Anurag Kar f27db1f241 pthread : Add support for attributes and few APIs
This introduces the following changes :
    * Implmentation added for pthread attribute related functions :
        * pthread_attr_init
        * pthread_attr_destroy
        * pthread_attr_setdetachstate
        * pthread_attr_getdetachstate
        * pthread_attr_getstacksize
        * pthread_attr_setstacksize
    * pthread_create now supports passing attributes/configs through pthread_attr_t structure
    * pthread_mutex_timedlock added
    * pthread_exit added
    * memory for joinable thread is freed before returning from pthread_join
2018-09-22 02:35:27 +05:30

757 lines
20 KiB
C

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This module implements pthread API on top of FreeRTOS. API is implemented to the level allowing
// libstdcxx threading framework to operate correctly. So not all original pthread routines are supported.
//
#include <time.h>
#include <errno.h>
#include <pthread.h>
#include <string.h>
#include "esp_err.h"
#include "esp_attr.h"
#include "rom/queue.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "pthread_internal.h"
#include "esp_pthread.h"
#define LOG_LOCAL_LEVEL CONFIG_LOG_DEFAULT_LEVEL
#include "esp_log.h"
const static char *TAG = "pthread";
/** task state */
enum esp_pthread_task_state {
PTHREAD_TASK_STATE_RUN,
PTHREAD_TASK_STATE_EXIT
};
/** pthread thread FreeRTOS wrapper */
typedef struct esp_pthread_entry {
SLIST_ENTRY(esp_pthread_entry) list_node; ///< Tasks list node struct.
TaskHandle_t handle; ///< FreeRTOS task handle
TaskHandle_t join_task; ///< Handle of the task waiting to join
enum esp_pthread_task_state state; ///< pthread task state
bool detached; ///< True if pthread is detached
void *retval; ///< Value supplied to calling thread during join
void *task_arg; ///< Task arguments
} esp_pthread_t;
/** pthread wrapper task arg */
typedef struct {
void *(*func)(void *); ///< user task entry
void *arg; ///< user task argument
esp_pthread_cfg_t cfg; ///< pthread configuration
} esp_pthread_task_arg_t;
/** pthread mutex FreeRTOS wrapper */
typedef struct {
SemaphoreHandle_t sem; ///< Handle of the task waiting to join
int type; ///< Mutex type. Currently supported PTHREAD_MUTEX_NORMAL and PTHREAD_MUTEX_RECURSIVE
} esp_pthread_mutex_t;
static SemaphoreHandle_t s_threads_mux = NULL;
static portMUX_TYPE s_mutex_init_lock = portMUX_INITIALIZER_UNLOCKED;
static SLIST_HEAD(esp_thread_list_head, esp_pthread_entry) s_threads_list
= SLIST_HEAD_INITIALIZER(s_threads_list);
static pthread_key_t s_pthread_cfg_key;
static int IRAM_ATTR pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo);
static void esp_pthread_cfg_key_destructor(void *value)
{
free(value);
}
esp_err_t esp_pthread_init(void)
{
if (pthread_key_create(&s_pthread_cfg_key, esp_pthread_cfg_key_destructor) != 0) {
return ESP_ERR_NO_MEM;
}
s_threads_mux = xSemaphoreCreateMutex();
if (s_threads_mux == NULL) {
pthread_key_delete(s_pthread_cfg_key);
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
static void *pthread_list_find_item(void *(*item_check)(esp_pthread_t *, void *arg), void *check_arg)
{
esp_pthread_t *it;
SLIST_FOREACH(it, &s_threads_list, list_node) {
void *val = item_check(it, check_arg);
if (val) {
return val;
}
}
return NULL;
}
static void *pthread_get_handle_by_desc(esp_pthread_t *item, void *desc)
{
if (item == desc) {
return item->handle;
}
return NULL;
}
static void *pthread_get_desc_by_handle(esp_pthread_t *item, void *hnd)
{
if (hnd == item->handle) {
return item;
}
return NULL;
}
static inline TaskHandle_t pthread_find_handle(pthread_t thread)
{
return pthread_list_find_item(pthread_get_handle_by_desc, (void *)thread);
}
static esp_pthread_t *pthread_find(TaskHandle_t task_handle)
{
return pthread_list_find_item(pthread_get_desc_by_handle, task_handle);
}
static void pthread_delete(esp_pthread_t *pthread)
{
SLIST_REMOVE(&s_threads_list, pthread, esp_pthread_entry, list_node);
free(pthread);
}
/* Call this function to configure pthread stacks in Pthreads */
esp_err_t esp_pthread_set_cfg(const esp_pthread_cfg_t *cfg)
{
if (cfg->stack_size < PTHREAD_STACK_MIN) {
return ESP_ERR_INVALID_ARG;
}
/* If a value is already set, update that value */
esp_pthread_cfg_t *p = pthread_getspecific(s_pthread_cfg_key);
if (!p) {
p = malloc(sizeof(esp_pthread_cfg_t));
if (!p) {
return ESP_ERR_NO_MEM;
}
}
*p = *cfg;
pthread_setspecific(s_pthread_cfg_key, p);
return 0;
}
esp_err_t esp_pthread_get_cfg(esp_pthread_cfg_t *p)
{
esp_pthread_cfg_t *cfg = pthread_getspecific(s_pthread_cfg_key);
if (cfg) {
*p = *cfg;
return ESP_OK;
}
memset(p, 0, sizeof(*p));
return ESP_ERR_NOT_FOUND;
}
static void pthread_task_func(void *arg)
{
void *rval = NULL;
esp_pthread_task_arg_t *task_arg = (esp_pthread_task_arg_t *)arg;
ESP_LOGV(TAG, "%s ENTER %p", __FUNCTION__, task_arg->func);
// wait for start
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
if (task_arg->cfg.inherit_cfg) {
/* If inherit option is set, then do a set_cfg() ourselves for future forks */
esp_pthread_set_cfg(&task_arg->cfg);
}
ESP_LOGV(TAG, "%s START %p", __FUNCTION__, task_arg->func);
rval = task_arg->func(task_arg->arg);
ESP_LOGV(TAG, "%s END %p", __FUNCTION__, task_arg->func);
pthread_exit(rval);
ESP_LOGV(TAG, "%s EXIT", __FUNCTION__);
}
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg)
{
TaskHandle_t xHandle = NULL;
ESP_LOGV(TAG, "%s", __FUNCTION__);
esp_pthread_task_arg_t *task_arg = calloc(1, sizeof(esp_pthread_task_arg_t));
if (task_arg == NULL) {
ESP_LOGE(TAG, "Failed to allocate task args!");
return ENOMEM;
}
esp_pthread_t *pthread = calloc(1, sizeof(esp_pthread_t));
if (pthread == NULL) {
ESP_LOGE(TAG, "Failed to allocate pthread data!");
free(task_arg);
return ENOMEM;
}
uint32_t stack_size = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT;
BaseType_t prio = CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT;
esp_pthread_cfg_t *pthread_cfg = pthread_getspecific(s_pthread_cfg_key);
if (pthread_cfg) {
if (pthread_cfg->stack_size) {
stack_size = pthread_cfg->stack_size;
}
if (pthread_cfg->prio && pthread_cfg->prio < configMAX_PRIORITIES) {
prio = pthread_cfg->prio;
}
task_arg->cfg = *pthread_cfg;
}
if (attr) {
/* Overwrite attributes */
stack_size = attr->stacksize;
switch (attr->detachstate) {
case PTHREAD_CREATE_DETACHED:
pthread->detached = true;
break;
case PTHREAD_CREATE_JOINABLE:
default:
pthread->detached = false;
}
}
task_arg->func = start_routine;
task_arg->arg = arg;
pthread->task_arg = task_arg;
BaseType_t res = xTaskCreate(&pthread_task_func, "pthread", stack_size,
task_arg, prio, &xHandle);
if(res != pdPASS) {
ESP_LOGE(TAG, "Failed to create task!");
free(pthread);
free(task_arg);
if (res == errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY) {
return ENOMEM;
} else {
return EAGAIN;
}
}
pthread->handle = xHandle;
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
SLIST_INSERT_HEAD(&s_threads_list, pthread, list_node);
xSemaphoreGive(s_threads_mux);
// start task
xTaskNotify(xHandle, 0, eNoAction);
*thread = (pthread_t)pthread; // pointer value fit into pthread_t (uint32_t)
ESP_LOGV(TAG, "Created task %x", (uint32_t)xHandle);
return 0;
}
int pthread_join(pthread_t thread, void **retval)
{
esp_pthread_t *pthread = (esp_pthread_t *)thread;
int ret = 0;
bool wait = false;
void *child_task_retval = 0;
ESP_LOGV(TAG, "%s %p", __FUNCTION__, pthread);
// find task
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
TaskHandle_t handle = pthread_find_handle(thread);
if (!handle) {
// not found
ret = ESRCH;
} else if (pthread->detached) {
// Thread is detached
ret = EDEADLK;
} else if (pthread->join_task) {
// already have waiting task to join
ret = EINVAL;
} else if (handle == xTaskGetCurrentTaskHandle()) {
// join to self not allowed
ret = EDEADLK;
} else {
esp_pthread_t *cur_pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (cur_pthread && cur_pthread->join_task == handle) {
// join to each other not allowed
ret = EDEADLK;
} else {
if (pthread->state == PTHREAD_TASK_STATE_RUN) {
pthread->join_task = xTaskGetCurrentTaskHandle();
wait = true;
} else {
child_task_retval = pthread->retval;
pthread_delete(pthread);
}
}
}
xSemaphoreGive(s_threads_mux);
if (ret == 0) {
if (wait) {
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
child_task_retval = pthread->retval;
pthread_delete(pthread);
xSemaphoreGive(s_threads_mux);
}
vTaskDelete(handle);
}
if (retval) {
*retval = child_task_retval;
}
ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret);
return ret;
}
int pthread_detach(pthread_t thread)
{
esp_pthread_t *pthread = (esp_pthread_t *)thread;
int ret = 0;
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
TaskHandle_t handle = pthread_find_handle(thread);
if (!handle) {
ret = ESRCH;
} else {
pthread->detached = true;
}
xSemaphoreGive(s_threads_mux);
ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret);
return ret;
}
void pthread_exit(void *value_ptr)
{
bool detached = false;
/* preemptively clean up thread local storage, rather than
waiting for the idle task to clean up the thread */
pthread_internal_local_storage_destructor_callback();
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (!pthread) {
assert(false && "Failed to find pthread for current task!");
}
if (pthread->task_arg) {
free(pthread->task_arg);
}
if (pthread->detached) {
// auto-free for detached threads
pthread_delete(pthread);
detached = true;
} else {
// Set return value
pthread->retval = value_ptr;
// Remove from list, it indicates that task has exited
if (pthread->join_task) {
// notify join
xTaskNotify(pthread->join_task, 0, eNoAction);
} else {
pthread->state = PTHREAD_TASK_STATE_EXIT;
}
}
xSemaphoreGive(s_threads_mux);
ESP_LOGD(TAG, "Task stk_wm = %d", uxTaskGetStackHighWaterMark(NULL));
if (detached) {
vTaskDelete(NULL);
} else {
vTaskSuspend(NULL);
}
ESP_LOGV(TAG, "%s EXIT", __FUNCTION__);
}
int pthread_cancel(pthread_t thread)
{
ESP_LOGE(TAG, "%s: not supported!", __FUNCTION__);
return ENOSYS;
}
int sched_yield( void )
{
vTaskDelay(0);
return 0;
}
pthread_t pthread_self(void)
{
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (!pthread) {
assert(false && "Failed to find current thread ID!");
}
xSemaphoreGive(s_threads_mux);
return (pthread_t)pthread;
}
int pthread_equal(pthread_t t1, pthread_t t2)
{
return t1 == t2 ? 1 : 0;
}
/***************** ONCE ******************/
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void))
{
if (once_control == NULL || init_routine == NULL || !once_control->is_initialized) {
ESP_LOGE(TAG, "%s: Invalid args!", __FUNCTION__);
return EINVAL;
}
uint32_t res = 1;
#if defined(CONFIG_SPIRAM_SUPPORT)
if (esp_ptr_external_ram(once_control)) {
uxPortCompareSetExtram((uint32_t *) &once_control->init_executed, 0, &res);
} else {
#endif
uxPortCompareSet((uint32_t *) &once_control->init_executed, 0, &res);
#if defined(CONFIG_SPIRAM_SUPPORT)
}
#endif
// Check if compare and set was successful
if (res == 0) {
ESP_LOGV(TAG, "%s: call init_routine %p", __FUNCTION__, once_control);
init_routine();
}
return 0;
}
/***************** MUTEX ******************/
static int mutexattr_check(const pthread_mutexattr_t *attr)
{
if (attr->type != PTHREAD_MUTEX_NORMAL &&
attr->type != PTHREAD_MUTEX_RECURSIVE &&
attr->type != PTHREAD_MUTEX_ERRORCHECK) {
return EINVAL;
}
return 0;
}
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
int type = PTHREAD_MUTEX_NORMAL;
if (!mutex) {
return EINVAL;
}
if (attr) {
if (!attr->is_initialized) {
return EINVAL;
}
int res = mutexattr_check(attr);
if (res) {
return res;
}
type = attr->type;
}
esp_pthread_mutex_t *mux = (esp_pthread_mutex_t *)malloc(sizeof(esp_pthread_mutex_t));
if (!mux) {
return ENOMEM;
}
mux->type = type;
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
mux->sem = xSemaphoreCreateRecursiveMutex();
} else {
mux->sem = xSemaphoreCreateMutex();
}
if (!mux->sem) {
free(mux);
return EAGAIN;
}
*mutex = (pthread_mutex_t)mux; // pointer value fit into pthread_mutex_t (uint32_t)
return 0;
}
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
esp_pthread_mutex_t *mux;
ESP_LOGV(TAG, "%s %p", __FUNCTION__, mutex);
if (!mutex) {
return EINVAL;
}
mux = (esp_pthread_mutex_t *)*mutex;
if (!mux) {
return EINVAL;
}
// check if mux is busy
int res = pthread_mutex_lock_internal(mux, 0);
if (res == EBUSY) {
return EBUSY;
}
vSemaphoreDelete(mux->sem);
free(mux);
return 0;
}
static int IRAM_ATTR pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo)
{
if (!mux) {
return EINVAL;
}
if ((mux->type == PTHREAD_MUTEX_ERRORCHECK) &&
(xSemaphoreGetMutexHolder(mux->sem) == xTaskGetCurrentTaskHandle())) {
return EDEADLK;
}
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
if (xSemaphoreTakeRecursive(mux->sem, tmo) != pdTRUE) {
return EBUSY;
}
} else {
if (xSemaphoreTake(mux->sem, tmo) != pdTRUE) {
return EBUSY;
}
}
return 0;
}
static int pthread_mutex_init_if_static(pthread_mutex_t *mutex)
{
int res = 0;
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
portENTER_CRITICAL(&s_mutex_init_lock);
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
res = pthread_mutex_init(mutex, NULL);
}
portEXIT_CRITICAL(&s_mutex_init_lock);
}
return res;
}
int IRAM_ATTR pthread_mutex_lock(pthread_mutex_t *mutex)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, portMAX_DELAY);
}
int IRAM_ATTR pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *timeout)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
struct timespec currtime;
clock_gettime(CLOCK_REALTIME, &currtime);
TickType_t tmo = ((timeout->tv_sec - currtime.tv_sec)*1000 +
(timeout->tv_nsec - currtime.tv_nsec)/1000000)/portTICK_PERIOD_MS;
res = pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, tmo);
if (res == EBUSY) {
return ETIMEDOUT;
}
return res;
}
int IRAM_ATTR pthread_mutex_trylock(pthread_mutex_t *mutex)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, 0);
}
int IRAM_ATTR pthread_mutex_unlock(pthread_mutex_t *mutex)
{
esp_pthread_mutex_t *mux;
if (!mutex) {
return EINVAL;
}
mux = (esp_pthread_mutex_t *)*mutex;
if (!mux) {
return EINVAL;
}
if (((mux->type == PTHREAD_MUTEX_RECURSIVE) ||
(mux->type == PTHREAD_MUTEX_ERRORCHECK)) &&
(xSemaphoreGetMutexHolder(mux->sem) != xTaskGetCurrentTaskHandle())) {
return EPERM;
}
int ret;
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
ret = xSemaphoreGiveRecursive(mux->sem);
} else {
ret = xSemaphoreGive(mux->sem);
}
if (ret != pdTRUE) {
assert(false && "Failed to unlock mutex!");
}
return 0;
}
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (!attr) {
return EINVAL;
}
attr->type = PTHREAD_MUTEX_NORMAL;
attr->is_initialized = 1;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (!attr) {
return EINVAL;
}
attr->is_initialized = 0;
return 0;
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
if (!attr) {
return EINVAL;
}
*type = attr->type;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (!attr) {
return EINVAL;
}
pthread_mutexattr_t tmp_attr = {.type = type};
int res = mutexattr_check(&tmp_attr);
if (!res) {
attr->type = type;
}
return res;
}
/***************** ATTRIBUTES ******************/
int pthread_attr_init(pthread_attr_t *attr)
{
if (attr) {
/* Nothing to allocate. Set everything to default */
attr->stacksize = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT;
attr->detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
return EINVAL;
}
int pthread_attr_destroy(pthread_attr_t *attr)
{
if (attr) {
/* Nothing to deallocate. Reset everything to default */
attr->stacksize = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT;
attr->detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
return EINVAL;
}
int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize)
{
if (attr) {
*stacksize = attr->stacksize;
return 0;
}
return EINVAL;
}
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)
{
if (attr && !(stacksize < PTHREAD_STACK_MIN)) {
attr->stacksize = stacksize;
return 0;
}
return EINVAL;
}
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate)
{
if (attr) {
*detachstate = attr->detachstate;
return 0;
}
return EINVAL;
}
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
{
if (attr) {
switch (detachstate) {
case PTHREAD_CREATE_DETACHED:
attr->detachstate = PTHREAD_CREATE_DETACHED;
break;
case PTHREAD_CREATE_JOINABLE:
attr->detachstate = PTHREAD_CREATE_JOINABLE;
break;
default:
return EINVAL;
}
return 0;
}
return EINVAL;
}