNCTION__);
return ENOSYS;
}
int sched_yield( void )
{
vTaskDelay(0);
return 0;
}
pthread_t pthread_self(void)
{
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (!pthread) {
assert(false && "Failed to find current thread ID!");
}
xSemaphoreGive(s_threads_mux);
return (pthread_t)pthread;
}
int pthread_equal(pthread_t t1, pthread_t t2)
{
return t1 == t2 ? 1 : 0;
}
/***************** ONCE ******************/
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void))
{
if (once_control == NULL || init_routine == NULL || !once_control->is_initialized) {
ESP_LOGE(TAG, "%s: Invalid args!", __FUNCTION__);
return EINVAL;
}
// Check if compare and set was successful
if (esp_cpu_compare_and_set((volatile uint32_t *)&once_control->init_executed, 0, 1)) {
ESP_LOGV(TAG, "%s: call init_routine %p", __FUNCTION__, once_control);
init_routine();
}
return 0;
}
/***************** MUTEX ******************/
static int mutexattr_check(const pthread_mutexattr_t *attr)
{
if (attr->type != PTHREAD_MUTEX_NORMAL &&
attr->type != PTHREAD_MUTEX_RECURSIVE &&
attr->type != PTHREAD_MUTEX_ERRORCHECK) {
return EINVAL;
}
return 0;
}
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
int type = PTHREAD_MUTEX_NORMAL;
if (!mutex) {
return EINVAL;
}
if (attr) {
if (!attr->is_initialized) {
return EINVAL;
}
int res = mutexattr_check(attr);
if (res) {
return res;
}
type = attr->type;
}
esp_pthread_mutex_t *mux = (esp_pthread_mutex_t *)malloc(sizeof(esp_pthread_mutex_t));
if (!mux) {
return ENOMEM;
}
mux->type = type;
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
mux->sem = xSemaphoreCreateRecursiveMutex();
} else {
mux->sem = xSemaphoreCreateMutex();
}
if (!mux->sem) {
free(mux);
return EAGAIN;
}
*mutex = (pthread_mutex_t)mux; // pointer value fit into pthread_mutex_t (uint32_t)
return 0;
}
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
esp_pthread_mutex_t *mux;
ESP_LOGV(TAG, "%s %p", __FUNCTION__, mutex);
if (!mutex) {
return EINVAL;
}
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
return 0; // Static mutex was never initialized
}
mux = (esp_pthread_mutex_t *)*mutex;
if (!mux) {
return EINVAL;
}
// check if mux is busy
int res = pthread_mutex_lock_internal(mux, 0);
if (res == EBUSY) {
return EBUSY;
}
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
res = xSemaphoreGiveRecursive(mux->sem);
} else {
res = xSemaphoreGive(mux->sem);
}
if (res != pdTRUE) {
assert(false && "Failed to release mutex!");
}
vSemaphoreDelete(mux->sem);
free(mux);
return 0;
}
static int pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo)
{
if (!mux) {
return EINVAL;
}
if ((mux->type == PTHREAD_MUTEX_ERRORCHECK) &&
(xSemaphoreGetMutexHolder(mux->sem) == xTaskGetCurrentTaskHandle())) {
return EDEADLK;
}
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
if (xSemaphoreTakeRecursive(mux->sem, tmo) != pdTRUE) {
return EBUSY;
}
} else {
if (xSemaphoreTake(mux->sem, tmo) != pdTRUE) {
return EBUSY;
}
}
return 0;
}
static int pthread_mutex_init_if_static(pthread_mutex_t *mutex)
{
int res = 0;
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
portENTER_CRITICAL(&pthread_lazy_init_lock);
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
res = pthread_mutex_init(mutex, NULL);
}
portEXIT_CRITICAL(&pthread_lazy_init_lock);
}
return res;
}
int pthread_mutex_lock(pthread_mutex_t *mutex)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, portMAX_DELAY);
}
int pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *timeout)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
struct timespec currtime;
clock_gettime(CLOCK_REALTIME, &currtime);
TickType_t tmo = ((timeout->tv_sec - currtime.tv_sec)*1000 +
(timeout->tv_nsec - currtime.tv_nsec)/1000000)/portTICK_PERIOD_MS;
res = pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, tmo);
if (res == EBUSY) {
return ETIMEDOUT;
}
return res;
}
int pthread_mutex_trylock(pthread_mutex_t *mutex)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, 0);
}
int pthread_mutex_unlock(pthread_mutex_t *mutex)
{
esp_pthread_mutex_t *mux;
if (!mutex) {
return EINVAL;
}
mux = (esp_pthread_mutex_t *)*mutex;
if (!mux) {
return EINVAL;
}
if (((mux->type == PTHREAD_MUTEX_RECURSIVE) ||
(mux->type == PTHREAD_MUTEX_ERRORCHECK)) &&
(xSemaphoreGetMutexHolder(mux->sem) != xTaskGetCurrentTaskHandle())) {
return EPERM;
}
int ret;
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
ret = xSemaphoreGiveRecursive(mux->sem);
} else {
ret = xSemaphoreGive(mux->sem);
}
if (ret != pdTRUE) {
assert(false && "Failed to unlock mutex!");
}
return 0;
}
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (!attr) {
return EINVAL;
}
memset(attr, 0, sizeof(*attr));
attr->type = PTHREAD_MUTEX_NORMAL;
attr->is_initialized = 1;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (!attr) {
return EINVAL;
}
attr->is_initialized = 0;
return 0;
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
if (!attr) {
return EINVAL;
}
*type = attr->type;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (!attr) {
return EINVAL;
}
pthread_mutexattr_t tmp_attr = {.type = type};
int res = mutexattr_check(&tmp_attr);
if (!res) {
attr->type = type;
}
return res;
}
/***************** ATTRIBUTES ******************/
int pthread_attr_init(pthread_attr_t *attr)
{
if (attr) {
/* Nothing to allocate. Set everything to default */
memset(attr, 0, sizeof(*attr));
attr->stacksize = CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT;
attr->detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
return EINVAL;
}
int pthread_attr_destroy(pthread_attr_t *attr)
{
/* Nothing to deallocate. Reset everything to default */
return pthread_attr_init(attr);
}
int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize)
{
if (attr) {
*stacksize = attr->stacksize;
return 0;
}
return EINVAL;
}
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)
{
if (attr && !(stacksize < PTHREAD_STACK_MIN)) {
attr->stacksize = stacksize;
return 0;
}
return EINVAL;
}
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate)
{
if (attr) {
*detachstate = attr->detachstate;
return 0;
}
return EINVAL;
}
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
{
if (attr) {
switch (detachstate) {
case PTHREAD_CREATE_DETACHED:
attr->detachstate = PTHREAD_CREATE_DETACHED;
break;
case PTHREAD_CREATE_JOINABLE:
attr->detachstate = PTHREAD_CREATE_JOINABLE;
break;
default:
return EINVAL;
}
return 0;
}
return EINVAL;
}
/* Hook function to force linking this file */
void pthread_include_pthread_impl(void)
{
}