esp-idf/components/soc/esp32s2/include/soc/sens_struct.h
SalimTerryLi 29accf2533 soc/ll: workaround compiler bug that generate 8/16 bits inst instead of 32 bits one
Note: on ESP32 UART rxfifo seems to be read as u8 instead of u32 to make it work
2021-10-12 10:42:04 +08:00

446 lines
19 KiB
C

// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_SENS_STRUCT_H_
#define _SOC_SENS_STRUCT_H_
#ifdef __cplusplus
extern "C" {
#endif
typedef volatile struct sens_dev_s {
union {
struct {
uint32_t sar1_clk_div: 8; /*clock divider*/
uint32_t reserved8: 10;
uint32_t sar1_clk_gated: 1;
uint32_t sar1_sample_num: 8;
uint32_t reserved27: 1;
uint32_t sar1_data_inv: 1; /*Invert SAR ADC1 data*/
uint32_t sar1_int_en: 1; /*enable saradc1 to send out interrupt*/
uint32_t reserved30: 2;
};
uint32_t val;
} sar_reader1_ctrl;
uint32_t sar_reader1_status; /**/
union {
struct {
uint32_t reserved0: 22;
uint32_t rtc_saradc_reset: 1;
uint32_t rtc_saradc_clkgate_en: 1;
uint32_t force_xpd_amp: 2;
uint32_t amp_rst_fb_force: 2;
uint32_t amp_short_ref_force: 2;
uint32_t amp_short_ref_gnd_force: 2;
};
uint32_t val;
} sar_meas1_ctrl1;
union {
struct {
uint32_t meas1_data_sar: 16; /*SAR ADC1 data*/
uint32_t meas1_done_sar: 1; /*SAR ADC1 conversion done indication*/
uint32_t meas1_start_sar: 1; /*SAR ADC1 controller (in RTC) starts conversion*/
uint32_t meas1_start_force: 1; /*1: SAR ADC1 controller (in RTC) is started by SW*/
uint32_t sar1_en_pad: 12; /*SAR ADC1 pad enable bitmap*/
uint32_t sar1_en_pad_force: 1; /*1: SAR ADC1 pad enable bitmap is controlled by SW*/
};
uint32_t val;
} sar_meas1_ctrl2;
union {
struct {
uint32_t reserved0: 31;
uint32_t sar1_dig_force: 1; /*1: SAR ADC1 controlled by DIG ADC1 CTRL*/
};
uint32_t val;
} sar_meas1_mux;
uint32_t sar_atten1; /*2-bit attenuation for each pad*/
union {
struct {
uint32_t sar_amp_wait1:16;
uint32_t sar_amp_wait2:16;
};
uint32_t val;
} sar_amp_ctrl1;
union {
struct {
uint32_t sar1_dac_xpd_fsm_idle: 1;
uint32_t xpd_sar_amp_fsm_idle: 1;
uint32_t amp_rst_fb_fsm_idle: 1;
uint32_t amp_short_ref_fsm_idle: 1;
uint32_t amp_short_ref_gnd_fsm_idle: 1;
uint32_t xpd_sar_fsm_idle: 1;
uint32_t sar_rstb_fsm_idle: 1;
uint32_t reserved7: 9;
uint32_t sar_amp_wait3: 16;
};
uint32_t val;
} sar_amp_ctrl2;
union {
struct {
uint32_t sar1_dac_xpd_fsm: 4;
uint32_t xpd_sar_amp_fsm: 4;
uint32_t amp_rst_fb_fsm: 4;
uint32_t amp_short_ref_fsm: 4;
uint32_t amp_short_ref_gnd_fsm: 4;
uint32_t xpd_sar_fsm: 4;
uint32_t sar_rstb_fsm: 4;
uint32_t reserved28: 4;
};
uint32_t val;
} sar_amp_ctrl3;
union {
struct {
uint32_t sar2_clk_div: 8; /*clock divider*/
uint32_t reserved8: 8;
uint32_t sar2_wait_arb_cycle: 2; /*wait arbit stable after sar_done*/
uint32_t sar2_clk_gated: 1;
uint32_t sar2_sample_num: 8;
uint32_t reserved27: 2;
uint32_t sar2_data_inv: 1; /*Invert SAR ADC2 data*/
uint32_t sar2_int_en: 1; /*enable saradc2 to send out interrupt*/
uint32_t reserved31: 1;
};
uint32_t val;
} sar_reader2_ctrl;
uint32_t sar_reader2_status; /**/
union {
struct {
uint32_t sar2_cntl_state: 3; /*saradc2_cntl_fsm*/
uint32_t sar2_pwdet_cal_en: 1; /*rtc control pwdet enable*/
uint32_t sar2_pkdet_cal_en: 1; /*rtc control pkdet enable*/
uint32_t sar2_en_test: 1; /*SAR2_EN_TEST*/
uint32_t sar2_rstb_force: 2;
uint32_t sar2_standby_wait: 8;
uint32_t sar2_rstb_wait: 8;
uint32_t sar2_xpd_wait: 8;
};
uint32_t val;
} sar_meas2_ctrl1;
union {
struct {
uint32_t meas2_data_sar: 16; /*SAR ADC2 data*/
uint32_t meas2_done_sar: 1; /*SAR ADC2 conversion done indication*/
uint32_t meas2_start_sar: 1; /*SAR ADC2 controller (in RTC) starts conversion*/
uint32_t meas2_start_force: 1; /*1: SAR ADC2 controller (in RTC) is started by SW*/
uint32_t sar2_en_pad: 12; /*SAR ADC2 pad enable bitmap*/
uint32_t sar2_en_pad_force: 1; /*1: SAR ADC2 pad enable bitmap is controlled by SW*/
};
uint32_t val;
} sar_meas2_ctrl2;
union {
struct {
uint32_t reserved0: 28;
uint32_t sar2_pwdet_cct: 3; /*SAR2_PWDET_CCT*/
uint32_t sar2_rtc_force: 1; /*in sleep force to use rtc to control ADC*/
};
uint32_t val;
} sar_meas2_mux;
uint32_t sar_atten2; /*2-bit attenuation for each pad*/
union {
struct {
uint32_t reserved0: 29;
uint32_t force_xpd_sar: 2;
uint32_t sarclk_en: 1;
};
uint32_t val;
} sar_power_xpd_sar;
union {
struct {
uint32_t i2c_slave_addr1: 11;
uint32_t i2c_slave_addr0: 11;
uint32_t meas_status: 8;
uint32_t reserved30: 2;
};
uint32_t val;
} sar_slave_addr1;
union {
struct {
uint32_t i2c_slave_addr3:11;
uint32_t i2c_slave_addr2:11;
uint32_t reserved22: 10;
};
uint32_t val;
} sar_slave_addr2;
union {
struct {
uint32_t i2c_slave_addr5:11;
uint32_t i2c_slave_addr4:11;
uint32_t reserved22: 10;
};
uint32_t val;
} sar_slave_addr3;
union {
struct {
uint32_t i2c_slave_addr7:11;
uint32_t i2c_slave_addr6:11;
uint32_t reserved22: 10;
};
uint32_t val;
} sar_slave_addr4;
union {
struct {
uint32_t tsens_out: 8; /*temperature sensor data out*/
uint32_t tsens_ready: 1; /*indicate temperature sensor out ready*/
uint32_t reserved9: 3;
uint32_t tsens_int_en: 1; /*enable temperature sensor to send out interrupt*/
uint32_t tsens_in_inv: 1; /*invert temperature sensor data*/
uint32_t tsens_clk_div: 8; /*temperature sensor clock divider*/
uint32_t tsens_power_up: 1; /*temperature sensor power up*/
uint32_t tsens_power_up_force: 1; /*1: dump out & power up controlled by SW*/
uint32_t tsens_dump_out: 1; /*temperature sensor dump out*/
uint32_t reserved25: 7;
};
uint32_t val;
} sar_tctrl;
union {
struct {
uint32_t tsens_xpd_wait: 12;
uint32_t tsens_xpd_force: 2;
uint32_t tsens_clk_inv: 1;
uint32_t tsens_clkgate_en: 1; /*temperature sensor clock enable*/
uint32_t tsens_reset: 1; /*temperature sensor reset*/
uint32_t reserved17: 15;
};
uint32_t val;
} sar_tctrl2;
union {
struct {
uint32_t sar_i2c_ctrl: 28; /*I2C control data*/
uint32_t sar_i2c_start: 1; /*start I2C*/
uint32_t sar_i2c_start_force: 1; /*1: I2C started by SW*/
uint32_t reserved30: 2;
};
uint32_t val;
} sar_i2c_ctrl;
union {
struct {
uint32_t touch_outen: 15; /*touch controller output enable*/
uint32_t touch_status_clr: 1; /*clear all touch active status*/
uint32_t touch_data_sel: 2; /*3: smooth data 2: benchmark 1 0: raw_data*/
uint32_t touch_denoise_end: 1; /*touch_denoise_done*/
uint32_t touch_unit_end: 1; /*touch_unit_done*/
uint32_t touch_approach_pad2: 4; /*indicate which pad is approach pad2*/
uint32_t touch_approach_pad1: 4; /*indicate which pad is approach pad1*/
uint32_t touch_approach_pad0: 4; /*indicate which pad is approach pad0*/
};
uint32_t val;
} sar_touch_conf;
union {
struct {
uint32_t thresh: 22; /*Finger threshold for touch pad 1*/
uint32_t reserved22: 10;
};
uint32_t val;
} touch_thresh[14];
uint32_t reserved_98;
uint32_t reserved_9c;
uint32_t reserved_a0;
uint32_t reserved_a4;
uint32_t reserved_a8;
uint32_t reserved_ac;
uint32_t reserved_b0;
uint32_t reserved_b4;
uint32_t reserved_b8;
uint32_t reserved_bc;
uint32_t reserved_c0;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
union {
struct {
uint32_t touch_pad_active: 15; /*touch active status*/
uint32_t touch_channel_clr:15; /*Clear touch channel*/
uint32_t reserved30: 1;
uint32_t touch_meas_done: 1;
};
uint32_t val;
} sar_touch_chn_st;
union {
struct {
uint32_t touch_denoise_data:22; /*the counter for touch pad 0*/
uint32_t touch_scan_curr: 4;
uint32_t reserved26: 6;
};
uint32_t val;
} sar_touch_status0;
union {
struct {
uint32_t touch_pad_data: 22;
uint32_t reserved22: 7;
uint32_t touch_pad_debounce: 3;
};
uint32_t val;
} sar_touch_status[14];
union {
struct {
uint32_t touch_slp_data: 22;
uint32_t reserved22: 7;
uint32_t touch_slp_debounce: 3;
};
uint32_t val;
} sar_touch_slp_status;
union {
struct {
uint32_t touch_approach_pad2_cnt: 8;
uint32_t touch_approach_pad1_cnt: 8;
uint32_t touch_approach_pad0_cnt: 8;
uint32_t touch_slp_approach_cnt: 8;
};
uint32_t val;
} sar_touch_appr_status;
union {
struct {
uint32_t sw_fstep: 16; /*frequency step for CW generator*/
uint32_t sw_tone_en: 1; /*1: enable CW generator*/
uint32_t debug_bit_sel: 5;
uint32_t dac_dig_force: 1; /*1: DAC1 & DAC2 use DMA*/
uint32_t dac_clk_force_low: 1; /*1: force PDAC_CLK to low*/
uint32_t dac_clk_force_high: 1; /*1: force PDAC_CLK to high*/
uint32_t dac_clk_inv: 1; /*1: invert PDAC_CLK*/
uint32_t dac_reset: 1;
uint32_t dac_clkgate_en: 1;
uint32_t reserved28: 4;
};
uint32_t val;
} sar_dac_ctrl1;
union {
struct {
uint32_t dac_dc1: 8; /*DC offset for DAC1 CW generator*/
uint32_t dac_dc2: 8; /*DC offset for DAC2 CW generator*/
uint32_t dac_scale1: 2; /*00: no scale*/
uint32_t dac_scale2: 2; /*00: no scale*/
uint32_t dac_inv1: 2; /*00: do not invert any bits*/
uint32_t dac_inv2: 2; /*00: do not invert any bits*/
uint32_t dac_cw_en1: 1; /*1: to select CW generator as source to PDAC1_DAC[7:0]*/
uint32_t dac_cw_en2: 1; /*1: to select CW generator as source to PDAC2_DAC[7:0]*/
uint32_t reserved26: 6;
};
uint32_t val;
} sar_dac_ctrl2;
union {
struct {
uint32_t reserved0: 25;
uint32_t dbg_trigger: 1; /*trigger cocpu debug registers*/
uint32_t clk_en: 1; /*check cocpu whether clk on*/
uint32_t reset_n: 1; /*check cocpu whether in reset state*/
uint32_t eoi: 1; /*check cocpu whether in interrupt state*/
uint32_t trap: 1; /*check cocpu whether in trap state*/
uint32_t ebreak: 1; /*check cocpu whether in ebreak*/
uint32_t reserved31: 1;
};
uint32_t val;
} sar_cocpu_state;
union {
struct {
uint32_t touch_done: 1; /*int from touch done*/
uint32_t touch_inactive: 1; /*int from touch inactive*/
uint32_t touch_active: 1; /*int from touch active*/
uint32_t saradc1: 1; /*int from saradc1*/
uint32_t saradc2: 1; /*int from saradc2*/
uint32_t tsens: 1; /*int from tsens*/
uint32_t start: 1; /*int from start*/
uint32_t sw: 1; /*int from software*/
uint32_t swd: 1; /*int from super watch dog*/
uint32_t reserved9: 23;
};
uint32_t val;
} sar_cocpu_int_raw;
union {
struct {
uint32_t touch_done: 1;
uint32_t touch_inactive: 1;
uint32_t touch_active: 1;
uint32_t saradc1: 1;
uint32_t saradc2: 1;
uint32_t tsens: 1;
uint32_t start: 1;
uint32_t sw: 1; /*cocpu int enable*/
uint32_t swd: 1;
uint32_t reserved9: 23;
};
uint32_t val;
} sar_cocpu_int_ena;
union {
struct {
uint32_t touch_done: 1;
uint32_t touch_inactive: 1;
uint32_t touch_active: 1;
uint32_t saradc1: 1;
uint32_t saradc2: 1;
uint32_t tsens: 1;
uint32_t start: 1;
uint32_t sw: 1; /*cocpu int status*/
uint32_t swd: 1;
uint32_t reserved9: 23;
};
uint32_t val;
} sar_cocpu_int_st;
union {
struct {
uint32_t touch_done: 1;
uint32_t touch_inactive: 1;
uint32_t touch_active: 1;
uint32_t saradc1: 1;
uint32_t saradc2: 1;
uint32_t tsens: 1;
uint32_t start: 1;
uint32_t sw: 1; /*cocpu int clear*/
uint32_t swd: 1;
uint32_t reserved9: 23;
};
uint32_t val;
} sar_cocpu_int_clr;
union {
struct {
uint32_t pc: 13; /*cocpu Program counter*/
uint32_t mem_vld: 1; /*cocpu mem valid output*/
uint32_t mem_rdy: 1; /*cocpu mem ready input*/
uint32_t mem_wen: 4; /*cocpu mem write enable output*/
uint32_t mem_addr: 13; /*cocpu mem address output*/
};
uint32_t val;
} sar_cocpu_debug;
union {
struct {
uint32_t reserved0: 28;
uint32_t xpd_hall: 1; /*Power on hall sensor and connect to VP and VN*/
uint32_t xpd_hall_force: 1; /*1: XPD HALL is controlled by SW. 0: XPD HALL is controlled by FSM in ULP-coprocessor*/
uint32_t hall_phase: 1; /*Reverse phase of hall sensor*/
uint32_t hall_phase_force: 1; /*1: HALL PHASE is controlled by SW 0: HALL PHASE is controlled by FSM in ULP-coprocessor*/
};
uint32_t val;
} sar_hall_ctrl;
uint32_t sar_nouse; /**/
union {
struct {
uint32_t reserved0: 30;
uint32_t iomux_reset: 1;
uint32_t iomux_clk_gate_en: 1;
};
uint32_t val;
} sar_io_mux_conf;
union {
struct {
uint32_t sar_date: 28;
uint32_t reserved28: 4;
};
uint32_t val;
} sardate;
} sens_dev_t;
extern sens_dev_t SENS;
#ifdef __cplusplus
}
#endif
#endif /* _SOC_SENS_STRUCT_H_ */