2022-03-09 10:58:12 +08:00

590 lines
18 KiB
C

/*
* SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @note TX and RX channels are index from 0 in the LL driver, i.e. tx_channel = [0,7], rx_channel = [0,7]
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include "hal/misc.h"
#include "hal/assert.h"
#include "soc/rmt_struct.h"
#include "hal/rmt_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RMT_LL_EVENT_TX_DONE(channel) (1 << ((channel) * 3))
#define RMT_LL_EVENT_TX_THRES(channel) (1 << ((channel) + 24))
#define RMT_LL_EVENT_TX_LOOP_END(channel) (0) // esp32 doesn't support tx loop count
#define RMT_LL_EVENT_TX_ERROR(channel) (1 << ((channel) * 3 + 2))
#define RMT_LL_EVENT_RX_DONE(channel) (1 << ((channel) * 3 + 1))
#define RMT_LL_EVENT_RX_THRES(channel) (0) // esp32 doesn't support rx wrap
#define RMT_LL_EVENT_RX_ERROR(channel) (1 << ((channel) * 3 + 2))
#define RMT_LL_EVENT_TX_MASK(channel) (RMT_LL_EVENT_TX_DONE(channel) | RMT_LL_EVENT_TX_THRES(channel) | RMT_LL_EVENT_TX_LOOP_END(channel))
#define RMT_LL_EVENT_RX_MASK(channel) (RMT_LL_EVENT_RX_DONE(channel) | RMT_LL_EVENT_RX_THRES(channel))
typedef enum {
RMT_LL_MEM_OWNER_SW = 0,
RMT_LL_MEM_OWNER_HW = 1,
} rmt_ll_mem_owner_t;
/**
* @brief Enable clock gate for register and memory
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_periph_clock(rmt_dev_t *dev, bool enable)
{
dev->conf_ch[0].conf0.clk_en = enable; // register clock gating
}
/**
* @brief Power down memory
*
* @param dev Peripheral instance address
* @param enable True to power down, False to power up
*/
static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable)
{
dev->conf_ch[0].conf0.mem_pd = enable; // Only conf0 register of channel0 has `mem_pd`
}
/**
* @brief Enable APB accessing RMT memory in nonfifo mode
*
* @param dev Peripheral instance address
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_mem_access_nonfifo(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.fifo_mask = enable;
}
/**
* @brief Set clock source and divider for RMT channel group
*
* @param dev Peripheral instance address
* @param channel not used as clock source is set for all channels
* @param src Clock source
* @param divider_integral Integral part of the divider
* @param divider_denominator Denominator part of the divider
* @param divider_numerator Numerator part of the divider
*/
static inline void rmt_ll_set_group_clock_src(rmt_dev_t *dev, uint32_t channel, rmt_clock_source_t src,
uint32_t divider_integral, uint32_t divider_denominator, uint32_t divider_numerator)
{
(void)divider_integral;
(void)divider_denominator;
(void)divider_numerator;
switch (src) {
case RMT_CLK_SRC_APB:
dev->conf_ch[channel].conf1.ref_always_on = 1;
break;
case RMT_CLK_SRC_REFTICK:
dev->conf_ch[channel].conf1.ref_always_on = 0;
break;
default:
HAL_ASSERT(false && "unsupported RMT clock source");
break;
}
}
////////////////////////////////////////TX Channel Specific/////////////////////////////////////////////////////////////
/**
* @brief Reset clock divider for TX channels by mask
*
* @param dev Peripheral instance address
* @param channel_mask Mask of TX channels
*/
static inline void rmt_ll_tx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask)
{
for (int i = 0; i < 8; i++) {
if (channel_mask & (1 << i)) {
dev->conf_ch[i].conf1.ref_cnt_rst = 1;
}
}
}
/**
* @brief Set TX channel clock divider
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param div Division value
*/
static inline void rmt_ll_tx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range");
// limit the maximum divider to 256
if (div >= 256) {
div = 0; // 0 means 256 division
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->conf_ch[channel].conf0, div_cnt, div);
}
/**
* @brief Reset RMT reading pointer for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
static inline void rmt_ll_tx_reset_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.mem_rd_rst = 1;
dev->conf_ch[channel].conf1.mem_rd_rst = 0;
dev->conf_ch[channel].conf1.apb_mem_rst = 1;
dev->conf_ch[channel].conf1.apb_mem_rst = 0;
}
/**
* @brief Start transmitting for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
*/
static inline void rmt_ll_tx_start(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.tx_start = 1;
}
/**
* @brief Set memory block number for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param block_num memory block number
*/
static inline void rmt_ll_tx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->conf_ch[channel].conf0.mem_size = block_num;
}
/**
* @brief Enable TX wrap
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_wrap(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->apb_conf.mem_tx_wrap_en = enable;
}
/**
* @brief Enable transmitting in a loop
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_loop(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.tx_conti_mode = enable;
}
/**
* @brief Fix the output level when TX channel is in IDLE state
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param level IDLE level (1 => high, 0 => low)
* @param enable True to fix the IDLE level, otherwise the IDLE level is determined by EOF encoder
*/
static inline void rmt_ll_tx_fix_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level, bool enable)
{
dev->conf_ch[channel].conf1.idle_out_en = enable;
dev->conf_ch[channel].conf1.idle_out_lv = level;
}
/**
* @brief Set the amount of RMT symbols that can trigger the limitation interrupt
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param limit Specify the number of symbols
*/
static inline void rmt_ll_tx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->tx_lim_ch[channel].limit = limit;
}
/**
* @brief Set high and low duration of carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param high_ticks Duration of high level
* @param low_ticks Duration of low level
*/
static inline void rmt_ll_tx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
HAL_ASSERT(high_ticks >= 1 && high_ticks <= 65536 && low_ticks >= 1 && low_ticks <= 65536 && "out of range high/low ticks");
// ticks=0 means 65536 in hardware
if (high_ticks >= 65536) {
high_ticks = 0;
}
if (low_ticks >= 65536) {
low_ticks = 0;
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->carrier_duty_ch[channel], high, high_ticks);
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->carrier_duty_ch[channel], low, low_ticks);
}
/**
* @brief Enable modulating carrier signal to TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_tx_enable_carrier_modulation(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf0.carrier_en = enable;
}
/**
* @brief Set on high or low to modulate the carrier signal
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @param level Which level to modulate on (0=>low level, 1=>high level)
*/
static inline void rmt_ll_tx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->conf_ch[channel].conf0.carrier_out_lv = level;
}
////////////////////////////////////////RX Channel Specific/////////////////////////////////////////////////////////////
/**
* @brief Reset clock divider for RX channels by mask
*
* @param dev Peripheral instance address
* @param channel_mask Mask of RX channels
*/
static inline void rmt_ll_rx_reset_channels_clock_div(rmt_dev_t *dev, uint32_t channel_mask)
{
for (int i = 0; i < 8; i++) {
if (channel_mask & (1 << i)) {
dev->conf_ch[i].conf1.ref_cnt_rst = 1;
}
}
}
/**
* @brief Set RX channel clock divider
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param div Division value
*/
static inline void rmt_ll_rx_set_channel_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
HAL_ASSERT(div >= 1 && div <= 256 && "divider out of range");
// limit the maximum divider to 256
if (div >= 256) {
div = 0; // 0 means 256 division
}
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->conf_ch[channel].conf0, div_cnt, div);
}
/**
* @brief Reset RMT writing pointer for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
*/
static inline void rmt_ll_rx_reset_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.mem_wr_rst = 1;
dev->conf_ch[channel].conf1.mem_wr_rst = 0;
dev->conf_ch[channel].conf1.apb_mem_rst = 1;
dev->conf_ch[channel].conf1.apb_mem_rst = 0;
}
/**
* @brief Enable receiving for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_rx_enable(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.rx_en = enable;
}
/**
* @brief Set memory block number for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param block_num memory block number
*/
static inline void rmt_ll_rx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->conf_ch[channel].conf0.mem_size = block_num;
}
/**
* @brief Set the time length for RX channel before going into IDLE state
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param thres Time length threshold
*/
static inline void rmt_ll_rx_set_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->conf_ch[channel].conf0, idle_thres, thres);
}
/**
* @brief Set RMT memory owner for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param owner Memory owner
*/
static inline void rmt_ll_rx_set_mem_owner(rmt_dev_t *dev, uint32_t channel, rmt_ll_mem_owner_t owner)
{
dev->conf_ch[channel].conf1.mem_owner = owner;
}
/**
* @brief Enable filter for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX chanenl number
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_rx_enable_filter(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.rx_filter_en = enable;
}
/**
* @brief Set RX channel filter threshold (i.e. the maximum width of one pulse signal that would be treated as a noise)
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @param thres Filter threshold
*/
static inline void rmt_ll_rx_set_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->conf_ch[channel].conf1, rx_filter_thres, thres);
}
/**
* @brief Get RMT memory write cursor offset
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return writer offset
*/
static inline uint32_t rmt_ll_rx_get_memory_writer_offset(rmt_dev_t *dev, uint32_t channel)
{
return (dev->status_ch[channel] & 0x3FF) - (channel) * 64;
}
//////////////////////////////////////////Interrupt Specific////////////////////////////////////////////////////////////
/**
* @brief Enable RMT interrupt for specific event mask
*
* @param dev Peripheral instance address
* @param mask Event mask
* @param enable True to enable, False to disable
*/
static inline void rmt_ll_enable_interrupt(rmt_dev_t *dev, uint32_t mask, bool enable)
{
if (enable) {
dev->int_ena.val |= mask;
} else {
dev->int_ena.val &= ~mask;
}
}
/**
* @brief Clear RMT interrupt status by mask
*
* @param dev Peripheral instance address
* @param mask Interupt status mask
*/
static inline void rmt_ll_clear_interrupt_status(rmt_dev_t *dev, uint32_t mask)
{
dev->int_clr.val = mask;
}
/**
* @brief Get interrupt status register address
*
* @param dev Peripheral instance address
* @return Register address
*/
static inline volatile void *rmt_ll_get_interrupt_status_reg(rmt_dev_t *dev)
{
return &dev->int_st;
}
/**
* @brief Get interrupt status for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @return Interrupt status
*/
static inline uint32_t rmt_ll_tx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_st.val & RMT_LL_EVENT_TX_MASK(channel);
}
/**
* @brief Get interrupt raw status for TX channel
*
* @param dev Peripheral instance address
* @param channel RMT TX channel number
* @return Interrupt raw status
*/
static inline uint32_t rmt_ll_tx_get_interrupt_status_raw(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_raw.val & RMT_LL_EVENT_TX_MASK(channel);
}
/**
* @brief Get interrupt status for RX channel
*
* @param dev Peripheral instance address
* @param channel RMT RX channel number
* @return Interrupt status
*/
static inline uint32_t rmt_ll_rx_get_interrupt_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->int_st.val & RMT_LL_EVENT_RX_MASK(channel);
}
//////////////////////////////////////////Deprecated Functions//////////////////////////////////////////////////////////
/////////////////////////////The following functions are only used by the legacy driver/////////////////////////////////
/////////////////////////////They might be removed in the next major release (ESP-IDF 6.0)//////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static inline uint32_t rmt_ll_tx_get_status_word(rmt_dev_t *dev, uint32_t channel)
{
return dev->status_ch[channel];
}
static inline uint32_t rmt_ll_rx_get_status_word(rmt_dev_t *dev, uint32_t channel)
{
return dev->status_ch[channel];
}
static inline uint32_t rmt_ll_tx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->conf_ch[channel].conf0, div_cnt);
return div == 0 ? 256 : div;
}
static inline uint32_t rmt_ll_rx_get_channel_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = HAL_FORCE_READ_U32_REG_FIELD(dev->conf_ch[channel].conf0, div_cnt);
return div == 0 ? 256 : div;
}
static inline uint32_t rmt_ll_rx_get_idle_thres(rmt_dev_t *dev, uint32_t channel)
{
return HAL_FORCE_READ_U32_REG_FIELD(dev->conf_ch[channel].conf0, idle_thres);
}
static inline uint32_t rmt_ll_tx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.mem_size;
}
static inline uint32_t rmt_ll_rx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.mem_size;
}
static inline bool rmt_ll_tx_is_loop_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.tx_conti_mode;
}
static inline rmt_clock_source_t rmt_ll_get_group_clock_src(rmt_dev_t *dev, uint32_t channel)
{
if (dev->conf_ch[channel].conf1.ref_always_on) {
return RMT_CLK_SRC_APB;
}
return RMT_CLK_SRC_REFTICK;
}
static inline bool rmt_ll_tx_is_idle_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.idle_out_en;
}
static inline uint32_t rmt_ll_tx_get_idle_level(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.idle_out_lv;
}
static inline bool rmt_ll_is_mem_powered_down(rmt_dev_t *dev)
{
// Only conf0 register of channel0 has `mem_pd`
return dev->conf_ch[0].conf0.mem_pd;
}
static inline uint32_t rmt_ll_rx_get_mem_owner(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.mem_owner;
}
static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x01) >> 0) | ((status & 0x08) >> 2) | ((status & 0x40) >> 4) | ((status & 0x200) >> 6) |
((status & 0x1000) >> 8) | ((status & 0x8000) >> 10) | ((status & 0x40000) >> 12) | ((status & 0x200000) >> 14);
}
static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x02) >> 1) | ((status & 0x10) >> 3) | ((status & 0x80) >> 5) | ((status & 0x400) >> 7) |
((status & 0x2000) >> 9) | ((status & 0x10000) >> 11) | ((status & 0x80000) >> 13) | ((status & 0x400000) >> 15);
}
static inline uint32_t rmt_ll_get_tx_err_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x04) >> 2) | ((status & 0x20) >> 4) | ((status & 0x100) >> 6) | ((status & 0x800) >> 8) |
((status & 0x4000) >> 10) | ((status & 0x20000) >> 12) | ((status & 0x100000) >> 14) | ((status & 0x800000) >> 16);
}
static inline uint32_t rmt_ll_get_rx_err_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x04) >> 2) | ((status & 0x20) >> 4) | ((status & 0x100) >> 6) | ((status & 0x800) >> 8) |
((status & 0x4000) >> 10) | ((status & 0x20000) >> 12) | ((status & 0x100000) >> 14) | ((status & 0x800000) >> 16);
}
static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return (status & 0xFF000000) >> 24;
}
#ifdef __cplusplus
}
#endif