esp-idf/components/esp_system/port/soc/esp32p4/clk.c

374 lines
16 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_sleep.h"
#include "esp_clk_internal.h"
#include "esp32p4/rom/ets_sys.h"
#include "esp32p4/rom/uart.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/i2s_reg.h"
#include "soc/hp_sys_clkrst_reg.h"
#include "esp_cpu.h"
#include "mspi_timing_tuning_configs.h"
#include "soc/hp_sys_clkrst_reg.h"
#include "soc/lp_clkrst_reg.h"
#include "soc/lp_system_reg.h"
#include "soc/sdmmc_reg.h"
#include "soc/spi_mem_c_reg.h"
#include "soc/spi_mem_s_reg.h"
#include "soc/usb_serial_jtag_reg.h"
#include "soc/trace_struct.h"
#include "hal/aes_ll.h"
#include "hal/assist_debug_ll.h"
#include "hal/ds_ll.h"
#include "hal/ecc_ll.h"
#include "hal/etm_ll.h"
#include "hal/gdma_ll.h"
#include "hal/hmac_ll.h"
#include "hal/mipi_csi_ll.h"
#include "hal/mipi_dsi_brg_ll.h"
#include "hal/mpi_ll.h"
#include "hal/pau_ll.h"
#include "hal/parlio_ll.h"
#include "hal/psram_ctrlr_ll.h"
#include "hal/rtc_io_ll.h"
#include "hal/sha_ll.h"
#include "hal/spi_ll.h"
#include "hal/spimem_flash_ll.h"
#include "hal/timer_ll.h"
#include "hal/uart_ll.h"
#include "hal/usb_serial_jtag_ll.h"
#include "hal/usb_utmi_ll.h"
#include "hal/wdt_hal.h"
#include "esp_private/esp_modem_clock.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
#include "esp_private/esp_pmu.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES
#define MHZ (1000000)
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src);
static const char *TAG = "clk";
void IRAM_ATTR esp_rtc_init(void)
{
#if SOC_PMU_SUPPORTED
pmu_init();
#endif //SOC_PMU_SUPPORTED
}
__attribute__((weak)) void esp_clk_init(void)
{
assert(rtc_clk_xtal_freq_get() == SOC_XTAL_FREQ_40M);
rtc_clk_8m_enable(true);
rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST);
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
//Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
#if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS)
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
#elif defined(CONFIG_RTC_CLK_SRC_INT_RC32K)
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC32K);
#else
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC_SLOW);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ;
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
if (CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM != -1) {
esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
}
if (res) {
rtc_clk_cpu_freq_set_config(&new_config);
}
// Re calculate the ccount to make time calculation correct.
esp_cpu_set_cycle_count((uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz);
}
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src)
{
uint32_t cal_val = 0;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
int retry_32k_xtal = 3;
do {
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
rtc_cal_sel_t cal_sel = 0;
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
rtc_clk_32k_enable(true);
cal_sel = RTC_CAL_32K_XTAL;
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(cal_sel, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0) {
if (retry_32k_xtal-- > 0) {
continue;
}
ESP_EARLY_LOGW(TAG, "32 kHz clock not found, switching to internal 150 kHz oscillator");
rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
}
}
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) {
rtc_clk_rc32k_enable(true);
}
rtc_clk_slow_src_set(rtc_slow_clk_src);
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t)(cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %" PRIu32, cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk(void)
{
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
__attribute__((weak)) void esp_perip_clk_init(void)
{
soc_rtc_slow_clk_src_t rtc_slow_clk_src = rtc_clk_slow_src_get();
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_SLOW) {
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL32K, ESP_PD_OPTION_AUTO);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_XTAL_32K_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_RC_32K_CLK_EN);
esp_sleep_pd_config(ESP_PD_DOMAIN_RC32K, ESP_PD_OPTION_AUTO);
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
// RC slow (150K) always ON
esp_sleep_pd_config(ESP_PD_DOMAIN_RC32K, ESP_PD_OPTION_AUTO);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_RC_32K_CLK_EN);
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL32K, ESP_PD_OPTION_ON);
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) {
// RC slow (150K) always ON
esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL32K, ESP_PD_OPTION_AUTO);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_XTAL_32K_CLK_EN);
esp_sleep_pd_config(ESP_PD_DOMAIN_RC32K, ESP_PD_OPTION_ON);
}
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
if ((rst_reason != RESET_REASON_CPU0_SW) && (rst_reason != RESET_REASON_CPU_MWDT) \
&& (rst_reason != RESET_REASON_CPU_RWDT) && (rst_reason != RESET_REASON_CPU_JTAG) \
&& (rst_reason != RESET_REASON_CPU_LOCKUP)) {
_gdma_ll_enable_bus_clock(0, false);
_gdma_ll_enable_bus_clock(1, false);
_pau_ll_enable_bus_clock(false);
_parlio_ll_enable_bus_clock(0, false);
_etm_ll_enable_bus_clock(0, false);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_BITSRAMBLER_SYS_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_BITSRAMBLER_RX_SYS_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_BITSRAMBLER_TX_SYS_CLK_EN);
// Non-Console UART
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
_uart_ll_enable_bus_clock(UART_NUM_0, false);
_uart_ll_sclk_disable(&UART0);
#elif CONFIG_ESP_CONSOLE_UART_NUM != 1
_uart_ll_enable_bus_clock(UART_NUM_1, false);
_uart_ll_sclk_disable(&UART1);
#endif
_uart_ll_enable_bus_clock(UART_NUM_2, false);
_uart_ll_sclk_disable(&UART2);
_uart_ll_enable_bus_clock(UART_NUM_3, false);
_uart_ll_sclk_disable(&UART3);
_uart_ll_enable_bus_clock(UART_NUM_4, false);
_uart_ll_sclk_disable(&UART4);
_timer_ll_enable_bus_clock(0, false);
_timer_ll_enable_clock(&TIMERG0, 0, false);
_timer_ll_enable_clock(&TIMERG0, 1, false);
_timer_ll_enable_bus_clock(1, false);
_timer_ll_enable_clock(&TIMERG1, 0, false);
_timer_ll_enable_clock(&TIMERG1, 1, false);
mipi_dsi_brg_ll_enable_ref_clock(&MIPI_DSI_BRIDGE, false);
_mipi_csi_ll_enable_host_bus_clock(0, false);
REG_CLR_BIT(SDHOST_CLK_EDGE_SEL_REG, SDHOST_CCLK_EN);
#if CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
_spimem_ctrlr_ll_unset_clock(0);
#endif
#if !MSPI_TIMING_FLASH_NEEDS_TUNING
REG_CLR_BIT(SPI_MEM_C_TIMING_CALI_REG, SPI_MEM_C_TIMING_CLK_ENA);
REG_CLR_BIT(SPI_MEM_C_SMEM_TIMING_CALI_REG, SPI_MEM_C_SMEM_TIMING_CLK_ENA);
#endif
#if !MSPI_TIMING_PSRAM_NEEDS_TUNING
REG_CLR_BIT(SPI_MEM_S_TIMING_CALI_REG, SPI_MEM_S_TIMING_CLK_ENA);
REG_CLR_BIT(SPI_MEM_S_SMEM_TIMING_CALI_REG, SPI_MEM_S_SMEM_TIMING_CLK_ENA);
#endif
#if !CONFIG_SPIRAM
_psram_ctrlr_ll_enable_core_clock(PSRAM_CTRLR_LL_MSPI_ID_2, false);
_psram_ctrlr_ll_enable_module_clock(PSRAM_CTRLR_LL_MSPI_ID_2, false);
#endif
REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_REF_50M_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_REF_25M_CLK_EN);
// 240M CLK is for Key Management use, should not be gated
REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_160M_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_120M_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_80M_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_REF_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_REF_20M_CLK_EN);
_spi_ll_enable_bus_clock(SPI2_HOST, false);
_spi_ll_enable_bus_clock(SPI3_HOST, false);
_spi_ll_enable_clock(SPI2_HOST, false);
_spi_ll_enable_clock(SPI3_HOST, false);
#if !CONFIG_ESP_SYSTEM_HW_PC_RECORD
/* Disable ASSIST Debug module clock if PC recoreding function is not used,
* if stack guard function needs it, it will be re-enabled at esp_hw_stack_guard_init */
_assist_debug_ll_enable_bus_clock(false);
#endif
// Trace & Bus Monitor (0)
TRACE0.clock_gate.clk_en = 0;
TRACE1.clock_gate.clk_en = 0;
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_L2MEMMON_MEM_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_L2MEMMON_SYS_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_TCMMON_SYS_CLK_EN);
// Crypto Modules
_aes_ll_enable_bus_clock(false);
_ds_ll_enable_bus_clock(false);
_ecc_ll_enable_bus_clock(false);
_hmac_ll_enable_bus_clock(false);
_mpi_ll_enable_bus_clock(false);
_sha_ll_enable_bus_clock(false);
// USB1.1
REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL0_REG, LP_CLKRST_USB_OTG11_BK_SYS_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL0_REG, LP_CLKRST_USB_OTG11_48M_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_USB_OTG11_SYS_CLK_EN);
// USB2.0
_usb_utmi_ll_enable_bus_clock(false);
REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL0_REG, LP_CLKRST_USB_OTG20_BK_SYS_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_USB_CLKRST_CTRL1_REG, LP_CLKRST_USB_OTG20_ULPI_CLK_EN);
// UHCI
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL2_REG, HP_SYS_CLKRST_REG_UHCI_APB_CLK_EN);
REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL1_REG, HP_SYS_CLKRST_REG_UHCI_SYS_CLK_EN);
#if !CONFIG_USJ_ENABLE_USB_SERIAL_JTAG && !CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG_ENABLED
// Disable USB-Serial-JTAG clock and it's pad if not used
usb_serial_jtag_ll_phy_enable_pad(false);
_usb_serial_jtag_ll_enable_bus_clock(false);
REG_SET_BIT(USB_SERIAL_JTAG_MEM_CONF_REG, USB_SERIAL_JTAG_USB_MEM_PD);
REG_CLR_BIT(USB_SERIAL_JTAG_MEM_CONF_REG, USB_SERIAL_JTAG_USB_MEM_CLK_EN);
#endif
}
if ((rst_reason == RESET_REASON_CHIP_POWER_ON) || (rst_reason == RESET_REASON_SYS_SUPER_WDT) \
|| (rst_reason == RESET_REASON_SYS_RWDT) || (rst_reason == RESET_REASON_SYS_BROWN_OUT)) {
_lp_uart_ll_enable_bus_clock(0, false);
lp_uart_ll_sclk_disable(0);
_rtcio_ll_enable_io_clock(false);
// LP_Peri & Clock Control
_uart_ll_enable_pad_sleep_clock(&UART0, false);
_uart_ll_enable_pad_sleep_clock(&UART1, false);
_uart_ll_enable_pad_sleep_clock(&UART2, false);
_uart_ll_enable_pad_sleep_clock(&UART3, false);
_uart_ll_enable_pad_sleep_clock(&UART4, false);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_PARLIO_TX_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_PARLIO_RX_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_I2S2_MCLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_I2S1_MCLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_I2S0_MCLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_EMAC_TX_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_EMAC_RX_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PAD_EMAC_TXRX_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_PLL_8M_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_AUDIO_PLL_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_SDIO_PLL2_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_SDIO_PLL1_CLK_EN);
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_SDIO_PLL0_CLK_EN);
#if !CONFIG_SPIRAM_BOOT_INIT
REG_CLR_BIT(LP_CLKRST_HP_CLK_CTRL_REG, LP_CLKRST_HP_MPLL_500M_CLK_EN);
#endif
REG_CLR_BIT(LP_SYSTEM_REG_HP_ROOT_CLK_CTRL_REG, LP_SYSTEM_REG_CPU_CLK_EN);
}
}