esp-idf/components/esp_hw_support/sleep_modes.c

1372 lines
47 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <string.h>
#include <sys/lock.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_sleep.h"
#include "esp_private/esp_timer_private.h"
#include "esp_private/system_internal.h"
#include "esp_log.h"
#include "esp_newlib.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/soc_caps.h"
#include "driver/rtc_io.h"
#include "hal/rtc_io_hal.h"
#include "driver/uart.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/soc_caps.h"
#include "hal/wdt_hal.h"
#include "hal/rtc_hal.h"
#include "hal/uart_hal.h"
#if SOC_TOUCH_SENSOR_NUM > 0
#include "hal/touch_sensor_hal.h"
#include "driver/touch_sensor.h"
#include "driver/touch_sensor_common.h"
#endif
#include "hal/clk_gate_ll.h"
#include "sdkconfig.h"
#include "esp_rom_uart.h"
#include "brownout.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/cache.h"
#include "esp32/clk.h"
#include "esp32/rom/rtc.h"
#include "driver/gpio.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/rtc.h"
#include "soc/extmem_reg.h"
#include "driver/gpio.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/clk.h"
#include "esp32s3/rom/cache.h"
#include "esp32s3/rom/rtc.h"
#include "soc/extmem_reg.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/clk.h"
#include "esp32s3/rom/cache.h"
#include "esp32c3/rom/rtc.h"
#include "soc/extmem_reg.h"
#include "esp_heap_caps.h"
#endif
// If light sleep time is less than that, don't power down flash
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
// Time from VDD_SDIO power up to first flash read in ROM code
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
// Cycles for RTC Timer clock source (internal oscillator) calibrate
#define RTC_CLK_SRC_CAL_CYCLES (10)
#ifdef CONFIG_IDF_TARGET_ESP32
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (212)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (60)
#elif CONFIG_IDF_TARGET_ESP32S2
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (147)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (28)
#elif CONFIG_IDF_TARGET_ESP32S3
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (0)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (0)
#elif CONFIG_IDF_TARGET_ESP32C3
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (105)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (37)
#endif
#define LIGHT_SLEEP_TIME_OVERHEAD_US DEFAULT_HARDWARE_OUT_OVERHEAD_US
#if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32S3_RTC_CLK_SRC_EXT_CRYS)
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / DEFAULT_CPU_FREQ_MHZ)
#else
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / DEFAULT_CPU_FREQ_MHZ)
#endif
#if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY)
#define DEEP_SLEEP_WAKEUP_DELAY CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY
#else
#define DEEP_SLEEP_WAKEUP_DELAY 0
#endif
extern void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time);
// Minimal amount of time we can sleep for
#define LIGHT_SLEEP_MIN_TIME_US 200
#define RTC_MODULE_SLEEP_PREPARE_CYCLES (6)
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
(source == value))
/**
* Internal structure which holds all requested deep sleep parameters
*/
typedef struct {
esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
uint64_t sleep_duration;
uint32_t wakeup_triggers : 15;
uint32_t ext1_trigger_mode : 1;
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
uint32_t gpio_wakeup_mask : 6;
uint32_t gpio_trigger_mode : 6;
uint32_t sleep_time_adjustment;
uint32_t ccount_ticks_record;
uint32_t sleep_time_overhead_out;
uint32_t rtc_clk_cal_period;
uint64_t rtc_ticks_at_sleep_start;
#if SOC_PM_SUPPORT_CPU_PD
void *cpu_pd_mem;
#endif
} sleep_config_t;
static sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.ccount_ticks_record = 0,
.sleep_time_overhead_out = DEFAULT_SLEEP_OUT_OVERHEAD_US,
.wakeup_triggers = 0
};
/* Internal variable used to track if light sleep wakeup sources are to be
expected when determining wakeup cause. */
static bool s_light_sleep_wakeup = false;
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe, so we need to disable interrupts before going to deep sleep. */
static portMUX_TYPE spinlock_rtc_deep_sleep = portMUX_INITIALIZER_UNLOCKED;
static const char *TAG = "sleep";
static uint32_t get_power_down_flags(void);
#if SOC_PM_SUPPORT_EXT_WAKEUP
static void ext0_wakeup_prepare(void);
static void ext1_wakeup_prepare(void);
#endif
static void timer_wakeup_prepare(void);
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
static void touch_wakeup_prepare(void);
#endif
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
static void esp_deep_sleep_wakeup_prepare(void);
#endif
#if CONFIG_MAC_BB_PD
#define MAC_BB_POWER_DOWN_CB_NO 2
#define MAC_BB_POWER_UP_CB_NO 2
static DRAM_ATTR mac_bb_power_down_cb_t s_mac_bb_power_down_cb[MAC_BB_POWER_DOWN_CB_NO];
static DRAM_ATTR mac_bb_power_up_cb_t s_mac_bb_power_up_cb[MAC_BB_POWER_UP_CB_NO];
esp_err_t esp_register_mac_bb_pd_callback(mac_bb_power_down_cb_t cb)
{
int index = MAC_BB_POWER_DOWN_CB_NO;
for (int i = MAC_BB_POWER_DOWN_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_down_cb[i] == cb) {
return ESP_ERR_INVALID_STATE;
}
if (s_mac_bb_power_down_cb[i] == NULL) {
index = i;
}
}
if (index < MAC_BB_POWER_DOWN_CB_NO) {
s_mac_bb_power_down_cb[index] = cb;
return ESP_OK;
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_unregister_mac_bb_pd_callback(mac_bb_power_down_cb_t cb)
{
for (int i = MAC_BB_POWER_DOWN_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_down_cb[i] == cb) {
s_mac_bb_power_down_cb[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
static IRAM_ATTR void mac_bb_power_down_cb_execute(void)
{
for (int i = 0; i < MAC_BB_POWER_DOWN_CB_NO; i++) {
if (s_mac_bb_power_down_cb[i]) {
s_mac_bb_power_down_cb[i]();
}
}
}
esp_err_t esp_register_mac_bb_pu_callback(mac_bb_power_up_cb_t cb)
{
int index = MAC_BB_POWER_UP_CB_NO;
for (int i = MAC_BB_POWER_UP_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_up_cb[i] == cb) {
return ESP_ERR_INVALID_STATE;
}
if (s_mac_bb_power_up_cb[i] == NULL) {
index = i;
}
}
if (index < MAC_BB_POWER_UP_CB_NO) {
s_mac_bb_power_up_cb[index] = cb;
return ESP_OK;
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_unregister_mac_bb_pu_callback(mac_bb_power_up_cb_t cb)
{
for (int i = MAC_BB_POWER_UP_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_up_cb[i] == cb) {
s_mac_bb_power_up_cb[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
static IRAM_ATTR void mac_bb_power_up_cb_execute(void)
{
for (int i = 0; i < MAC_BB_POWER_UP_CB_NO; i++) {
if (s_mac_bb_power_up_cb[i]) {
s_mac_bb_power_up_cb[i]();
}
}
}
#endif ///CONFIG_MAC_BB_PD
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
*/
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
{
esp_deep_sleep_wake_stub_fn_t stub_ptr = (esp_deep_sleep_wake_stub_fn_t) REG_READ(RTC_ENTRY_ADDR_REG);
if (!esp_ptr_executable(stub_ptr)) {
return NULL;
}
return stub_ptr;
}
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
{
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
}
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void)
{
/* Clear MMU for CPU 0 */
#if CONFIG_IDF_TARGET_ESP32
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR);
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR));
#if DEEP_SLEEP_WAKEUP_DELAY > 0
// ROM code has not started yet, so we need to set delay factor
// used by esp_rom_delay_us first.
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
// This delay is configured in menuconfig, it can be used to give
// the flash chip some time to become ready.
esp_rom_delay_us(DEEP_SLEEP_WAKEUP_DELAY);
#endif
#elif CONFIG_IDF_TARGET_ESP32S2
REG_SET_BIT(EXTMEM_CACHE_DBG_INT_ENA_REG, EXTMEM_CACHE_DBG_EN);
#endif
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
esp_sleep_enable_timer_wakeup(time_in_us);
esp_deep_sleep_start();
}
// [refactor-todo] provide target logic for body of uart functions below
static void IRAM_ATTR flush_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifdef CONFIG_IDF_TARGET_ESP32
esp_rom_uart_tx_wait_idle(i);
#else
if (periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
esp_rom_uart_tx_wait_idle(i);
}
#endif
}
}
static void IRAM_ATTR suspend_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifndef CONFIG_IDF_TARGET_ESP32
if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
continue;
}
#endif
uart_ll_force_xoff(i);
#if SOC_UART_SUPPORT_FSM_TX_WAIT_SEND
uint32_t uart_fsm = 0;
do {
uart_fsm = uart_ll_get_fsm_status(i);
} while (!(uart_fsm == UART_FSM_IDLE || uart_fsm == UART_FSM_TX_WAIT_SEND));
#else
while (uart_ll_get_fsm_status(i) != 0) {}
#endif
}
}
static void IRAM_ATTR resume_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifndef CONFIG_IDF_TARGET_ESP32
if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
continue;
}
#endif
uart_ll_force_xon(i);
}
}
inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers);
#if SOC_PM_SUPPORT_CPU_PD
esp_err_t esp_sleep_cpu_pd_low_init(bool enable)
{
if (enable) {
if (s_config.cpu_pd_mem == NULL) {
void *buf = heap_caps_aligned_alloc(RTC_CNTL_CPU_PD_DMA_ADDR_ALIGN,
RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE,
MALLOC_CAP_RETENTION | MALLOC_CAP_DEFAULT);
if (buf) {
memset(buf, 0, RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE);
s_config.cpu_pd_mem = rtc_cntl_hal_dma_link_init(buf,
buf + RTC_HAL_DMA_LINK_NODE_SIZE, RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE, NULL);
} else {
return ESP_ERR_NO_MEM;
}
}
} else {
if (s_config.cpu_pd_mem) {
heap_caps_free(s_config.cpu_pd_mem);
s_config.cpu_pd_mem = NULL;
}
}
return ESP_OK;
}
#endif // SOC_PM_SUPPORT_CPU_PD
#if SOC_GPIO_SUPPORT_SLP_SWITCH
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
static inline void gpio_sleep_mode_config_apply(void)
{
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
gpio_sleep_pupd_config_apply(gpio_num);
}
}
}
static inline void gpio_sleep_mode_config_unapply(void)
{
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
gpio_sleep_pupd_config_unapply(gpio_num);
}
}
}
#endif
void esp_sleep_config_gpio_isolate(void)
{
ESP_LOGI(TAG, "Configure to isolate all GPIO pins in sleep state");
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
gpio_sleep_set_direction(gpio_num, GPIO_MODE_DISABLE);
gpio_sleep_set_pull_mode(gpio_num, GPIO_FLOATING);
}
}
}
void esp_sleep_enable_gpio_switch(bool enable)
{
ESP_LOGI(TAG, "%s automatic switching of GPIO sleep configuration", enable ? "Enable" : "Disable");
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
if (enable) {
gpio_sleep_sel_en(gpio_num);
} else {
gpio_sleep_sel_dis(gpio_num);
}
}
}
}
#endif // SOC_GPIO_SUPPORT_SLP_SWITCH
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
{
// Stop UART output so that output is not lost due to APB frequency change.
// For light sleep, suspend UART output — it will resume after wakeup.
// For deep sleep, wait for the contents of UART FIFO to be sent.
bool deep_sleep = pd_flags & RTC_SLEEP_PD_DIG;
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32S3 && CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
/* Currently only safe to use deep sleep wake stub & RTC memory as heap in single core mode.
For ESP32-S3, either disable ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP in config or find a way to set the
deep sleep wake stub to NULL.
*/
assert(!deep_sleep || esp_get_deep_sleep_wake_stub() == NULL);
#endif
if (deep_sleep) {
flush_uarts();
} else {
suspend_uarts();
}
// Save current frequency and switch to XTAL
rtc_cpu_freq_config_t cpu_freq_config;
rtc_clk_cpu_freq_get_config(&cpu_freq_config);
rtc_clk_cpu_freq_set_xtal();
#if CONFIG_MAC_BB_PD
mac_bb_power_down_cb_execute();
#endif
#if SOC_PM_SUPPORT_EXT_WAKEUP
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
ext1_wakeup_prepare();
}
#endif
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
if (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN) {
esp_deep_sleep_wakeup_prepare();
}
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
// Enable ULP wakeup
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
rtc_hal_ulp_wakeup_enable();
}
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
gpio_sleep_mode_config_apply();
#endif
#endif
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
if (deep_sleep) {
if (s_config.wakeup_triggers & RTC_TOUCH_TRIG_EN) {
touch_wakeup_prepare();
/* Workaround: In deep sleep, for ESP32S2, Power down the RTC_PERIPH will change the slope configuration of Touch sensor sleep pad.
* The configuration change will change the reading of the sleep pad, which will cause the touch wake-up sensor to trigger falsely.
*/
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
}
} else {
/* In light sleep, the RTC_PERIPH power domain should be in the power-on state (Power on the touch circuit in light sleep),
* otherwise the touch sensor FSM will be cleared, causing touch sensor false triggering.
*/
if (touch_ll_get_fsm_state()) { // Check if the touch sensor is working properly.
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
}
}
#endif
uint32_t reject_triggers = 0;
if ((pd_flags & RTC_SLEEP_PD_DIG) == 0 && (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN)) {
/* Light sleep, enable sleep reject for faster return from this function,
* in case the wakeup is already triggerred.
*/
#if CONFIG_IDF_TARGET_ESP32
reject_triggers = RTC_CNTL_LIGHT_SLP_REJECT_EN_M | RTC_CNTL_GPIO_REJECT_EN_M;
#else
reject_triggers = s_config.wakeup_triggers;
#endif
}
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
rtc_sleep_low_init(s_config.rtc_clk_cal_period);
// Set state machine time for light sleep
if (!deep_sleep) {
rtc_sleep_low_init(s_config.rtc_clk_cal_period);
}
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
uint32_t result;
if (deep_sleep) {
/* Disable interrupts in case another task writes to RTC memory while we
* calculate RTC memory CRC
*
* Note: for ESP32-S3 running in dual core mode this is currently not enough,
* see the assert at top of this function.
*/
portENTER_CRITICAL(&spinlock_rtc_deep_sleep);
#if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
/* If not possible stack is in RTC FAST memory, use the ROM function to calculate the CRC and save ~140 bytes IRAM */
set_rtc_memory_crc();
result = call_rtc_sleep_start(reject_triggers);
#else
/* Otherwise, need to call the dedicated soc function for this */
result = rtc_deep_sleep_start(s_config.wakeup_triggers, reject_triggers);
#endif
portEXIT_CRITICAL(&spinlock_rtc_deep_sleep);
} else {
result = call_rtc_sleep_start(reject_triggers);
}
// Restore CPU frequency
rtc_clk_cpu_freq_set_config(&cpu_freq_config);
if (!deep_sleep) {
s_config.ccount_ticks_record = cpu_ll_get_cycle_count();
}
#if SOC_PM_SUPPORT_CPU_PD
rtc_cntl_hal_disable_cpu_retention();
#endif
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
gpio_sleep_mode_config_unapply();
#endif
#if CONFIG_MAC_BB_PD
mac_bb_power_up_cb_execute();
#endif
// re-enable UART output
resume_uarts();
return result;
}
inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers)
{
#ifdef CONFIG_IDF_TARGET_ESP32
return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers);
#else
return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers, 1);
#endif
}
void IRAM_ATTR esp_deep_sleep_start(void)
{
#if CONFIG_IDF_TARGET_ESP32S2
/* Due to hardware limitations, on S2 the brownout detector sometimes trigger during deep sleep
to circumvent this we disable the brownout detector before sleeping */
esp_brownout_disable();
#endif //CONFIG_IDF_TARGET_ESP32S2
// record current RTC time
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
// record current RTC time
esp_sync_counters_rtc_and_frc();
// Configure wake stub
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
s_config.rtc_clk_cal_period = esp_clk_slowclk_cal_get();
// Correct the sleep time
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
uint32_t force_pd_flags = RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO;
#if SOC_PM_SUPPORT_WIFI_PD
force_pd_flags |= RTC_SLEEP_PD_WIFI;
#endif
#if SOC_PM_SUPPORT_BT_PD
force_pd_flags |= RTC_SLEEP_PD_BT;
#endif
// Enter sleep
esp_sleep_start(force_pd_flags | pd_flags);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
;
}
}
/**
* Helper function which handles entry to and exit from light sleep
* Placed into IRAM as flash may need some time to be powered on.
*/
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config)
{
// Enter sleep
esp_err_t err = esp_sleep_start(pd_flags);
// If VDDSDIO regulator was controlled by RTC registers before sleep,
// restore the configuration.
if (vddsdio_config.force) {
rtc_vddsdio_set_config(vddsdio_config);
}
// If SPI flash was powered down, wait for it to become ready
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
// Wait for the flash chip to start up
esp_rom_delay_us(flash_enable_time_us);
}
return err;
}
esp_err_t esp_light_sleep_start(void)
{
s_config.ccount_ticks_record = cpu_ll_get_cycle_count();
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&light_sleep_lock);
/* We will be calling esp_timer_private_advance inside DPORT access critical
* section. Make sure the code on the other CPU is not holding esp_timer
* lock, otherwise there will be deadlock.
*/
esp_timer_private_lock();
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
uint32_t ccount_at_sleep_start = cpu_ll_get_cycle_count();
uint64_t frc_time_at_start = esp_system_get_time();
uint32_t sleep_time_overhead_in = (ccount_at_sleep_start - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL);
DPORT_STALL_OTHER_CPU_START();
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Re-calibrate the RTC Timer clock
#if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) || defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS) || defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS)
uint64_t time_per_us = 1000000ULL;
s_config.rtc_clk_cal_period = (time_per_us << RTC_CLK_CAL_FRACT) / rtc_clk_slow_freq_get_hz();
#elif defined(CONFIG_ESP32S2_RTC_CLK_SRC_INT_RC)
s_config.rtc_clk_cal_period = rtc_clk_cal_cycling(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period);
#else
s_config.rtc_clk_cal_period = rtc_clk_cal(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
#endif
/*
* Adjustment time consists of parts below:
* 1. Hardware time waiting for internal 8M oscilate clock and XTAL;
* 2. Hardware state swithing time of the rtc main state machine;
* 3. Code execution time when clock is not stable;
* 4. Code execution time which can be measured;
*/
uint32_t rtc_cntl_xtl_buf_wait_slp_cycles = rtc_time_us_to_slowclk(RTC_CNTL_XTL_BUF_WAIT_SLP_US, s_config.rtc_clk_cal_period);
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US + sleep_time_overhead_in + s_config.sleep_time_overhead_out
+ rtc_time_slowclk_to_us(rtc_cntl_xtl_buf_wait_slp_cycles + RTC_CNTL_CK8M_WAIT_SLP_CYCLES + RTC_CNTL_WAKEUP_DELAY_CYCLES, s_config.rtc_clk_cal_period);
// Decide if VDD_SDIO needs to be powered down;
// If it needs to be powered down, adjust sleep time.
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US + DEEP_SLEEP_WAKEUP_DELAY;
/**
* If VDD_SDIO power domain is requested to be turned off, bit `RTC_SLEEP_PD_VDDSDIO`
* will be set in `pd_flags`.
*/
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
/*
* When VDD_SDIO power domain has to be turned off, the minimum sleep time of the
* system needs to meet the sum below:
* 1. Wait time for the flash power-on after waking up;
* 2. The execution time of codes between RTC Timer get start time
* with hardware starts to switch state to sleep;
* 3. The hardware state switching time of the rtc state machine during
* sleep and wake-up. This process requires 6 cycles to complete.
* The specific hardware state switching process and the cycles
* consumed are rtc_cpu_run_stall(1), cut_pll_rtl(2), cut_8m(1),
* min_protect(2);
* 4. All the adjustment time which is s_config.sleep_time_adjustment below.
*/
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
flash_enable_time_us + LIGHT_SLEEP_MIN_TIME_US + s_config.sleep_time_adjustment
+ rtc_time_slowclk_to_us(RTC_MODULE_SLEEP_PREPARE_CYCLES, s_config.rtc_clk_cal_period));
if (s_config.sleep_duration > vddsdio_pd_sleep_duration) {
if (s_config.sleep_time_overhead_out < flash_enable_time_us) {
s_config.sleep_time_adjustment += flash_enable_time_us;
}
} else {
/**
* Minimum sleep time is not enough, then keep the VDD_SDIO power
* domain on.
*/
pd_flags &= ~RTC_SLEEP_PD_VDDSDIO;
if (s_config.sleep_time_overhead_out > flash_enable_time_us) {
s_config.sleep_time_adjustment -= flash_enable_time_us;
}
}
}
periph_inform_out_light_sleep_overhead(s_config.sleep_time_adjustment - sleep_time_overhead_in);
#if SOC_PM_SUPPORT_CPU_PD
rtc_cntl_hal_enable_cpu_retention(s_config.cpu_pd_mem);
#endif
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
// Safety net: enable WDT in case exit from light sleep fails
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
bool wdt_was_enabled = wdt_hal_is_enabled(&rtc_wdt_ctx); // If WDT was enabled in the user code, then do not change it here.
if (!wdt_was_enabled) {
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_enable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
}
// Enter sleep, then wait for flash to be ready on wakeup
esp_err_t err = esp_light_sleep_inner(pd_flags,
flash_enable_time_us, vddsdio_config);
s_light_sleep_wakeup = true;
// FRC1 has been clock gated for the duration of the sleep, correct for that.
#ifdef CONFIG_IDF_TARGET_ESP32C3
/**
* On esp32c3, rtc_time_get() is non-blocking, esp_system_get_time() is
* blocking, and the measurement data shows that this order is better.
*/
uint64_t frc_time_at_end = esp_system_get_time();
uint64_t rtc_ticks_at_end = rtc_time_get();
#else
uint64_t rtc_ticks_at_end = rtc_time_get();
uint64_t frc_time_at_end = esp_system_get_time();
#endif
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start, s_config.rtc_clk_cal_period);
uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start;
int64_t time_diff = rtc_time_diff - frc_time_diff;
/* Small negative values (up to 1 RTC_SLOW clock period) are possible,
* for very small values of sleep_duration. Ignore those to keep esp_timer
* monotonic.
*/
if (time_diff > 0) {
esp_timer_private_advance(time_diff);
}
esp_set_time_from_rtc();
esp_timer_private_unlock();
DPORT_STALL_OTHER_CPU_END();
if (!wdt_was_enabled) {
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_disable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
}
portEXIT_CRITICAL(&light_sleep_lock);
s_config.sleep_time_overhead_out = (cpu_ll_get_cycle_count() - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL);
return err;
}
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
{
// For most of sources it is enough to set trigger mask in local
// configuration structure. The actual RTC wake up options
// will be updated by esp_sleep_start().
if (source == ESP_SLEEP_WAKEUP_ALL) {
s_config.wakeup_triggers = 0;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
s_config.sleep_duration = 0;
#if SOC_PM_SUPPORT_EXT_WAKEUP
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) {
s_config.ext0_rtc_gpio_num = 0;
s_config.ext0_trigger_level = 0;
s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) {
s_config.ext1_rtc_gpio_mask = 0;
s_config.ext1_trigger_mode = 0;
s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN;
#endif
#if SOC_TOUCH_PAD_WAKE_SUPPORTED
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN;
#endif
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_GPIO, RTC_GPIO_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_GPIO_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_UART, (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN))) {
s_config.wakeup_triggers &= ~(RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN);
}
#if defined(CONFIG_ESP32_ULP_COPROC_ENABLED) || defined(CONFIG_ESP32S2_ULP_COPROC_ENABLED)
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN;
}
#endif
else {
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
esp_err_t esp_sleep_enable_ulp_wakeup(void)
{
#if CONFIG_IDF_TARGET_ESP32
#if ((defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT_V2))
ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal");
return ESP_ERR_NOT_SUPPORTED;
#endif
#ifdef CONFIG_ESP32_ULP_COPROC_ENABLED
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
return ESP_OK;
#else // CONFIG_ESP32_ULP_COPROC_ENABLED
return ESP_ERR_INVALID_STATE;
#endif // CONFIG_ESP32_ULP_COPROC_ENABLED
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
s_config.wakeup_triggers |= (RTC_ULP_TRIG_EN | RTC_COCPU_TRIG_EN | RTC_COCPU_TRAP_TRIG_EN);
return ESP_OK;
#else
return ESP_ERR_NOT_SUPPORTED;
#endif
}
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
static void timer_wakeup_prepare(void)
{
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
if (sleep_duration < 0) {
sleep_duration = 0;
}
int64_t ticks = rtc_time_us_to_slowclk(sleep_duration, s_config.rtc_clk_cal_period);
rtc_hal_set_wakeup_timer(s_config.rtc_ticks_at_sleep_start + ticks);
}
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
/* In deep sleep mode, only the sleep channel is supported, and other touch channels should be turned off. */
static void touch_wakeup_prepare(void)
{
uint16_t sleep_cycle = 0;
uint16_t meas_times = 0;
touch_pad_t touch_num = TOUCH_PAD_NUM0;
touch_ll_sleep_get_channel_num(&touch_num); // Check if the sleep pad is enabled.
if ((touch_num > TOUCH_PAD_NUM0) && (touch_num < TOUCH_PAD_MAX) && touch_ll_get_fsm_state()) {
touch_ll_stop_fsm();
touch_ll_clear_channel_mask(TOUCH_PAD_BIT_MASK_ALL);
touch_ll_intr_clear(TOUCH_PAD_INTR_MASK_ALL); // Clear state from previous wakeup
touch_hal_sleep_channel_get_work_time(&sleep_cycle, &meas_times);
touch_ll_set_meas_times(meas_times);
touch_ll_set_sleep_time(sleep_cycle);
touch_ll_set_channel_mask(BIT(touch_num));
touch_ll_start_fsm();
}
}
#endif
#if SOC_TOUCH_SENSOR_NUM > 0
esp_err_t esp_sleep_enable_touchpad_wakeup(void)
{
#if ((defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT_V2))
ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal");
return ESP_ERR_NOT_SUPPORTED;
#endif
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
return ESP_OK;
}
touch_pad_t esp_sleep_get_touchpad_wakeup_status(void)
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
return TOUCH_PAD_MAX;
}
touch_pad_t pad_num;
esp_err_t ret = touch_pad_get_wakeup_status(&pad_num); //TODO 723diff commit id:fda9ada1b
assert(ret == ESP_OK && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero");
return (ret == ESP_OK) ? pad_num : TOUCH_PAD_MAX;
}
#endif // SOC_TOUCH_SENSOR_NUM > 0
bool esp_sleep_is_valid_wakeup_gpio(gpio_num_t gpio_num)
{
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
return RTC_GPIO_IS_VALID_GPIO(gpio_num);
#else
return GPIO_IS_DEEP_SLEEP_WAKEUP_VALID_GPIO(gpio_num);
#endif // SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
}
#if SOC_PM_SUPPORT_EXT_WAKEUP
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
{
if (level < 0 || level > 1) {
return ESP_ERR_INVALID_ARG;
}
if (!esp_sleep_is_valid_wakeup_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
s_config.ext0_rtc_gpio_num = rtc_io_number_get(gpio_num);
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
return ESP_OK;
}
static void ext0_wakeup_prepare(void)
{
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
rtcio_hal_ext0_set_wakeup_pin(rtc_gpio_num, s_config.ext0_trigger_level);
rtcio_hal_function_select(rtc_gpio_num, RTCIO_FUNC_RTC);
rtcio_hal_input_enable(rtc_gpio_num);
}
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode)
{
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
return ESP_ERR_INVALID_ARG;
}
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
uint32_t rtc_gpio_mask = 0;
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
if ((mask & 1) == 0) {
continue;
}
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
return ESP_ERR_INVALID_ARG;
}
rtc_gpio_mask |= BIT(rtc_io_number_get(gpio));
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
return ESP_OK;
}
static void ext1_wakeup_prepare(void)
{
// Configure all RTC IOs selected as ext1 wakeup inputs
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
int rtc_pin = rtc_io_number_get(gpio);
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
continue;
}
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
// Route pad to RTC
rtcio_hal_function_select(rtc_pin, RTCIO_FUNC_RTC);
// set input enable in sleep mode
rtcio_hal_input_enable(rtc_pin);
#endif
// Pad configuration depends on RTC_PERIPH state in sleep mode
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
// RTC_PERIPH will be powered down, so RTC_IO_ registers will
// loose their state. Lock pad configuration.
// Pullups/pulldowns also need to be disabled.
rtcio_hal_pullup_disable(rtc_pin);
rtcio_hal_pulldown_disable(rtc_pin);
#endif
rtcio_hal_hold_enable(rtc_pin);
}
// Keep track of pins which are processed to bail out early
rtc_gpio_mask &= ~BIT(rtc_pin);
}
// Clear state from previous wakeup
rtc_hal_ext1_clear_wakeup_pins();
// Set RTC IO pins and mode (any high, all low) to be used for wakeup
rtc_hal_ext1_set_wakeup_pins(s_config.ext1_rtc_gpio_mask, s_config.ext1_trigger_mode);
}
uint64_t esp_sleep_get_ext1_wakeup_status(void)
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
return 0;
}
uint32_t status = rtc_hal_ext1_get_wakeup_pins();
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
uint64_t gpio_mask = 0;
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
continue;
}
int rtc_pin = rtc_io_number_get(gpio);
if ((status & BIT(rtc_pin)) == 0) {
continue;
}
gpio_mask |= 1ULL << gpio;
}
return gpio_mask;
}
#endif // SOC_PM_SUPPORT_EXT_WAKEUP
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
uint64_t esp_sleep_get_gpio_wakeup_status(void)
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_GPIO) {
return 0;
}
return rtc_hal_gpio_get_wakeup_pins();
}
static void esp_deep_sleep_wakeup_prepare(void)
{
for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++) {
if (((1ULL << gpio_idx) & s_config.gpio_wakeup_mask) == 0) {
continue;
}
if (s_config.gpio_trigger_mode & BIT(gpio_idx)) {
ESP_ERROR_CHECK(gpio_pullup_dis(gpio_idx));
ESP_ERROR_CHECK(gpio_pulldown_en(gpio_idx));
} else {
ESP_ERROR_CHECK(gpio_pullup_en(gpio_idx));
ESP_ERROR_CHECK(gpio_pulldown_dis(gpio_idx));
}
rtc_hal_gpio_set_wakeup_pins();
ESP_ERROR_CHECK(gpio_hold_en(gpio_idx));
}
}
esp_err_t esp_deep_sleep_enable_gpio_wakeup(uint64_t gpio_pin_mask, esp_deepsleep_gpio_wake_up_mode_t mode)
{
if (mode > ESP_GPIO_WAKEUP_GPIO_HIGH) {
ESP_LOGE(TAG, "invalid mode");
return ESP_ERR_INVALID_ARG;
}
gpio_int_type_t intr_type = ((mode == ESP_GPIO_WAKEUP_GPIO_LOW) ? GPIO_INTR_LOW_LEVEL : GPIO_INTR_HIGH_LEVEL);
esp_err_t err = ESP_OK;
for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++, gpio_pin_mask >>= 1) {
if ((gpio_pin_mask & 1) == 0) {
continue;
}
if (!esp_sleep_is_valid_wakeup_gpio(gpio_idx)) {
ESP_LOGE(TAG, "invalid mask, please ensure gpio number is no more than 5");
return ESP_ERR_INVALID_ARG;
}
err = gpio_deep_sleep_wakeup_enable(gpio_idx, intr_type);
s_config.gpio_wakeup_mask |= BIT(gpio_idx);
if (mode == ESP_GPIO_WAKEUP_GPIO_HIGH) {
s_config.gpio_trigger_mode |= (mode << gpio_idx);
} else {
s_config.gpio_trigger_mode &= ~(mode << gpio_idx);
}
}
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
rtc_hal_gpio_clear_wakeup_pins();
return err;
}
#endif //SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
esp_err_t esp_sleep_enable_gpio_wakeup(void)
{
#if CONFIG_IDF_TARGET_ESP32
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
#endif
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
return ESP_OK;
}
esp_err_t esp_sleep_enable_uart_wakeup(int uart_num)
{
if (uart_num == UART_NUM_0) {
s_config.wakeup_triggers |= RTC_UART0_TRIG_EN;
} else if (uart_num == UART_NUM_1) {
s_config.wakeup_triggers |= RTC_UART1_TRIG_EN;
} else {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t esp_sleep_enable_wifi_wakeup(void)
{
#if SOC_PM_SUPPORT_WIFI_WAKEUP
s_config.wakeup_triggers |= RTC_WIFI_TRIG_EN;
return ESP_OK;
#else
return ESP_ERR_NOT_SUPPORTED;
#endif
}
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)
{
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET && !s_light_sleep_wakeup) {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
#ifdef CONFIG_IDF_TARGET_ESP32
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
#else
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_SLP_WAKEUP_CAUSE_REG, RTC_CNTL_WAKEUP_CAUSE);
#endif
if (wakeup_cause & RTC_TIMER_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TIMER;
} else if (wakeup_cause & RTC_GPIO_TRIG_EN) {
return ESP_SLEEP_WAKEUP_GPIO;
} else if (wakeup_cause & (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN)) {
return ESP_SLEEP_WAKEUP_UART;
#if SOC_PM_SUPPORT_EXT_WAKEUP
} else if (wakeup_cause & RTC_EXT0_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT0;
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT1;
#endif
#if SOC_TOUCH_PAD_WAKE_SUPPORTED
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TOUCHPAD;
#endif
#if SOC_ULP_SUPPORTED
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
#endif
#if SOC_PM_SUPPORT_WIFI_WAKEUP
} else if (wakeup_cause & RTC_WIFI_TRIG_EN) {
return ESP_SLEEP_WAKEUP_WIFI;
#endif
#if SOC_PM_SUPPORT_BT_WAKEUP
} else if (wakeup_cause & RTC_BT_TRIG_EN) {
return ESP_SLEEP_WAKEUP_BT;
#endif
#if CONFIG_IDF_TARGET_ESP32S2
} else if (wakeup_cause & RTC_COCPU_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
} else if (wakeup_cause & RTC_COCPU_TRAP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG;
#endif
} else {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
}
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
esp_sleep_pd_option_t option)
{
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
return ESP_ERR_INVALID_ARG;
}
s_config.pd_options[domain] = option;
return ESP_OK;
}
static uint32_t get_power_down_flags(void)
{
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
// is used and RTC_SLOW_MEM is Auto.
// If there is any data placed into .rtc.data or .rtc.bss segments, and
// RTC_SLOW_MEM is Auto, keep it powered up as well.
#if SOC_RTC_SLOW_MEM_SUPPORTED && SOC_ULP_SUPPORTED
// Labels are defined in the linker script
extern int _rtc_slow_length;
if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) &&
((size_t) &_rtc_slow_length > 0 ||
(s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
}
#endif
#if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
/* RTC_FAST_MEM is needed for deep sleep stub.
If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub can run.
In the new chip revision, deep sleep stub will be optional, and this can be changed. */
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
}
#else
/* If RTC_FAST_MEM is used for heap, force RTC_FAST_MEM to be powered on. */
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
#endif
// RTC_PERIPH is needed for EXT0 wakeup and GPIO wakeup.
// If RTC_PERIPH is auto, and EXT0/GPIO aren't enabled, power down RTC_PERIPH.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
#if SOC_TOUCH_PAD_WAKE_SUPPORTED
uint32_t wakeup_source = RTC_TOUCH_TRIG_EN;
#if SOC_ULP_SUPPORTED
wakeup_source |= RTC_ULP_TRIG_EN;
#endif
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN | RTC_GPIO_TRIG_EN)) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else if (s_config.wakeup_triggers & wakeup_source) {
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
// prevents ULP timer and touch FSMs from working correctly.
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
#else
if (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
#endif // SOC_TOUCH_PAD_WAKE_SUPPORTED
}
#if SOC_PM_SUPPORT_CPU_PD
if (s_config.cpu_pd_mem == NULL) {
s_config.pd_options[ESP_PD_DOMAIN_CPU] = ESP_PD_OPTION_ON;
}
#else
if (s_config.pd_options[ESP_PD_DOMAIN_CPU] != ESP_PD_OPTION_ON) {
s_config.pd_options[ESP_PD_DOMAIN_CPU] = ESP_PD_OPTION_ON;
}
#endif
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF;
}
const char *option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]]);
#if SOC_RTC_SLOW_MEM_SUPPORTED
ESP_LOGD(TAG, "RTC_SLOW_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]]);
#endif
ESP_LOGD(TAG, "RTC_FAST_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = 0;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
}
#if SOC_RTC_SLOW_MEM_SUPPORTED
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
}
#endif
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
#if SOC_PM_SUPPORT_CPU_PD
if (s_config.pd_options[ESP_PD_DOMAIN_CPU] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_CPU;
}
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
pd_flags |= RTC_SLEEP_PD_XTAL;
#endif
/**
* VDD_SDIO power domain shall be kept on during the light sleep
* when CONFIG_ESP_SLEEP_POWER_DOWN_FLASH is not set and off when it is set.
* The application can still force the power domain to remain on by calling
* `esp_sleep_pd_config` before getting into light sleep mode.
*
* In deep sleep mode, the power domain will be turned off, regardless the
* value of this field.
*/
if (s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] == ESP_PD_OPTION_AUTO) {
#ifdef CONFIG_ESP_SLEEP_POWER_DOWN_FLASH
s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] = ESP_PD_OPTION_OFF;
#else
s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] = ESP_PD_OPTION_ON;
#endif
}
if (s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
}
#if ((defined CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) && (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT))
if ((s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) == 0) {
// If enabled EXT1 only and enable the additional current by touch, should be keep RTC_PERIPH power on.
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
}
#endif
return pd_flags;
}
void esp_deep_sleep_disable_rom_logging(void)
{
rtc_suppress_rom_log();
}