esp-idf/components/usb/usb_host.c
Peter Marcisovsky 597451afbe refactor(usb_host): Update USB Host multiconfig public API
- previous usb_host_get_config_desc_free()
    - updated usb_host_free_config_desc()
2024-07-17 09:02:43 +02:00

1469 lines
52 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
Warning: The USB Host Library API is still a beta version and may be subject to change
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "hub.h"
#include "usbh.h"
#include "hcd.h"
#include "esp_private/usb_phy.h"
#include "usb/usb_host.h"
static portMUX_TYPE host_lock = portMUX_INITIALIZER_UNLOCKED;
#define HOST_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&host_lock)
#define HOST_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&host_lock)
#define HOST_ENTER_CRITICAL() portENTER_CRITICAL(&host_lock)
#define HOST_EXIT_CRITICAL() portEXIT_CRITICAL(&host_lock)
#define HOST_ENTER_CRITICAL_SAFE() portENTER_CRITICAL_SAFE(&host_lock)
#define HOST_EXIT_CRITICAL_SAFE() portEXIT_CRITICAL_SAFE(&host_lock)
#define HOST_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HOST_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HOST_EXIT_CRITICAL(); \
return ret_val; \
} \
})
#define PROCESS_REQUEST_PENDING_FLAG_USBH 0x01
#define PROCESS_REQUEST_PENDING_FLAG_HUB 0x02
#ifdef CONFIG_USB_HOST_ENABLE_ENUM_FILTER_CALLBACK
#define ENABLE_ENUM_FILTER_CALLBACK
#endif // CONFIG_USB_HOST_ENABLE_ENUM_FILTER_CALLBACK
#define SHORT_DESC_REQ_LEN 8
#define CTRL_TRANSFER_MAX_DATA_LEN CONFIG_USB_HOST_CONTROL_TRANSFER_MAX_SIZE
typedef struct ep_wrapper_s ep_wrapper_t;
typedef struct interface_s interface_t;
typedef struct client_s client_t;
struct ep_wrapper_s {
// Dynamic members require a critical section
struct {
TAILQ_ENTRY(ep_wrapper_s) tailq_entry;
union {
struct {
uint32_t pending: 1;
uint32_t reserved31: 31;
};
} flags;
uint32_t num_urb_inflight;
usbh_ep_event_t last_event;
} dynamic;
// Constant members do no change after claiming the interface thus do not require a critical section
struct {
usbh_ep_handle_t ep_hdl;
interface_t *intf_obj;
} constant;
};
struct interface_s {
// Dynamic members require a critical section
struct {
TAILQ_ENTRY(interface_s) tailq_entry;
} mux_protected;
// Constant members do no change after claiming the interface thus do not require a critical section
struct {
const usb_intf_desc_t *intf_desc;
usb_device_handle_t dev_hdl;
client_t *client_obj;
ep_wrapper_t *endpoints[0];
} constant;
};
struct client_s {
// Dynamic members require a critical section
struct {
TAILQ_ENTRY(client_s) tailq_entry;
TAILQ_HEAD(tailhead_pending_ep, ep_wrapper_s) pending_ep_tailq;
TAILQ_HEAD(tailhead_idle_ep, ep_wrapper_s) idle_ep_tailq;
TAILQ_HEAD(tailhead_done_ctrl_xfers, urb_s) done_ctrl_xfer_tailq;
union {
struct {
uint32_t handling_events: 1;
uint32_t taking_mux: 1;
uint32_t reserved6: 6;
uint32_t num_intf_claimed: 8;
uint32_t reserved16: 16;
};
uint32_t val;
} flags;
uint32_t num_done_ctrl_xfer;
uint32_t opened_dev_addr_map;
} dynamic;
// Mux protected members must be protected by host library the mux_lock when accessed
struct {
TAILQ_HEAD(tailhead_interfaces, interface_s) interface_tailq;
} mux_protected;
// Constant members do no change after registration thus do not require a critical section
struct {
SemaphoreHandle_t event_sem;
usb_host_client_event_cb_t event_callback;
void *callback_arg;
QueueHandle_t event_msg_queue;
} constant;
};
typedef struct {
// Dynamic members require a critical section
struct {
// Access to these should be done in a critical section
uint32_t process_pending_flags;
uint32_t lib_event_flags;
union {
struct {
uint32_t handling_events: 1;
uint32_t reserved7: 7;
uint32_t num_clients: 8;
uint32_t reserved16: 16;
};
uint32_t val;
} flags;
} dynamic;
// Mux protected members must be protected by host library the mux_lock when accessed
struct {
TAILQ_HEAD(tailhead_clients, client_s) client_tailq; // List of all clients registered
} mux_protected;
// Constant members do no change after installation thus do not require a critical section
struct {
SemaphoreHandle_t event_sem;
SemaphoreHandle_t mux_lock;
usb_phy_handle_t phy_handle; // Will be NULL if host library is installed with skip_phy_setup
void *hub_client; // Pointer to Hub driver (acting as a client). Used to reroute completed USBH control transfers
} constant;
} host_lib_t;
static host_lib_t *p_host_lib_obj = NULL;
const char *USB_HOST_TAG = "USB HOST";
// ----------------------------------------------------- Helpers -------------------------------------------------------
static inline void _record_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
client_obj->dynamic.opened_dev_addr_map |= (1 << (dev_addr - 1));
}
static inline void _clear_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
client_obj->dynamic.opened_dev_addr_map &= ~(1 << (dev_addr - 1));
}
static inline bool _check_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
bool ret;
if (dev_addr != 0) {
ret = client_obj->dynamic.opened_dev_addr_map & (1 << (dev_addr - 1));
} else {
ret = false;
}
return ret;
}
static bool _unblock_client(client_t *client_obj, bool in_isr)
{
bool yield;
HOST_EXIT_CRITICAL_SAFE();
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(client_obj->constant.event_sem, &xTaskWoken);
yield = (xTaskWoken == pdTRUE);
} else {
xSemaphoreGive(client_obj->constant.event_sem);
yield = false;
}
HOST_ENTER_CRITICAL_SAFE();
return yield;
}
static bool _unblock_lib(bool in_isr)
{
bool yield;
HOST_EXIT_CRITICAL_SAFE();
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(p_host_lib_obj->constant.event_sem, &xTaskWoken);
yield = (xTaskWoken == pdTRUE);
} else {
xSemaphoreGive(p_host_lib_obj->constant.event_sem);
yield = false;
}
HOST_ENTER_CRITICAL_SAFE();
return yield;
}
static void send_event_msg_to_clients(const usb_host_client_event_msg_t *event_msg, bool send_to_all, uint8_t opened_dev_addr)
{
// Lock client list
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
// Send event message to relevant or all clients
client_t *client_obj;
TAILQ_FOREACH(client_obj, &p_host_lib_obj->mux_protected.client_tailq, dynamic.tailq_entry) {
if (!send_to_all) {
// Check if client opened the device
HOST_ENTER_CRITICAL();
bool send = _check_client_opened_device(client_obj, opened_dev_addr);
HOST_EXIT_CRITICAL();
if (!send) {
continue;
}
}
// Send the event message
if (xQueueSend(client_obj->constant.event_msg_queue, event_msg, 0) == pdTRUE) {
HOST_ENTER_CRITICAL();
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
} else {
ESP_LOGE(USB_HOST_TAG, "Client event message queue full");
}
}
// Unlock client list
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
}
// ---------------------------------------------------- Callbacks ------------------------------------------------------
// ------------------- Library Related ---------------------
static bool proc_req_callback(usb_proc_req_source_t source, bool in_isr, void *arg)
{
HOST_ENTER_CRITICAL_SAFE();
// Store the processing request source
switch (source) {
case USB_PROC_REQ_SOURCE_USBH:
p_host_lib_obj->dynamic.process_pending_flags |= PROCESS_REQUEST_PENDING_FLAG_USBH;
break;
case USB_PROC_REQ_SOURCE_HUB:
p_host_lib_obj->dynamic.process_pending_flags |= PROCESS_REQUEST_PENDING_FLAG_HUB;
break;
}
bool yield = _unblock_lib(in_isr);
HOST_EXIT_CRITICAL_SAFE();
return yield;
}
static void usbh_event_callback(usbh_event_data_t *event_data, void *arg)
{
switch (event_data->event) {
case USBH_EVENT_CTRL_XFER: {
assert(event_data->ctrl_xfer_data.urb != NULL);
assert(event_data->ctrl_xfer_data.urb->usb_host_client != NULL);
// Redistribute completed control transfers to the clients that submitted them
if (event_data->ctrl_xfer_data.urb->usb_host_client == p_host_lib_obj->constant.hub_client) {
// Redistribute to Hub driver. Simply call the transfer callback
event_data->ctrl_xfer_data.urb->transfer.callback(&event_data->ctrl_xfer_data.urb->transfer);
} else {
client_t *client_obj = (client_t *)event_data->ctrl_xfer_data.urb->usb_host_client;
HOST_ENTER_CRITICAL();
TAILQ_INSERT_TAIL(&client_obj->dynamic.done_ctrl_xfer_tailq, event_data->ctrl_xfer_data.urb, tailq_entry);
client_obj->dynamic.num_done_ctrl_xfer++;
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
}
break;
}
case USBH_EVENT_NEW_DEV: {
// Prepare a NEW_DEV client event message, the send it to all clients
usb_host_client_event_msg_t event_msg = {
.event = USB_HOST_CLIENT_EVENT_NEW_DEV,
.new_dev.address = event_data->new_dev_data.dev_addr,
};
send_event_msg_to_clients(&event_msg, true, 0);
break;
}
case USBH_EVENT_DEV_GONE: {
// Prepare event msg, send only to clients that have opened the device
usb_host_client_event_msg_t event_msg = {
.event = USB_HOST_CLIENT_EVENT_DEV_GONE,
.dev_gone.dev_hdl = event_data->dev_gone_data.dev_hdl,
};
send_event_msg_to_clients(&event_msg, false, event_data->dev_gone_data.dev_addr);
break;
}
case USBH_EVENT_DEV_FREE: {
// Let the Hub driver know that the device is free and its port can be recycled
ESP_ERROR_CHECK(hub_port_recycle(event_data->dev_free_data.dev_uid));
break;
}
case USBH_EVENT_ALL_FREE: {
// Notify the lib handler that all devices are free
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.lib_event_flags |= USB_HOST_LIB_EVENT_FLAGS_ALL_FREE;
_unblock_lib(false);
HOST_EXIT_CRITICAL();
break;
}
default:
abort(); // Should never occur
break;
}
}
// ------------------- Client Related ----------------------
static bool endpoint_callback(usbh_ep_handle_t ep_hdl, usbh_ep_event_t ep_event, void *user_arg, bool in_isr)
{
ep_wrapper_t *ep_wrap = (ep_wrapper_t *)user_arg;
client_t *client_obj = (client_t *)ep_wrap->constant.intf_obj->constant.client_obj;
HOST_ENTER_CRITICAL_SAFE();
// Store the event to be handled later. Note that we allow overwriting of events because more severe will halt the pipe prevent any further events.
ep_wrap->dynamic.last_event = ep_event;
// Add the EP to the client's pending list if it's not in the list already
if (!ep_wrap->dynamic.flags.pending) {
ep_wrap->dynamic.flags.pending = 1;
TAILQ_REMOVE(&client_obj->dynamic.idle_ep_tailq, ep_wrap, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&client_obj->dynamic.pending_ep_tailq, ep_wrap, dynamic.tailq_entry);
}
bool yield = _unblock_client(client_obj, in_isr);
HOST_EXIT_CRITICAL_SAFE();
return yield;
}
static void get_config_desc_transfer_cb(usb_transfer_t *transfer)
{
SemaphoreHandle_t transfer_done = (SemaphoreHandle_t)transfer->context;
xSemaphoreGive(transfer_done);
}
// ------------------------------------------------ Library Functions --------------------------------------------------
// ----------------------- Public --------------------------
esp_err_t usb_host_install(const usb_host_config_t *config)
{
HOST_CHECK(config != NULL, ESP_ERR_INVALID_ARG);
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj == NULL, ESP_ERR_INVALID_STATE);
HOST_EXIT_CRITICAL();
esp_err_t ret;
host_lib_t *host_lib_obj = heap_caps_calloc(1, sizeof(host_lib_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t event_sem = xSemaphoreCreateBinary();
SemaphoreHandle_t mux_lock = xSemaphoreCreateMutex();
if (host_lib_obj == NULL || event_sem == NULL || mux_lock == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
// Initialize host library object
TAILQ_INIT(&host_lib_obj->mux_protected.client_tailq);
host_lib_obj->constant.event_sem = event_sem;
host_lib_obj->constant.mux_lock = mux_lock;
/*
Install each layer of the Host stack (listed below) from the lowest layer to the highest
- USB PHY
- HCD
- USBH
- Hub
*/
// Install USB PHY (if necessary). USB PHY driver will also enable the underlying Host Controller
if (!config->skip_phy_setup) {
// Host Library defaults to internal PHY
usb_phy_config_t phy_config = {
.controller = USB_PHY_CTRL_OTG,
.target = USB_PHY_TARGET_INT,
.otg_mode = USB_OTG_MODE_HOST,
.otg_speed = USB_PHY_SPEED_UNDEFINED, // In Host mode, the speed is determined by the connected device
.ext_io_conf = NULL,
.otg_io_conf = NULL,
};
ret = usb_new_phy(&phy_config, &host_lib_obj->constant.phy_handle);
if (ret != ESP_OK) {
goto phy_err;
}
}
// Install HCD
hcd_config_t hcd_config = {
.intr_flags = config->intr_flags
};
ret = hcd_install(&hcd_config);
if (ret != ESP_OK) {
goto hcd_err;
}
// Install USBH
usbh_config_t usbh_config = {
.proc_req_cb = proc_req_callback,
.proc_req_cb_arg = NULL,
.event_cb = usbh_event_callback,
.event_cb_arg = NULL,
};
ret = usbh_install(&usbh_config);
if (ret != ESP_OK) {
goto usbh_err;
}
#ifdef ENABLE_ENUM_FILTER_CALLBACK
if (config->enum_filter_cb == NULL) {
ESP_LOGW(USB_HOST_TAG, "User callback to set USB device configuration is enabled, but not used");
}
#endif // ENABLE_ENUM_FILTER_CALLBACK
// Install Hub
hub_config_t hub_config = {
.proc_req_cb = proc_req_callback,
.proc_req_cb_arg = NULL,
#ifdef ENABLE_ENUM_FILTER_CALLBACK
.enum_filter_cb = config->enum_filter_cb,
#endif // ENABLE_ENUM_FILTER_CALLBACK
};
ret = hub_install(&hub_config, &host_lib_obj->constant.hub_client);
if (ret != ESP_OK) {
goto hub_err;
}
// Assign host library object
HOST_ENTER_CRITICAL();
if (p_host_lib_obj != NULL) {
HOST_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
p_host_lib_obj = host_lib_obj;
HOST_EXIT_CRITICAL();
// Start the root hub
ESP_ERROR_CHECK(hub_root_start());
ret = ESP_OK;
return ret;
assign_err:
ESP_ERROR_CHECK(hub_uninstall());
hub_err:
ESP_ERROR_CHECK(usbh_uninstall());
usbh_err:
ESP_ERROR_CHECK(hcd_uninstall());
hcd_err:
if (host_lib_obj->constant.phy_handle) {
ESP_ERROR_CHECK(usb_del_phy(host_lib_obj->constant.phy_handle));
}
phy_err:
alloc_err:
if (mux_lock) {
vSemaphoreDelete(mux_lock);
}
if (event_sem) {
vSemaphoreDelete(event_sem);
}
heap_caps_free(host_lib_obj);
return ret;
}
esp_err_t usb_host_uninstall(void)
{
// All devices must have been freed at this point
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
HOST_CHECK_FROM_CRIT(p_host_lib_obj->dynamic.process_pending_flags == 0 &&
p_host_lib_obj->dynamic.lib_event_flags == 0 &&
p_host_lib_obj->dynamic.flags.val == 0,
ESP_ERR_INVALID_STATE);
HOST_EXIT_CRITICAL();
// Stop the root hub
ESP_ERROR_CHECK(hub_root_stop());
// Unassign the host library object
HOST_ENTER_CRITICAL();
host_lib_t *host_lib_obj = p_host_lib_obj;
p_host_lib_obj = NULL;
HOST_EXIT_CRITICAL();
/*
Uninstall each layer of the Host stack (listed below) from the highest layer to the lowest
- Hub
- USBH
- HCD
- USB PHY
*/
ESP_ERROR_CHECK(hub_uninstall());
ESP_ERROR_CHECK(usbh_uninstall());
ESP_ERROR_CHECK(hcd_uninstall());
// If the USB PHY was setup, then delete it
if (host_lib_obj->constant.phy_handle) {
ESP_ERROR_CHECK(usb_del_phy(host_lib_obj->constant.phy_handle));
}
// Free memory objects
vSemaphoreDelete(host_lib_obj->constant.mux_lock);
vSemaphoreDelete(host_lib_obj->constant.event_sem);
heap_caps_free(host_lib_obj);
return ESP_OK;
}
esp_err_t usb_host_lib_handle_events(TickType_t timeout_ticks, uint32_t *event_flags_ret)
{
// Check arguments and state
HOST_CHECK(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
esp_err_t ret = (timeout_ticks == 0) ? ESP_OK : ESP_ERR_TIMEOUT; // We don't want to return ESP_ERR_TIMEOUT if we aren't blocking
uint32_t event_flags;
HOST_ENTER_CRITICAL();
// Set handling_events flag. This prevents the host library from being uninstalled
p_host_lib_obj->dynamic.flags.handling_events = 1;
HOST_EXIT_CRITICAL();
while (1) {
// Loop until there are no more events
if (xSemaphoreTake(p_host_lib_obj->constant.event_sem, timeout_ticks) == pdFALSE) {
// Timed out waiting for semaphore or currently no events
break;
}
// Read and clear process pending flags
HOST_ENTER_CRITICAL();
uint32_t process_pending_flags = p_host_lib_obj->dynamic.process_pending_flags;
p_host_lib_obj->dynamic.process_pending_flags = 0;
HOST_EXIT_CRITICAL();
if (process_pending_flags & PROCESS_REQUEST_PENDING_FLAG_USBH) {
ESP_ERROR_CHECK(usbh_process());
}
if (process_pending_flags & PROCESS_REQUEST_PENDING_FLAG_HUB) {
ESP_ERROR_CHECK(hub_process());
}
ret = ESP_OK;
// Set timeout_ticks to 0 so that we can check for events again without blocking
timeout_ticks = 0;
}
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.handling_events = 0;
// Read and clear any event flags
event_flags = p_host_lib_obj->dynamic.lib_event_flags;
p_host_lib_obj->dynamic.lib_event_flags = 0;
HOST_EXIT_CRITICAL();
if (event_flags_ret != NULL) {
*event_flags_ret = event_flags;
}
return ret;
}
esp_err_t usb_host_lib_unblock(void)
{
// All devices must have been freed at this point
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
_unblock_lib(false);
HOST_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t usb_host_lib_info(usb_host_lib_info_t *info_ret)
{
HOST_CHECK(info_ret != NULL, ESP_ERR_INVALID_ARG);
int num_devs_temp;
int num_clients_temp;
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
num_clients_temp = p_host_lib_obj->dynamic.flags.num_clients;
HOST_EXIT_CRITICAL();
usbh_devs_num(&num_devs_temp);
// Write back return values
info_ret->num_devices = num_devs_temp;
info_ret->num_clients = num_clients_temp;
return ESP_OK;
}
// ------------------------------------------------ Client Functions ---------------------------------------------------
// ----------------------- Private -------------------------
static void _handle_pending_ep(client_t *client_obj)
{
// Handle each EP on the pending list
while (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq)) {
// Get the next pending EP.
ep_wrapper_t *ep_wrap = TAILQ_FIRST(&client_obj->dynamic.pending_ep_tailq);
TAILQ_REMOVE(&client_obj->dynamic.pending_ep_tailq, ep_wrap, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&client_obj->dynamic.idle_ep_tailq, ep_wrap, dynamic.tailq_entry);
ep_wrap->dynamic.flags.pending = 0;
usbh_ep_event_t last_event = ep_wrap->dynamic.last_event;
uint32_t num_urb_dequeued = 0;
HOST_EXIT_CRITICAL();
// Handle pipe event
switch (last_event) {
case USBH_EP_EVENT_ERROR_XFER:
case USBH_EP_EVENT_ERROR_URB_NOT_AVAIL:
case USBH_EP_EVENT_ERROR_OVERFLOW:
case USBH_EP_EVENT_ERROR_STALL:
// The endpoint is now stalled. Flush all pending URBs
ESP_ERROR_CHECK(usbh_ep_command(ep_wrap->constant.ep_hdl, USBH_EP_CMD_FLUSH));
// All URBs in this pipe are now retired waiting to be dequeued. Fall through to dequeue them
__attribute__((fallthrough));
case USBH_EP_EVENT_URB_DONE: {
// Dequeue all URBs and run their transfer callback
urb_t *urb;
usbh_ep_dequeue_urb(ep_wrap->constant.ep_hdl, &urb);
while (urb != NULL) {
// Clear the transfer's in-flight flag to indicate the transfer is no longer in-flight
urb->usb_host_inflight = false;
urb->transfer.callback(&urb->transfer);
num_urb_dequeued++;
usbh_ep_dequeue_urb(ep_wrap->constant.ep_hdl, &urb);
}
break;
}
default:
abort(); // Should never occur
break;
}
HOST_ENTER_CRITICAL();
// Update the endpoint's number of URB's in-flight
assert(num_urb_dequeued <= ep_wrap->dynamic.num_urb_inflight);
ep_wrap->dynamic.num_urb_inflight -= num_urb_dequeued;
}
}
// ----------------------- Public --------------------------
esp_err_t usb_host_client_register(const usb_host_client_config_t *client_config, usb_host_client_handle_t *client_hdl_ret)
{
HOST_CHECK(p_host_lib_obj, ESP_ERR_INVALID_STATE);
HOST_CHECK(client_config != NULL && client_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
HOST_CHECK(client_config->max_num_event_msg > 0, ESP_ERR_INVALID_ARG);
if (!client_config->is_synchronous) {
// Asynchronous clients must provide a
HOST_CHECK(client_config->async.client_event_callback != NULL, ESP_ERR_INVALID_ARG);
}
esp_err_t ret;
// Create client object
client_t *client_obj = heap_caps_calloc(1, sizeof(client_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t event_sem = xSemaphoreCreateBinary();
QueueHandle_t event_msg_queue = xQueueCreate(client_config->max_num_event_msg, sizeof(usb_host_client_event_msg_t));
if (client_obj == NULL || event_sem == NULL || event_msg_queue == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
// Initialize client object
TAILQ_INIT(&client_obj->dynamic.pending_ep_tailq);
TAILQ_INIT(&client_obj->dynamic.idle_ep_tailq);
TAILQ_INIT(&client_obj->mux_protected.interface_tailq);
TAILQ_INIT(&client_obj->dynamic.done_ctrl_xfer_tailq);
client_obj->constant.event_sem = event_sem;
client_obj->constant.event_callback = client_config->async.client_event_callback;
client_obj->constant.callback_arg = client_config->async.callback_arg;
client_obj->constant.event_msg_queue = event_msg_queue;
// Add client to the host library's list of clients
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.num_clients++;
HOST_EXIT_CRITICAL();
TAILQ_INSERT_TAIL(&p_host_lib_obj->mux_protected.client_tailq, client_obj, dynamic.tailq_entry);
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
// Write back client handle
*client_hdl_ret = (usb_host_client_handle_t)client_obj;
ret = ESP_OK;
return ret;
alloc_err:
if (event_msg_queue) {
vQueueDelete(event_msg_queue);
}
if (event_sem) {
vSemaphoreDelete(event_sem);
}
heap_caps_free(client_obj);
return ESP_OK;
}
esp_err_t usb_host_client_deregister(usb_host_client_handle_t client_hdl)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
esp_err_t ret;
// We take the mux_lock because we need to access the host library's client_tailq
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
HOST_ENTER_CRITICAL();
// Check that client can currently deregistered
bool can_deregister;
if (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq) ||
!TAILQ_EMPTY(&client_obj->dynamic.idle_ep_tailq) ||
!TAILQ_EMPTY(&client_obj->dynamic.done_ctrl_xfer_tailq) ||
client_obj->dynamic.flags.handling_events ||
client_obj->dynamic.flags.taking_mux ||
client_obj->dynamic.flags.num_intf_claimed != 0 ||
client_obj->dynamic.num_done_ctrl_xfer != 0 ||
client_obj->dynamic.opened_dev_addr_map != 0) {
can_deregister = false;
} else {
can_deregister = true;
}
HOST_EXIT_CRITICAL();
if (!can_deregister) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Remove client object from the library's list of clients
TAILQ_REMOVE(&p_host_lib_obj->mux_protected.client_tailq, client_obj, dynamic.tailq_entry);
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.num_clients--;
if (p_host_lib_obj->dynamic.flags.num_clients == 0) {
// This is the last client being deregistered. Notify the lib handler
p_host_lib_obj->dynamic.lib_event_flags |= USB_HOST_LIB_EVENT_FLAGS_NO_CLIENTS;
_unblock_lib(false);
}
HOST_EXIT_CRITICAL();
// Free client object
vQueueDelete(client_obj->constant.event_msg_queue);
vSemaphoreDelete(client_obj->constant.event_sem);
heap_caps_free(client_obj);
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
return ret;
}
esp_err_t usb_host_client_handle_events(usb_host_client_handle_t client_hdl, TickType_t timeout_ticks)
{
// Check arguments and state
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
HOST_CHECK(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
esp_err_t ret = (timeout_ticks == 0) ? ESP_OK : ESP_ERR_TIMEOUT; // We don't want to return ESP_ERR_TIMEOUT if we aren't blocking
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
// Set handling_events flag. This prevents the client from being deregistered
client_obj->dynamic.flags.handling_events = 1;
HOST_EXIT_CRITICAL();
while (1) {
// Loop until there are no more events
if (xSemaphoreTake(client_obj->constant.event_sem, timeout_ticks) == pdFALSE) {
// Timed out waiting for semaphore or currently no events
break;
}
HOST_ENTER_CRITICAL();
// Handle pending endpoints
if (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq)) {
_handle_pending_ep(client_obj);
}
// Handle any done control transfers
while (client_obj->dynamic.num_done_ctrl_xfer > 0) {
urb_t *urb = TAILQ_FIRST(&client_obj->dynamic.done_ctrl_xfer_tailq);
TAILQ_REMOVE(&client_obj->dynamic.done_ctrl_xfer_tailq, urb, tailq_entry);
client_obj->dynamic.num_done_ctrl_xfer--;
HOST_EXIT_CRITICAL();
// Clear the transfer's in-flight flag to indicate the transfer is no longer in-flight
urb->usb_host_inflight = false;
// Call the transfer's callback
urb->transfer.callback(&urb->transfer);
HOST_ENTER_CRITICAL();
}
HOST_EXIT_CRITICAL();
// Handle event messages
while (uxQueueMessagesWaiting(client_obj->constant.event_msg_queue) > 0) {
// Dequeue the event message and call the client event callback
usb_host_client_event_msg_t event_msg;
BaseType_t queue_ret = xQueueReceive(client_obj->constant.event_msg_queue, &event_msg, 0);
assert(queue_ret == pdTRUE);
client_obj->constant.event_callback(&event_msg, client_obj->constant.callback_arg);
}
ret = ESP_OK;
// Set timeout_ticks to 0 so that we can check for events again without blocking
timeout_ticks = 0;
}
HOST_ENTER_CRITICAL();
client_obj->dynamic.flags.handling_events = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_client_unblock(usb_host_client_handle_t client_hdl)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
return ESP_OK;
}
// ------------------------------------------------- Device Handling ---------------------------------------------------
esp_err_t usb_host_device_open(usb_host_client_handle_t client_hdl, uint8_t dev_addr, usb_device_handle_t *dev_hdl_ret)
{
HOST_CHECK(dev_addr > 0 && client_hdl != NULL && dev_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
esp_err_t ret;
usb_device_handle_t dev_hdl;
ret = usbh_devs_open(dev_addr, &dev_hdl);
if (ret != ESP_OK) {
goto exit;
}
HOST_ENTER_CRITICAL();
if (_check_client_opened_device(client_obj, dev_addr)) {
// Client has already opened the device. Close it and return an error
ret = ESP_ERR_INVALID_STATE;
HOST_EXIT_CRITICAL();
goto already_opened;
}
// Record in client object that we have opened the device of this address
_record_client_opened_device(client_obj, dev_addr);
HOST_EXIT_CRITICAL();
*dev_hdl_ret = dev_hdl;
ret = ESP_OK;
return ret;
already_opened:
ESP_ERROR_CHECK(usbh_devs_close(dev_hdl));
exit:
return ret;
}
esp_err_t usb_host_device_close(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl)
{
HOST_CHECK(dev_hdl != NULL && client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
// We take the lock because we need to walk the interface list
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret;
// Check that all interfaces claimed by this client do not belong to this device
bool all_released = true;
interface_t *intf_obj;
TAILQ_FOREACH(intf_obj, &client_obj->mux_protected.interface_tailq, mux_protected.tailq_entry) {
if (intf_obj->constant.dev_hdl == dev_hdl) {
all_released = false;
break;
}
}
if (!all_released) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Check that client actually opened the device in the first place
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_NOT_FOUND);
if (!_check_client_opened_device(client_obj, dev_addr)) {
// Client never opened this device
ret = ESP_ERR_INVALID_STATE;
HOST_EXIT_CRITICAL();
goto exit;
}
// Proceed to clear the record of the device form the client
_clear_client_opened_device(client_obj, dev_addr);
HOST_EXIT_CRITICAL();
ESP_ERROR_CHECK(usbh_devs_close(dev_hdl));
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
return ret;
}
esp_err_t usb_host_device_free_all(void)
{
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj->dynamic.flags.num_clients == 0, ESP_ERR_INVALID_STATE); // All clients must have been deregistered
HOST_EXIT_CRITICAL();
esp_err_t ret;
ret = usbh_devs_mark_all_free();
// If ESP_ERR_NOT_FINISHED is returned, caller must wait for USB_HOST_LIB_EVENT_FLAGS_ALL_FREE to confirm all devices are free
return ret;
}
esp_err_t usb_host_device_addr_list_fill(int list_len, uint8_t *dev_addr_list, int *num_dev_ret)
{
HOST_CHECK(dev_addr_list != NULL && num_dev_ret != NULL, ESP_ERR_INVALID_ARG);
return usbh_devs_addr_list_fill(list_len, dev_addr_list, num_dev_ret);
}
// ------------------------------------------------- Device Requests ---------------------------------------------------
// ------------------- Cached Requests ---------------------
esp_err_t usb_host_device_info(usb_device_handle_t dev_hdl, usb_device_info_t *dev_info)
{
HOST_CHECK(dev_hdl != NULL && dev_info != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_info(dev_hdl, dev_info);
}
// ----------------------------------------------- Descriptor Requests -------------------------------------------------
// ----------------- Cached Descriptors --------------------
esp_err_t usb_host_get_device_descriptor(usb_device_handle_t dev_hdl, const usb_device_desc_t **device_desc)
{
HOST_CHECK(dev_hdl != NULL && device_desc != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_desc(dev_hdl, device_desc);
}
esp_err_t usb_host_get_active_config_descriptor(usb_device_handle_t dev_hdl, const usb_config_desc_t **config_desc)
{
HOST_CHECK(dev_hdl != NULL && config_desc != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_config_desc(dev_hdl, config_desc);
}
// ----------------- Descriptors Transfer Requests --------------------
static usb_transfer_status_t wait_for_transmission_done(usb_transfer_t *transfer)
{
SemaphoreHandle_t transfer_done = (SemaphoreHandle_t)transfer->context;
xSemaphoreTake(transfer_done, portMAX_DELAY);
usb_transfer_status_t status = transfer->status;
// EP0 halt->flush->clear is managed by USBH and lower layers
return status;
}
static esp_err_t get_config_desc_transfer(usb_host_client_handle_t client_hdl, usb_transfer_t *ctrl_transfer, const int bConfigurationValue, const int num_bytes)
{
const usb_device_desc_t *dev_desc;
ESP_ERROR_CHECK(usbh_dev_get_desc(ctrl_transfer->device_handle, &dev_desc));
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)ctrl_transfer->data_buffer;
USB_SETUP_PACKET_INIT_GET_CONFIG_DESC(setup_pkt, bConfigurationValue - 1, num_bytes);
ctrl_transfer->num_bytes = sizeof(usb_setup_packet_t) + usb_round_up_to_mps(num_bytes, dev_desc->bMaxPacketSize0);
// IN data stage should return exactly num_bytes (SHORT_DESC_REQ_LEN or wTotalLength) bytes
const int expect_num_bytes = sizeof(usb_setup_packet_t) + num_bytes;
// Submit control transfer
esp_err_t ret = usb_host_transfer_submit_control(client_hdl, ctrl_transfer);
if (ret != ESP_OK) {
ESP_LOGE(USB_HOST_TAG, "Submit ctrl transfer failed");
return ret;
}
// Wait for transfer to finish
const usb_transfer_status_t status_short_desc = wait_for_transmission_done(ctrl_transfer);
if (status_short_desc != USB_TRANSFER_STATUS_COMPLETED) {
ESP_LOGE(USB_HOST_TAG, "Get config descriptor transfer status: %d", status_short_desc);
ret = ESP_ERR_INVALID_STATE;
return ret;
}
// Check IN transfer returned the expected correct number of bytes
if ((expect_num_bytes != 0) && (ctrl_transfer->actual_num_bytes != expect_num_bytes)) {
if (ctrl_transfer->actual_num_bytes > expect_num_bytes) {
// The device returned more bytes than requested.
// This violates the USB specs chapter 9.3.5, but we can continue
ESP_LOGW(USB_HOST_TAG, "Incorrect number of bytes returned %d", ctrl_transfer->actual_num_bytes);
return ESP_OK;
} else {
// The device returned less bytes than requested. We cannot continue.
ESP_LOGE(USB_HOST_TAG, "Incorrect number of bytes returned %d", ctrl_transfer->actual_num_bytes);
return ESP_ERR_INVALID_RESPONSE;
}
}
return ESP_OK;
}
esp_err_t usb_host_get_config_desc(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bConfigurationValue, const usb_config_desc_t **config_desc_ret)
{
esp_err_t ret = ESP_OK;
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL && config_desc_ret != NULL, ESP_ERR_INVALID_ARG);
// Get number of configurations
const usb_device_desc_t *dev_desc;
ESP_ERROR_CHECK(usbh_dev_get_desc(dev_hdl, &dev_desc));
HOST_CHECK(bConfigurationValue != 0, ESP_ERR_INVALID_ARG);
HOST_CHECK(bConfigurationValue <= dev_desc->bNumConfigurations, ESP_ERR_NOT_SUPPORTED);
// Initialize transfer
usb_transfer_t *ctrl_transfer;
if (usb_host_transfer_alloc(sizeof(usb_setup_packet_t) + CTRL_TRANSFER_MAX_DATA_LEN, 0, &ctrl_transfer)) {
return ESP_ERR_NO_MEM;
}
SemaphoreHandle_t transfer_done = xSemaphoreCreateBinary();
if (transfer_done == NULL) {
ret = ESP_ERR_NO_MEM;
goto exit;
}
ctrl_transfer->device_handle = dev_hdl;
ctrl_transfer->bEndpointAddress = 0;
ctrl_transfer->callback = get_config_desc_transfer_cb;
ctrl_transfer->context = (void *)transfer_done;
// Initiate control transfer for short config descriptor
ret = get_config_desc_transfer(client_hdl, ctrl_transfer, bConfigurationValue, SHORT_DESC_REQ_LEN);
if (ret != ESP_OK) {
goto exit;
}
// Get length of full config descriptor
const usb_config_desc_t *config_desc_short = (usb_config_desc_t *)(ctrl_transfer->data_buffer + sizeof(usb_setup_packet_t));
// Initiate control transfer for full config descriptor
ret = get_config_desc_transfer(client_hdl, ctrl_transfer, bConfigurationValue, config_desc_short->wTotalLength);
if (ret != ESP_OK) {
goto exit;
}
// Allocate memory to store the configuration descriptor
const usb_config_desc_t *config_desc_full = (usb_config_desc_t *)(ctrl_transfer->data_buffer + sizeof(usb_setup_packet_t));
usb_config_desc_t *config_desc = heap_caps_malloc(config_desc_full->wTotalLength, MALLOC_CAP_DEFAULT);
if (config_desc == NULL) {
ret = ESP_ERR_NO_MEM;
goto exit;
}
// Copy the configuration descriptor
memcpy(config_desc, config_desc_full, config_desc_full->wTotalLength);
*config_desc_ret = config_desc;
ret = ESP_OK;
exit:
if (ctrl_transfer) {
usb_host_transfer_free(ctrl_transfer);
}
if (transfer_done != NULL) {
vSemaphoreDelete(transfer_done);
}
return ret;
}
esp_err_t usb_host_free_config_desc(const usb_config_desc_t *config_desc)
{
HOST_CHECK(config_desc != NULL, ESP_ERR_INVALID_ARG);
heap_caps_free((usb_config_desc_t*)config_desc);
return ESP_OK;
}
// ----------------------------------------------- Interface Functions -------------------------------------------------
// ----------------------- Private -------------------------
static esp_err_t ep_wrapper_alloc(usb_device_handle_t dev_hdl, const usb_ep_desc_t *ep_desc, interface_t *intf_obj, ep_wrapper_t **ep_wrap_ret)
{
ep_wrapper_t *ep_wrap = heap_caps_calloc(1, sizeof(ep_wrapper_t), MALLOC_CAP_DEFAULT);
if (ep_wrap == NULL) {
return ESP_ERR_NO_MEM;
}
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
usbh_ep_config_t ep_config = {
.bInterfaceNumber = intf_obj->constant.intf_desc->bInterfaceNumber,
.bAlternateSetting = intf_obj->constant.intf_desc->bAlternateSetting,
.bEndpointAddress = ep_desc->bEndpointAddress,
.ep_cb = endpoint_callback,
.ep_cb_arg = (void *)ep_wrap,
.context = (void *)ep_wrap,
};
ret = usbh_ep_alloc(dev_hdl, &ep_config, &ep_hdl);
if (ret != ESP_OK) {
goto alloc_err;
}
// Initialize endpoint wrapper item
ep_wrap->constant.ep_hdl = ep_hdl;
ep_wrap->constant.intf_obj = intf_obj;
// Write back result
*ep_wrap_ret = ep_wrap;
ret = ESP_OK;
return ret;
alloc_err:
heap_caps_free(ep_wrap);
return ret;
}
static void ep_wrapper_free(usb_device_handle_t dev_hdl, ep_wrapper_t *ep_wrap)
{
if (ep_wrap == NULL) {
return;
}
// Free the underlying endpoint
ESP_ERROR_CHECK(usbh_ep_free(ep_wrap->constant.ep_hdl));
// Free the endpoint wrapper item
heap_caps_free(ep_wrap);
}
static interface_t *interface_alloc(client_t *client_obj, usb_device_handle_t dev_hdl, const usb_intf_desc_t *intf_desc)
{
interface_t *intf_obj = heap_caps_calloc(1, sizeof(interface_t) + (sizeof(ep_wrapper_t *) * intf_desc->bNumEndpoints), MALLOC_CAP_DEFAULT);
if (intf_obj == NULL) {
return NULL;
}
intf_obj->constant.intf_desc = intf_desc;
intf_obj->constant.client_obj = client_obj;
intf_obj->constant.dev_hdl = dev_hdl;
return intf_obj;
}
static void interface_free(interface_t *intf_obj)
{
if (intf_obj == NULL) {
return;
}
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
assert(intf_obj->constant.endpoints[i] == NULL);
}
heap_caps_free(intf_obj);
}
static esp_err_t interface_claim(client_t *client_obj, usb_device_handle_t dev_hdl, const usb_config_desc_t *config_desc, uint8_t bInterfaceNumber, uint8_t bAlternateSetting, interface_t **intf_obj_ret)
{
esp_err_t ret;
// We need to walk to configuration descriptor to find the correct interface descriptor, and each of its constituent endpoint descriptors
// Find the interface descriptor and allocate the interface object
int offset_intf;
const usb_intf_desc_t *intf_desc = usb_parse_interface_descriptor(config_desc, bInterfaceNumber, bAlternateSetting, &offset_intf);
if (intf_desc == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
// Allocate interface object
interface_t *intf_obj = interface_alloc(client_obj, dev_hdl, intf_desc);
if (intf_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto exit;
}
// Find each endpoint descriptor in the interface by index, and allocate those endpoints
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
int offset_ep = offset_intf;
const usb_ep_desc_t *ep_desc = usb_parse_endpoint_descriptor_by_index(intf_desc, i, config_desc->wTotalLength, &offset_ep);
if (ep_desc == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto ep_alloc_err;
}
// Allocate the endpoint wrapper item
ep_wrapper_t *ep_wrap;
ret = ep_wrapper_alloc(dev_hdl, ep_desc, intf_obj, &ep_wrap);
if (ret != ESP_OK) {
goto ep_alloc_err;
}
// Fill the interface object with the allocated endpoints
intf_obj->constant.endpoints[i] = ep_wrap;
}
// Add interface object to client (safe because we have already taken the mutex)
TAILQ_INSERT_TAIL(&client_obj->mux_protected.interface_tailq, intf_obj, mux_protected.tailq_entry);
// Add each endpoint wrapper item to the client's endpoint list
HOST_ENTER_CRITICAL();
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
TAILQ_INSERT_TAIL(&client_obj->dynamic.idle_ep_tailq, intf_obj->constant.endpoints[i], dynamic.tailq_entry);
}
HOST_EXIT_CRITICAL();
// Write back result
*intf_obj_ret = intf_obj;
ret = ESP_OK;
return ret;
ep_alloc_err:
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
ep_wrapper_free(dev_hdl, intf_obj->constant.endpoints[i]);
intf_obj->constant.endpoints[i] = NULL;
}
interface_free(intf_obj);
exit:
return ret;
}
static esp_err_t interface_release(client_t *client_obj, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber)
{
esp_err_t ret;
// Find the interface object
interface_t *intf_obj_iter;
interface_t *intf_obj = NULL;
TAILQ_FOREACH(intf_obj_iter, &client_obj->mux_protected.interface_tailq, mux_protected.tailq_entry) {
if (intf_obj_iter->constant.dev_hdl == dev_hdl && intf_obj_iter->constant.intf_desc->bInterfaceNumber == bInterfaceNumber) {
intf_obj = intf_obj_iter;
break;
}
}
if (intf_obj == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
// Check that all endpoints in the interface are in a state to be freed
// Todo: Check that each EP is halted before allowing them to be freed (IDF-7273)
HOST_ENTER_CRITICAL();
bool can_free = true;
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
ep_wrapper_t *ep_wrap = intf_obj->constant.endpoints[i];
// Endpoint must not be on the pending list and must not have in-flight URBs
if (ep_wrap->dynamic.num_urb_inflight != 0 || ep_wrap->dynamic.flags.pending) {
can_free = false;
break;
}
}
if (!can_free) {
HOST_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Proceed to remove all endpoint wrapper items from the list
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
TAILQ_REMOVE(&client_obj->dynamic.idle_ep_tailq, intf_obj->constant.endpoints[i], dynamic.tailq_entry);
}
HOST_EXIT_CRITICAL();
// Remove the interface object from the list (safe because we have already taken the mutex)
TAILQ_REMOVE(&client_obj->mux_protected.interface_tailq, intf_obj, mux_protected.tailq_entry);
// Free each endpoint in the interface
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
ep_wrapper_free(dev_hdl, intf_obj->constant.endpoints[i]);
intf_obj->constant.endpoints[i] = NULL;
}
// Free the interface object itself
interface_free(intf_obj);
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t usb_host_interface_claim(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber, uint8_t bAlternateSetting)
{
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
// Check if client actually opened device
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_INVALID_STATE);
client_obj->dynamic.flags.taking_mux = 1;
HOST_EXIT_CRITICAL();
// Take mux lock. This protects the client being released or other clients from claiming interfaces
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret;
const usb_config_desc_t *config_desc;
ESP_ERROR_CHECK(usbh_dev_get_config_desc(dev_hdl, &config_desc));
interface_t *intf_obj;
// Claim interface
ret = interface_claim(client_obj, dev_hdl, config_desc, bInterfaceNumber, bAlternateSetting, &intf_obj);
if (ret != ESP_OK) {
goto exit;
}
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
HOST_ENTER_CRITICAL();
if (ret == ESP_OK) {
client_obj->dynamic.flags.num_intf_claimed++;
}
client_obj->dynamic.flags.taking_mux = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_interface_release(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber)
{
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
// Check if client actually opened device
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_INVALID_STATE);
client_obj->dynamic.flags.taking_mux = 1;
HOST_EXIT_CRITICAL();
// Take mux lock. This protects the client being released or other clients from claiming interfaces
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret = interface_release(client_obj, dev_hdl, bInterfaceNumber);
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
HOST_ENTER_CRITICAL();
if (ret == ESP_OK) {
client_obj->dynamic.flags.num_intf_claimed--;
}
client_obj->dynamic.flags.taking_mux = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_endpoint_halt(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
ret = usbh_ep_get_handle(dev_hdl, bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto exit;
}
ret = usbh_ep_command(ep_hdl, USBH_EP_CMD_HALT);
exit:
return ret;
}
esp_err_t usb_host_endpoint_flush(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
ret = usbh_ep_get_handle(dev_hdl, bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto exit;
}
ret = usbh_ep_command(ep_hdl, USBH_EP_CMD_FLUSH);
exit:
return ret;
}
esp_err_t usb_host_endpoint_clear(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
ret = usbh_ep_get_handle(dev_hdl, bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto exit;
}
ret = usbh_ep_command(ep_hdl, USBH_EP_CMD_CLEAR);
exit:
return ret;
}
// ------------------------------------------------ Asynchronous I/O ---------------------------------------------------
// ----------------------- Public --------------------------
esp_err_t usb_host_transfer_alloc(size_t data_buffer_size, int num_isoc_packets, usb_transfer_t **transfer)
{
urb_t *urb = urb_alloc(data_buffer_size, num_isoc_packets);
if (urb == NULL) {
return ESP_ERR_NO_MEM;
}
*transfer = &urb->transfer;
return ESP_OK;
}
esp_err_t usb_host_transfer_free(usb_transfer_t *transfer)
{
if (transfer == NULL) {
return ESP_OK;
}
urb_t *urb = __containerof(transfer, urb_t, transfer);
urb_free(urb);
return ESP_OK;
}
esp_err_t usb_host_transfer_submit(usb_transfer_t *transfer)
{
HOST_CHECK(transfer != NULL, ESP_ERR_INVALID_ARG);
// Check that transfer and target endpoint are valid
HOST_CHECK(transfer->device_handle != NULL, ESP_ERR_INVALID_ARG); // Target device must be set
HOST_CHECK((transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) != 0, ESP_ERR_INVALID_ARG);
usbh_ep_handle_t ep_hdl;
ep_wrapper_t *ep_wrap = NULL;
urb_t *urb_obj = __containerof(transfer, urb_t, transfer);
esp_err_t ret;
ret = usbh_ep_get_handle(transfer->device_handle, transfer->bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto err;
}
ep_wrap = usbh_ep_get_context(ep_hdl);
assert(ep_wrap != NULL);
// Check that we are not submitting a transfer already in-flight
HOST_CHECK(!urb_obj->usb_host_inflight, ESP_ERR_NOT_FINISHED);
urb_obj->usb_host_inflight = true;
HOST_ENTER_CRITICAL();
ep_wrap->dynamic.num_urb_inflight++;
HOST_EXIT_CRITICAL();
ret = usbh_ep_enqueue_urb(ep_hdl, urb_obj);
if (ret != ESP_OK) {
goto submit_err;
}
return ret;
submit_err:
HOST_ENTER_CRITICAL();
ep_wrap->dynamic.num_urb_inflight--;
HOST_EXIT_CRITICAL();
urb_obj->usb_host_inflight = false;
err:
return ret;
}
esp_err_t usb_host_transfer_submit_control(usb_host_client_handle_t client_hdl, usb_transfer_t *transfer)
{
HOST_CHECK(client_hdl != NULL && transfer != NULL, ESP_ERR_INVALID_ARG);
// Check that control transfer is valid
HOST_CHECK(transfer->device_handle != NULL, ESP_ERR_INVALID_ARG); // Target device must be set
// Control transfers must be targeted at EP 0
HOST_CHECK((transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) == 0, ESP_ERR_INVALID_ARG);
usb_device_handle_t dev_hdl = transfer->device_handle;
urb_t *urb_obj = __containerof(transfer, urb_t, transfer);
// Check that we are not submitting a transfer already in-flight
HOST_CHECK(!urb_obj->usb_host_inflight, ESP_ERR_NOT_FINISHED);
urb_obj->usb_host_inflight = true;
// Save client handle into URB
urb_obj->usb_host_client = (void *)client_hdl;
esp_err_t ret;
ret = usbh_dev_submit_ctrl_urb(dev_hdl, urb_obj);
if (ret != ESP_OK) {
urb_obj->usb_host_inflight = false;
}
return ret;
}