esp-idf/docs/en/api-reference/system/inc/espefuse_summary_ESP32.rst

90 lines
7.1 KiB
ReStructuredText

.. code-block:: none
idf.py efuse-summary
Executing action: efuse-summary
(...)
EFUSE_NAME (Block) Description = [Meaningful Value] [Readable/Writeable] (Hex Value)
----------------------------------------------------------------------------------------
Calibration fuses:
ADC_VREF (BLOCK0) True ADC reference voltage = 1121 R/W (0b00011)
Config fuses:
WR_DIS (BLOCK0) Efuse write disable mask = 0 R/W (0x0000)
RD_DIS (BLOCK0) Disable reading from BlOCK1-3 = 0 R/W (0x0)
DISABLE_APP_CPU (BLOCK0) Disables APP CPU = False R/W (0b0)
DISABLE_BT (BLOCK0) Disables Bluetooth = False R/W (0b0)
DIS_CACHE (BLOCK0) Disables cache = False R/W (0b0)
CHIP_CPU_FREQ_LOW (BLOCK0) If set alongside EFUSE_RD_CHIP_CPU_FREQ_RATED; the = False R/W (0b0)
ESP32's max CPU frequency is rated for 160MHz. 24
0MHz otherwise
CHIP_CPU_FREQ_RATED (BLOCK0) If set; the ESP32's maximum CPU frequency has been = True R/W (0b1)
rated
BLK3_PART_RESERVE (BLOCK0) BLOCK3 partially served for ADC calibration data = False R/W (0b0)
CLK8M_FREQ (BLOCK0) 8MHz clock freq override = 51 R/W (0x33)
VOL_LEVEL_HP_INV (BLOCK0) This field stores the voltage level for CPU to run = 0 R/W (0b00)
at 240 MHz; or for flash/PSRAM to run at 80 MHz.0
x0: level 7; 0x1: level 6; 0x2: level 5; 0x3:i
level 4. (RO)
CODING_SCHEME (BLOCK0) Efuse variable block length scheme
= NONE (BLK1-3 len=256 bits) R/W (0b00)
CONSOLE_DEBUG_DISABLE (BLOCK0) Disable ROM BASIC interpreter fallback = True R/W (0b1)
DISABLE_SDIO_HOST (BLOCK0) = False R/W (0b0)
DISABLE_DL_CACHE (BLOCK0) Disable flash cache in UART bootloader = False R/W (0b0)
Flash fuses:
FLASH_CRYPT_CNT (BLOCK0) Flash encryption is enabled if this field has an o = 0 R/W (0b0000000)
dd number of bits set
FLASH_CRYPT_CONFIG (BLOCK0) Flash encryption config (key tweak bits) = 0 R/W (0x0)
Identity fuses:
CHIP_PACKAGE_4BIT (BLOCK0) Chip package identifier #4bit = False R/W (0b0)
CHIP_PACKAGE (BLOCK0) Chip package identifier = 1 R/W (0b001)
CHIP_VER_REV1 (BLOCK0) bit is set to 1 for rev1 silicon = True R/W (0b1)
CHIP_VER_REV2 (BLOCK0) = True R/W (0b1)
WAFER_VERSION_MINOR (BLOCK0) = 0 R/W (0b00)
WAFER_VERSION_MAJOR (BLOCK0) calc WAFER VERSION MAJOR from CHIP_VER_REV1 and CH = 3 R/W (0b011)
IP_VER_REV2 and apb_ctl_date (read only)
PKG_VERSION (BLOCK0) calc Chip package = CHIP_PACKAGE_4BIT << 3 + CHIP_ = 1 R/W (0x1)
PACKAGE (read only)
Jtag fuses:
JTAG_DISABLE (BLOCK0) Disable JTAG = False R/W (0b0)
Mac fuses:
MAC (BLOCK0) MAC address
= 94:b9:7e:5a:6e:58 (CRC 0xe2 OK) R/W
MAC_CRC (BLOCK0) CRC8 for MAC address = 226 R/W (0xe2)
MAC_VERSION (BLOCK3) Version of the MAC field = 0 R/W (0x00)
Security fuses:
UART_DOWNLOAD_DIS (BLOCK0) Disable UART download mode. Valid for ESP32 V3 and = False R/W (0b0)
newer; only
ABS_DONE_0 (BLOCK0) Secure boot V1 is enabled for bootloader image = False R/W (0b0)
ABS_DONE_1 (BLOCK0) Secure boot V2 is enabled for bootloader image = False R/W (0b0)
DISABLE_DL_ENCRYPT (BLOCK0) Disable flash encryption in UART bootloader = False R/W (0b0)
DISABLE_DL_DECRYPT (BLOCK0) Disable flash decryption in UART bootloader = False R/W (0b0)
KEY_STATUS (BLOCK0) Usage of efuse block 3 (reserved) = False R/W (0b0)
SECURE_VERSION (BLOCK3) Secure version for anti-rollback = 0 R/W (0x00000000)
BLOCK1 (BLOCK1) Flash encryption key
= 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W
BLOCK2 (BLOCK2) Security boot key
= 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W
BLOCK3 (BLOCK3) Variable Block 3
= 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W
Spi Pad fuses:
SPI_PAD_CONFIG_HD (BLOCK0) read for SPI_pad_config_hd = 0 R/W (0b00000)
SPI_PAD_CONFIG_CLK (BLOCK0) Override SD_CLK pad (GPIO6/SPICLK) = 0 R/W (0b00000)
SPI_PAD_CONFIG_Q (BLOCK0) Override SD_DATA_0 pad (GPIO7/SPIQ) = 0 R/W (0b00000)
SPI_PAD_CONFIG_D (BLOCK0) Override SD_DATA_1 pad (GPIO8/SPID) = 0 R/W (0b00000)
SPI_PAD_CONFIG_CS0 (BLOCK0) Override SD_CMD pad (GPIO11/SPICS0) = 0 R/W (0b00000)
Vdd fuses:
XPD_SDIO_REG (BLOCK0) read for XPD_SDIO_REG = False R/W (0b0)
XPD_SDIO_TIEH (BLOCK0) If XPD_SDIO_FORCE & XPD_SDIO_REG = 1.8V R/W (0b0)
XPD_SDIO_FORCE (BLOCK0) Ignore MTDI pin (GPIO12) for VDD_SDIO on reset = False R/W (0b0)
Flash voltage (VDD_SDIO) determined by GPIO12 on reset (High for 1.8V, Low/NC for 3.3V)