esp-idf/components/esp_partition/partition_linux.c
radek.tandler 9e191bad52 esp_partition/linux target: Add functions supporting host tests
Added statistics and wear simulation functions to support migration of
remaining storage related host tests from fixture to linux implementation
of esp_partition.
2023-01-10 14:10:14 +01:00

500 lines
18 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <limits.h>
#include <errno.h>
#include "sdkconfig.h"
#include "esp_partition.h"
#include "esp_flash_partitions.h"
#include "esp_private/partition_linux.h"
#include "esp_log.h"
static const char *TAG = "linux_spiflash";
static void *s_spiflash_mem_file_buf = NULL;
static const esp_partition_mmap_handle_t s_default_partition_mmap_handle = 0;
#ifdef CONFIG_ESP_PARTITION_ENABLE_STATS
// variables holding stats and controlling wear emulation
size_t s_esp_partition_stat_read_ops = 0;
size_t s_esp_partition_stat_write_ops = 0;
size_t s_esp_partition_stat_read_bytes = 0;
size_t s_esp_partition_stat_write_bytes = 0;
size_t s_esp_partition_stat_erase_ops = 0;
size_t s_esp_partition_stat_total_time = 0;
size_t s_esp_partition_emulated_flash_life = SIZE_MAX;
// tracking erase count individually for each emulated sector
size_t s_esp_partition_stat_sector_erase_count[ESP_PARTITION_EMULATED_FLASH_SIZE / ESP_PARTITION_EMULATED_SECTOR_SIZE] = {0};
// forward declaration of hooks
static void esp_partition_hook_read(const void *srcAddr, const size_t size);
static bool esp_partition_hook_write(const void *dstAddr, const size_t size);
static bool esp_partition_hook_erase(const void *dstAddr, const size_t size);
// redirect hooks to functions
#define ESP_PARTITION_HOOK_READ(srcAddr, size) esp_partition_hook_read(srcAddr, size)
#define ESP_PARTITION_HOOK_WRITE(dstAddr, size) esp_partition_hook_write(dstAddr, size)
#define ESP_PARTITION_HOOK_ERASE(dstAddr, size) esp_partition_hook_erase(dstAddr, size)
#else
// redirect hooks to "do nothing code"
#define ESP_PARTITION_HOOK_READ(srcAddr, size)
#define ESP_PARTITION_HOOK_WRITE(dstAddr, size) true
#define ESP_PARTITION_HOOK_ERASE(dstAddr, size) true
#endif
const char *esp_partition_type_to_str(const uint32_t type)
{
switch (type) {
case PART_TYPE_APP: return "app";
case PART_TYPE_DATA: return "data";
default: return "unknown";
}
}
const char *esp_partition_subtype_to_str(const uint32_t type, const uint32_t subtype)
{
switch (type) {
case PART_TYPE_APP:
switch (subtype) {
case PART_SUBTYPE_FACTORY: return "factory";
case PART_SUBTYPE_OTA_FLAG: return "ota_flag";
case PART_SUBTYPE_OTA_MASK: return "ota_mask";
case PART_SUBTYPE_TEST: return "test";
default: return "unknown";
}
case PART_TYPE_DATA:
switch (subtype) {
case PART_SUBTYPE_DATA_OTA: return "data_ota";
case PART_SUBTYPE_DATA_RF: return "data_rf";
case PART_SUBTYPE_DATA_WIFI: return "data_wifi";
case PART_SUBTYPE_DATA_NVS_KEYS: return "nvs_keys";
case PART_SUBTYPE_DATA_EFUSE_EM: return "efuse_em";
default: return "unknown";
}
default: return "unknown";
}
}
esp_err_t esp_partition_file_mmap(const uint8_t **part_desc_addr_start)
{
//create temporary file to hold complete SPIFLASH size
char temp_spiflash_mem_file_name[PATH_MAX] = {"/tmp/idf-partition-XXXXXX"};
int spiflash_mem_file_fd = mkstemp(temp_spiflash_mem_file_name);
if (spiflash_mem_file_fd == -1) {
ESP_LOGE(TAG, "Failed to create SPI FLASH emulation file %s: %s", temp_spiflash_mem_file_name, strerror(errno));
return ESP_ERR_NOT_FINISHED;
}
if (ftruncate(spiflash_mem_file_fd, ESP_PARTITION_EMULATED_FLASH_SIZE) != 0) {
ESP_LOGE(TAG, "Failed to set size of SPI FLASH memory emulation file %s: %s", temp_spiflash_mem_file_name, strerror(errno));
return ESP_ERR_INVALID_SIZE;
}
ESP_LOGV(TAG, "SPIFLASH memory emulation file created: %s (size: %d B)", temp_spiflash_mem_file_name, ESP_PARTITION_EMULATED_FLASH_SIZE);
//create memory-mapping for the partitions holder file
if ((s_spiflash_mem_file_buf = mmap(NULL, ESP_PARTITION_EMULATED_FLASH_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, spiflash_mem_file_fd, 0)) == MAP_FAILED) {
ESP_LOGE(TAG, "Failed to mmap() SPI FLASH memory emulation file: %s", strerror(errno));
return ESP_ERR_NO_MEM;
}
//initialize whole range with bit-1 (NOR FLASH default)
memset(s_spiflash_mem_file_buf, 0xFF, ESP_PARTITION_EMULATED_FLASH_SIZE);
//upload partition table to the mmap file at real offset as in SPIFLASH
const char *partition_table_file_name = "build/partition_table/partition-table.bin";
FILE *f_partition_table = fopen(partition_table_file_name, "r+");
if (f_partition_table == NULL) {
ESP_LOGE(TAG, "Failed to open partition table file %s: %s", partition_table_file_name, strerror(errno));
return ESP_ERR_NOT_FOUND;
}
if (fseek(f_partition_table, 0L, SEEK_END) != 0) {
ESP_LOGE(TAG, "Failed to seek in partition table file %s: %s", partition_table_file_name, strerror(errno));
return ESP_ERR_INVALID_SIZE;
}
int partition_table_file_size = ftell(f_partition_table);
ESP_LOGV(TAG, "Using partition table file %s (size: %d B):", partition_table_file_name, partition_table_file_size);
uint8_t *part_table_in_spiflash = s_spiflash_mem_file_buf + ESP_PARTITION_TABLE_OFFSET;
//copy partition table from the file to emulated SPIFLASH memory space
if (fseek(f_partition_table, 0L, SEEK_SET) != 0) {
ESP_LOGE(TAG, "Failed to seek in partition table file %s: %s", partition_table_file_name, strerror(errno));
return ESP_ERR_INVALID_SIZE;
}
size_t res = fread(part_table_in_spiflash, 1, partition_table_file_size, f_partition_table);
fclose(f_partition_table);
if (res != partition_table_file_size) {
ESP_LOGE(TAG, "Failed to read partition table file %s", partition_table_file_name);
return ESP_ERR_INVALID_STATE;
}
#ifdef CONFIG_LOG_DEFAULT_LEVEL_VERBOSE
uint8_t *part_ptr = part_table_in_spiflash;
uint8_t *part_end_ptr = part_table_in_spiflash + partition_table_file_size;
ESP_LOGV(TAG, "");
ESP_LOGV(TAG, "Partition table sucessfully imported, partitions found:");
while (part_ptr < part_end_ptr) {
esp_partition_info_t *p_part_item = (esp_partition_info_t *)part_ptr;
if (p_part_item->magic != ESP_PARTITION_MAGIC ) {
break;
}
ESP_LOGV(TAG, " --------------");
ESP_LOGV(TAG, " label: %s", p_part_item->label);
ESP_LOGV(TAG, " type: %s", esp_partition_type_to_str(p_part_item->type));
ESP_LOGV(TAG, " subtype: %s", esp_partition_subtype_to_str(p_part_item->type, p_part_item->subtype));
ESP_LOGV(TAG, " offset: 0x%08X", p_part_item->pos.offset);
ESP_LOGV(TAG, " size: %d", p_part_item->pos.size);
ESP_LOGV(TAG, " flags: %d", p_part_item->flags);
part_ptr += sizeof(esp_partition_info_t);
}
ESP_LOGV(TAG, "");
#endif
//return mmapped file starting address
*part_desc_addr_start = s_spiflash_mem_file_buf;
return ESP_OK;
}
esp_err_t esp_partition_file_munmap()
{
if (s_spiflash_mem_file_buf == NULL) {
return ESP_ERR_NO_MEM;
}
if (ESP_PARTITION_EMULATED_FLASH_SIZE == 0) {
return ESP_ERR_INVALID_SIZE;
}
if (munmap(s_spiflash_mem_file_buf, ESP_PARTITION_EMULATED_FLASH_SIZE) != 0) {
ESP_LOGE(TAG, "Failed to munmap() SPI FLASH memory emulation file: %s", strerror(errno));
return ESP_ERR_INVALID_RESPONSE;
}
s_spiflash_mem_file_buf = NULL;
return ESP_OK;
}
esp_err_t esp_partition_write(const esp_partition_t *partition, size_t dst_offset, const void *src, size_t size)
{
assert(partition != NULL);
if (partition->encrypted) {
return ESP_ERR_NOT_SUPPORTED;
}
if (dst_offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (dst_offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
uint8_t *write_buf = malloc(size);
if (write_buf == NULL) {
return ESP_ERR_NO_MEM;
}
void *dst_addr = s_spiflash_mem_file_buf + partition->address + dst_offset;
ESP_LOGV(TAG, "esp_partition_write(): partition=%s dst_offset=%zu src=%p size=%zu (real dst address: %p)", partition->label, dst_offset, src, size, dst_addr);
// hook gathers statistics and can emulate limited number of write cycles
if (!ESP_PARTITION_HOOK_WRITE(dst_addr, size)) {
return ESP_FAIL;
}
//read the contents first, AND with the write buffer (to emulate real NOR FLASH behavior)
memcpy(write_buf, dst_addr, size);
for (size_t x = 0; x < size; x++) {
write_buf[x] &= ((uint8_t *)src)[x];
}
memcpy(dst_addr, write_buf, size);
free(write_buf);
return ESP_OK;
}
esp_err_t esp_partition_read(const esp_partition_t *partition, size_t src_offset, void *dst, size_t size)
{
assert(partition != NULL);
if (partition->encrypted) {
return ESP_ERR_NOT_SUPPORTED;
}
if (src_offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (src_offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
void *src_addr = s_spiflash_mem_file_buf + partition->address + src_offset;
ESP_LOGV(TAG, "esp_partition_read(): partition=%s src_offset=%zu dst=%p size=%zu (real src address: %p)", partition->label, src_offset, dst, size, src_addr);
memcpy(dst, src_addr, size);
ESP_PARTITION_HOOK_READ(src_addr, size); // statistics
return ESP_OK;
}
esp_err_t esp_partition_read_raw(const esp_partition_t *partition, size_t src_offset, void *dst, size_t size)
{
ESP_LOGV(TAG, "esp_partition_read_raw(): calling esp_partition_read()");
return esp_partition_read(partition, src_offset, dst, size);
}
esp_err_t esp_partition_write_raw(const esp_partition_t *partition, size_t dst_offset, const void *src, size_t size)
{
ESP_LOGV(TAG, "esp_partition_write_raw(): calling esp_partition_write()");
return esp_partition_write(partition, dst_offset, src, size);
}
esp_err_t esp_partition_erase_range(const esp_partition_t *partition, size_t offset, size_t size)
{
assert(partition != NULL);
if (offset > partition->size || offset % partition->erase_size != 0) {
return ESP_ERR_INVALID_ARG;
}
if (offset + size > partition->size || size % partition->erase_size != 0) {
return ESP_ERR_INVALID_SIZE;
}
void *target_addr = s_spiflash_mem_file_buf + partition->address + offset;
ESP_LOGV(TAG, "esp_partition_erase_range(): partition=%s offset=%zu size=%zu (real target address: %p)", partition->label, offset, size, target_addr);
// hook gathers statistics and can emulate limited number of write/erase cycles
if (!ESP_PARTITION_HOOK_ERASE(target_addr, size)) {
return ESP_FAIL;
}
//set all bits to 1 (NOR FLASH default)
memset(target_addr, 0xFF, size);
return ESP_OK;
}
/*
* Exposes direct pointer to the memory mapped file created by esp_partition_file_mmap
* No address alignment is performed
* Default handle is always returned
* Returns:
* ESP_ERR_INVALID_ARG - offset exceeds size of partition
* ESP_ERR_INVALID_SIZE - address range defined by offset + size is beyond the size of partition
* ESP_ERR_NOT_SUPPORTED - flash_chip of partition is not NULL
* ESP_OK - calculated out parameters hold pointer to the requested memory area and default handle respectively
*/
esp_err_t esp_partition_mmap(const esp_partition_t *partition, size_t offset, size_t size,
esp_partition_mmap_memory_t memory,
const void **out_ptr, esp_partition_mmap_handle_t *out_handle)
{
ESP_LOGV(TAG, "esp_partition_mmap(): partition=%s offset=%zu size=%zu", partition->label, offset, size);
assert(partition != NULL);
if (offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
if (partition->flash_chip != NULL) {
return ESP_ERR_NOT_SUPPORTED;
}
// required starting address in flash aka offset from the flash beginning
size_t req_flash_addr = (size_t)(partition->address) + offset;
esp_err_t rc = ESP_OK;
// check if memory mapped file is already present, if not, map it now
if (s_spiflash_mem_file_buf == NULL) {
ESP_LOGE(TAG, "esp_partition_mmap(): in esp_partition_file_mmap");
uint8_t *part_desc_addr_start = NULL;
rc = esp_partition_file_mmap((const uint8_t **) &part_desc_addr_start);
}
// adjust memory mapped pointer to the required offset
if (rc == ESP_OK) {
*out_ptr = (void *) (s_spiflash_mem_file_buf + req_flash_addr);
*out_handle = s_default_partition_mmap_handle;
} else {
*out_ptr = (void *) NULL;
*out_handle = 0;
}
return rc;
}
// Intentionally does nothing.
void esp_partition_munmap(esp_partition_mmap_handle_t handle)
{
;
}
#ifdef CONFIG_ESP_PARTITION_ENABLE_STATS
// timing data for ESP8266, 160MHz CPU frequency, 80MHz flash requency
// all values in microseconds
// values are for block sizes starting at 4 bytes and going up to 4096 bytes
static size_t s_esp_partition_stat_read_times[] = {7, 5, 6, 7, 11, 18, 32, 60, 118, 231, 459};
static size_t s_esp_partition_stat_write_times[] = {19, 23, 35, 57, 106, 205, 417, 814, 1622, 3200, 6367};
static size_t s_esp_partition_stat_block_erase_time = 37142;
static size_t esp_partition_stat_time_interpolate(uint32_t bytes, size_t *lut)
{
const int lut_size = sizeof(s_esp_partition_stat_read_times) / sizeof(s_esp_partition_stat_read_times[0]);
int lz = __builtin_clz(bytes / 4);
int log_size = 32 - lz;
size_t x2 = 1 << (log_size + 2);
size_t upper_index = (log_size < lut_size - 1) ? log_size : lut_size - 1;
size_t y2 = lut[upper_index];
size_t x1 = 1 << (log_size + 1);
size_t y1 = lut[log_size - 1];
return (bytes - x1) * (y2 - y1) / (x2 - x1) + y1;
}
// Registers read access statistics of emulated SPI FLASH device (Linux host)
// Ffunction increases nmuber of read operations, accumulates number of read bytes
// and accumulates emulated read operation time (size dependent)
static void esp_partition_hook_read(const void *srcAddr, const size_t size)
{
ESP_LOGV(TAG, "esp_partition_hook_read()");
// stats
++s_esp_partition_stat_read_ops;
s_esp_partition_stat_read_bytes += size;
s_esp_partition_stat_total_time += esp_partition_stat_time_interpolate((uint32_t) size, s_esp_partition_stat_read_times);
}
// Registers write access statistics of emulated SPI FLASH device (Linux host)
// If enabled by the esp_partition_fail_after, function emulates physical limitation of write/erase operations by
// decrementing the s_esp_partition_emulated_life for each 4 bytes written
// If zero threshold is reached, false is returned.
// Else the function increases nmuber of write operations, accumulates number
// of bytes written and accumulates emulated write operation time (size dependent) and returns true.
static bool esp_partition_hook_write(const void *dstAddr, const size_t size)
{
ESP_LOGV(TAG, "esp_partition_hook_write()");
// wear emulation
for (size_t i = 0; i < size / 4; ++i) {
if (s_esp_partition_emulated_flash_life != SIZE_MAX && s_esp_partition_emulated_flash_life-- == 0) {
return false;
}
}
// stats
++s_esp_partition_stat_write_ops;
s_esp_partition_stat_write_bytes += size;
s_esp_partition_stat_total_time += esp_partition_stat_time_interpolate((uint32_t) size, s_esp_partition_stat_write_times);
return true;
}
// Registers erase access statistics of emulated SPI FLASH device (Linux host)
// If enabled by the esp_partition_fail_after, function emulates physical limitation of write/erase operations by
// decrementing the s_esp_partition_emulated_life for each erased virtual sector.
// If zero threshold is reached, false is returned.
// Else, for statistics purpose, the impacted virtual sectors are identified based on
// ESP_PARTITION_EMULATED_SECTOR_SIZE and their respective counts of erase operations are incremented
// Total number of erase operations is increased by the number of impacted virtual sectors
static bool esp_partition_hook_erase(const void *dstAddr, const size_t size)
{
ESP_LOGV(TAG, "esp_partition_hook_erase()");
if (size == 0) {
return true;
}
// cycle over virtual sectors
ptrdiff_t offset = dstAddr - s_spiflash_mem_file_buf;
size_t first_sector_idx = offset / ESP_PARTITION_EMULATED_SECTOR_SIZE;
size_t last_sector_idx = (offset + size - 1) / ESP_PARTITION_EMULATED_SECTOR_SIZE;
size_t sector_count = 1 + last_sector_idx - first_sector_idx;
for (size_t sector_index = first_sector_idx; sector_index < first_sector_idx + sector_count; sector_index++) {
// wear emulation
if (s_esp_partition_emulated_flash_life != SIZE_MAX && s_esp_partition_emulated_flash_life-- == 0) {
return false;
}
// stats
++s_esp_partition_stat_erase_ops;
s_esp_partition_stat_sector_erase_count[sector_index]++;
s_esp_partition_stat_total_time += s_esp_partition_stat_block_erase_time;
}
return true;
}
void esp_partition_clear_stats()
{
s_esp_partition_stat_read_bytes = 0;
s_esp_partition_stat_write_bytes = 0;
s_esp_partition_stat_erase_ops = 0;
s_esp_partition_stat_read_ops = 0;
s_esp_partition_stat_write_ops = 0;
s_esp_partition_stat_total_time = 0;
memset(s_esp_partition_stat_sector_erase_count, 0, sizeof(s_esp_partition_stat_sector_erase_count));
}
size_t esp_partition_get_read_ops()
{
return s_esp_partition_stat_read_ops;
}
size_t esp_partition_get_write_ops()
{
return s_esp_partition_stat_write_ops;
}
size_t esp_partition_get_erase_ops()
{
return s_esp_partition_stat_erase_ops;
}
size_t esp_partition_get_read_bytes()
{
return s_esp_partition_stat_read_bytes;
}
size_t esp_partition_get_write_bytes()
{
return s_esp_partition_stat_write_bytes;
}
size_t esp_partition_get_total_time()
{
return s_esp_partition_stat_total_time;
}
void esp_partition_fail_after(size_t count)
{
s_esp_partition_emulated_flash_life = count;
}
size_t esp_partition_get_sector_erase_count(size_t sector)
{
return s_esp_partition_stat_sector_erase_count[sector];
}
#endif