esp-idf/components/esp_wifi/Kconfig

500 lines
22 KiB
Plaintext

menu "Wi-Fi"
config ESP32_WIFI_SW_COEXIST_ENABLE
bool "Software controls WiFi/Bluetooth coexistence"
depends on BT_ENABLED
default y
help
If enabled, WiFi & Bluetooth coexistence is controlled by software rather than hardware.
Recommended for heavy traffic scenarios. Both coexistence configuration options are
automatically managed, no user intervention is required.
If only Bluetooth is used, it is recommended to disable this option to reduce binary file
size.
config ESP32_WIFI_STATIC_RX_BUFFER_NUM
int "Max number of WiFi static RX buffers"
range 2 25
default 10 if !SPIRAM_TRY_ALLOCATE_WIFI_LWIP
default 16 if SPIRAM_TRY_ALLOCATE_WIFI_LWIP
help
Set the number of WiFi static RX buffers. Each buffer takes approximately 1.6KB of RAM.
The static rx buffers are allocated when esp_wifi_init is called, they are not freed
until esp_wifi_deinit is called.
WiFi hardware use these buffers to receive all 802.11 frames.
A higher number may allow higher throughput but increases memory use. If ESP32_WIFI_AMPDU_RX_ENABLED
is enabled, this value is recommended to set equal or bigger than ESP32_WIFI_RX_BA_WIN in order to
achieve better throughput and compatibility with both stations and APs.
config ESP32_WIFI_DYNAMIC_RX_BUFFER_NUM
int "Max number of WiFi dynamic RX buffers"
range 0 128 if !LWIP_WND_SCALE
range 0 1024 if LWIP_WND_SCALE
default 32
help
Set the number of WiFi dynamic RX buffers, 0 means unlimited RX buffers will be allocated
(provided sufficient free RAM). The size of each dynamic RX buffer depends on the size of
the received data frame.
For each received data frame, the WiFi driver makes a copy to an RX buffer and then delivers
it to the high layer TCP/IP stack. The dynamic RX buffer is freed after the higher layer has
successfully received the data frame.
For some applications, WiFi data frames may be received faster than the application can
process them. In these cases we may run out of memory if RX buffer number is unlimited (0).
If a dynamic RX buffer limit is set, it should be at least the number of static RX buffers.
choice ESP32_WIFI_TX_BUFFER
prompt "Type of WiFi TX buffers"
default ESP32_WIFI_DYNAMIC_TX_BUFFER
help
Select type of WiFi TX buffers:
If "Static" is selected, WiFi TX buffers are allocated when WiFi is initialized and released
when WiFi is de-initialized. The size of each static TX buffer is fixed to about 1.6KB.
If "Dynamic" is selected, each WiFi TX buffer is allocated as needed when a data frame is
delivered to the Wifi driver from the TCP/IP stack. The buffer is freed after the data frame
has been sent by the WiFi driver. The size of each dynamic TX buffer depends on the length
of each data frame sent by the TCP/IP layer.
If PSRAM is enabled, "Static" should be selected to guarantee enough WiFi TX buffers.
If PSRAM is disabled, "Dynamic" should be selected to improve the utilization of RAM.
config ESP32_WIFI_STATIC_TX_BUFFER
bool "Static"
config ESP32_WIFI_DYNAMIC_TX_BUFFER
bool "Dynamic"
depends on !SPIRAM_USE_MALLOC
endchoice
config ESP32_WIFI_TX_BUFFER_TYPE
int
default 0 if ESP32_WIFI_STATIC_TX_BUFFER
default 1 if ESP32_WIFI_DYNAMIC_TX_BUFFER
config ESP32_WIFI_STATIC_TX_BUFFER_NUM
int "Max number of WiFi static TX buffers"
depends on ESP32_WIFI_STATIC_TX_BUFFER
range 1 64
default 16
help
Set the number of WiFi static TX buffers. Each buffer takes approximately 1.6KB of RAM.
The static RX buffers are allocated when esp_wifi_init() is called, they are not released
until esp_wifi_deinit() is called.
For each transmitted data frame from the higher layer TCP/IP stack, the WiFi driver makes a
copy of it in a TX buffer. For some applications especially UDP applications, the upper
layer can deliver frames faster than WiFi layer can transmit. In these cases, we may run out
of TX buffers.
config ESP32_WIFI_CACHE_TX_BUFFER_NUM
int "Max number of WiFi cache TX buffers"
depends on (ESP32_SPIRAM_SUPPORT || ESP32S2_SPIRAM_SUPPORT || ESP32S3_SPIRAM_SUPPORT)
range 16 128
default 32
help
Set the number of WiFi cache TX buffer number.
For each TX packet from uplayer, such as LWIP etc, WiFi driver needs to allocate a static TX
buffer and makes a copy of uplayer packet. If WiFi driver fails to allocate the static TX buffer,
it caches the uplayer packets to a dedicated buffer queue, this option is used to configure the
size of the cached TX queue.
config ESP32_WIFI_DYNAMIC_TX_BUFFER_NUM
int "Max number of WiFi dynamic TX buffers"
depends on ESP32_WIFI_DYNAMIC_TX_BUFFER
range 1 128
default 32
help
Set the number of WiFi dynamic TX buffers. The size of each dynamic TX buffer is not fixed,
it depends on the size of each transmitted data frame.
For each transmitted frame from the higher layer TCP/IP stack, the WiFi driver makes a copy
of it in a TX buffer. For some applications, especially UDP applications, the upper layer
can deliver frames faster than WiFi layer can transmit. In these cases, we may run out of TX
buffers.
config ESP32_WIFI_CSI_ENABLED
bool "WiFi CSI(Channel State Information)"
default n
help
Select this option to enable CSI(Channel State Information) feature. CSI takes about
CONFIG_ESP32_WIFI_STATIC_RX_BUFFER_NUM KB of RAM. If CSI is not used, it is better to disable
this feature in order to save memory.
config ESP32_WIFI_AMPDU_TX_ENABLED
bool "WiFi AMPDU TX"
default y
help
Select this option to enable AMPDU TX feature
config ESP32_WIFI_TX_BA_WIN
int "WiFi AMPDU TX BA window size"
depends on ESP32_WIFI_AMPDU_TX_ENABLED
range 2 32
default 6
help
Set the size of WiFi Block Ack TX window. Generally a bigger value means higher throughput but
more memory. Most of time we should NOT change the default value unless special reason, e.g.
test the maximum UDP TX throughput with iperf etc. For iperf test in shieldbox, the recommended
value is 9~12.
config ESP32_WIFI_AMPDU_RX_ENABLED
bool "WiFi AMPDU RX"
default y
help
Select this option to enable AMPDU RX feature
config ESP32_WIFI_RX_BA_WIN
int "WiFi AMPDU RX BA window size"
depends on ESP32_WIFI_AMPDU_RX_ENABLED
range 2 32
default 6 if !SPIRAM_TRY_ALLOCATE_WIFI_LWIP
default 16 if SPIRAM_TRY_ALLOCATE_WIFI_LWIP
help
Set the size of WiFi Block Ack RX window. Generally a bigger value means higher throughput and better
compatibility but more memory. Most of time we should NOT change the default value unless special
reason, e.g. test the maximum UDP RX throughput with iperf etc. For iperf test in shieldbox, the
recommended value is 9~12. If PSRAM is used and WiFi memory is prefered to allocat in PSRAM first,
the default and minimum value should be 16 to achieve better throughput and compatibility with both
stations and APs.
config ESP32_WIFI_AMSDU_TX_ENABLED
bool "WiFi AMSDU TX"
depends on (ESP32_SPIRAM_SUPPORT || ESP32S2_SPIRAM_SUPPORT || ESP32S3_SPIRAM_SUPPORT)
default n
help
Select this option to enable AMSDU TX feature
config ESP32_WIFI_NVS_ENABLED
bool "WiFi NVS flash"
default y
help
Select this option to enable WiFi NVS flash
choice ESP32_WIFI_TASK_CORE_ID
depends on !FREERTOS_UNICORE
prompt "WiFi Task Core ID"
default ESP32_WIFI_TASK_PINNED_TO_CORE_0
help
Pinned WiFi task to core 0 or core 1.
config ESP32_WIFI_TASK_PINNED_TO_CORE_0
bool "Core 0"
config ESP32_WIFI_TASK_PINNED_TO_CORE_1
bool "Core 1"
endchoice
config ESP32_WIFI_SOFTAP_BEACON_MAX_LEN
int "Max length of WiFi SoftAP Beacon"
range 752 1256
default 752
help
ESP-MESH utilizes beacon frames to detect and resolve root node conflicts (see documentation). However the
default length of a beacon frame can simultaneously hold only five root node identifier structures,
meaning that a root node conflict of up to five nodes can be detected at one time. In the occurence of
more root nodes conflict involving more than five root nodes, the conflict resolution process will detect
five of the root nodes, resolve the conflict, and re-detect more root nodes. This process will repeat
until all root node conflicts are resolved. However this process can generally take a very long time.
To counter this situation, the beacon frame length can be increased such that more root nodes can be
detected simultaneously. Each additional root node will require 36 bytes and should be added ontop of the
default beacon frame length of
752 bytes. For example, if you want to detect 10 root nodes simultaneously, you need to set the beacon
frame length as
932 (752+36*5).
Setting a longer beacon length also assists with debugging as the conflicting root nodes can be identified
more quickly.
config ESP32_WIFI_MGMT_SBUF_NUM
int "WiFi mgmt short buffer number"
range 6 32
default 32
help
Set the number of WiFi management short buffer.
choice ESP32_WIFI_LOG_DEFAULT_LEVEL
bool "WiFi default log level"
default WIFI_LOG_DEFAULT_LEVEL_INFO
help
Specify how much output to see in logs by default.
You can set lower verbosity level at runtime using
esp_log_level_set function.
Note that this setting limits which log statements
are compiled into the program. So setting this to, say,
"Warning" would mean that changing log level to "Debug"
at runtime will not be possible.
config WIFI_LOG_DEFAULT_LEVEL_NONE
bool "No output"
config WIFI_LOG_DEFAULT_LEVEL_ERROR
bool "Error"
config WIFI_LOG_DEFAULT_LEVEL_WARN
bool "Warning"
config WIFI_LOG_DEFAULT_LEVEL_INFO
bool "Info"
config WIFI_LOG_DEFAULT_LEVEL_DEBUG
bool "Debug"
config WIFI_LOG_DEFAULT_LEVEL_VERBOSE
bool "Verbose"
endchoice
config ESP32_WIFI_IRAM_OPT
bool "WiFi IRAM speed optimization"
default n if (BT_ENABLED && ESP32_SPIRAM_SUPPORT)
default y
help
Select this option to place frequently called Wi-Fi library functions in IRAM.
When this option is disabled, more than 10Kbytes of IRAM memory will be saved
but Wi-Fi throughput will be reduced.
config ESP32_WIFI_RX_IRAM_OPT
bool "WiFi RX IRAM speed optimization"
default n if (BT_ENABLED && ESP32_SPIRAM_SUPPORT)
default y
help
Select this option to place frequently called Wi-Fi library RX functions in IRAM.
When this option is disabled, more than 17Kbytes of IRAM memory will be saved
but Wi-Fi performance will be reduced.
config ESP32_WIFI_ENABLE_WPA3_SAE
bool "Enable WPA3-Personal"
default y
depends on WPA_MBEDTLS_CRYPTO
help
Select this option to allow the device to establish a WPA3-Personal connection with eligible AP's.
PMF (Protected Management Frames) is a prerequisite feature for a WPA3 connection, it needs to be
explicitly configured before attempting connection. Please refer to the Wi-Fi Driver API Guide for details.
config ESP_WIFI_SLP_IRAM_OPT
bool "WiFi SLP IRAM speed optimization"
select PM_SLP_DEFAULT_PARAMS_OPT
help
Select this option to place called Wi-Fi library TBTT process and receive beacon functions in IRAM.
Some functions can be put in IRAM either by ESP32_WIFI_IRAM_OPT and ESP32_WIFI_RX_IRAM_OPT, or this one.
If already enabled ESP32_WIFI_IRAM_OPT, the other 7.3KB IRAM memory would be taken by this option.
If already enabled ESP32_WIFI_RX_IRAM_OPT, the other 1.3KB IRAM memory would be taken by this option.
If neither of them are enabled, the other 7.4KB IRAM memory would be taken by this option.
Wi-Fi power-save mode average current would be reduced if this option is enabled.
config ESP_WIFI_SLP_DEFAULT_MIN_ACTIVE_TIME
int "Minimum active time"
range 8 60
default 50
depends on ESP_WIFI_SLP_IRAM_OPT
help
The minimum timeout for waiting to receive data, unit: milliseconds.
config ESP_WIFI_SLP_DEFAULT_MAX_ACTIVE_TIME
int "Maximum keep alive time"
range 10 60
default 10
depends on ESP_WIFI_SLP_IRAM_OPT
help
The maximum time that wifi keep alive, unit: seconds.
config ESP_WIFI_FTM_ENABLE
bool "WiFi FTM"
default n
depends on (IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32C3)
help
Enable feature Fine Timing Measurement for calculating WiFi Round-Trip-Time (RTT).
config ESP_WIFI_FTM_INITIATOR_SUPPORT
bool "FTM Initiator support"
default y
depends on ESP_WIFI_FTM_ENABLE
config ESP_WIFI_FTM_RESPONDER_SUPPORT
bool "FTM Responder support"
default y
depends on ESP_WIFI_FTM_ENABLE
config ESP_WIFI_STA_DISCONNECTED_PM_ENABLE
bool "Power Management for station at disconnected"
help
Select this option to enable power_management for station when disconnected.
Chip will do modem-sleep when rf module is not in use any more.
config ESP_WIFI_SLP_BEACON_LOST_OPT
bool "Wifi sleep optimize when beacon lost"
help
Enable wifi sleep optimization when beacon loss occurs and immediately enter
sleep mode when the WiFi module detects beacon loss.
config ESP_WIFI_SLP_BEACON_LOST_TIMEOUT
int "Beacon loss timeout"
range 5 100
default 10
depends on ESP_WIFI_SLP_BEACON_LOST_OPT
help
Timeout time for close rf phy when beacon loss occurs, Unit: 1024 microsecond.
config ESP_WIFI_SLP_BEACON_LOST_THRESHOLD
int "Maximum number of consecutive lost beacons allowed"
range 0 8
default 3
depends on ESP_WIFI_SLP_BEACON_LOST_OPT
help
Maximum number of consecutive lost beacons allowed, WiFi keeps Rx state when
the number of consecutive beacons lost is greater than the given threshold.
config ESP_WIFI_SLP_PHY_ON_DELTA_EARLY_TIME
int "Delta early time for RF PHY on"
range 0 100
default 2
depends on ESP_WIFI_SLP_BEACON_LOST_OPT
help
Delta early time for rf phy on, When the beacon is lost, the next rf phy on will
be earlier the time specified by the configuration item, Unit: 32 microsecond.
config ESP_WIFI_SLP_PHY_OFF_DELTA_TIMEOUT_TIME
int "Delta timeout time for RF PHY off"
range 0 8
default 2
depends on ESP_WIFI_SLP_BEACON_LOST_OPT
help
Delta timeout time for rf phy off, When the beacon is lost, the next rf phy off will
be delayed for the time specified by the configuration item. Unit: 1024 microsecond.
endmenu # Wi-Fi
menu "PHY"
config ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
bool "Store phy calibration data in NVS"
default y
help
If this option is enabled, NVS will be initialized and calibration data will be loaded from there.
PHY calibration will be skipped on deep sleep wakeup. If calibration data is not found, full calibration
will be performed and stored in NVS. Normally, only partial calibration will be performed.
If this option is disabled, full calibration will be performed.
If it's easy that your board calibrate bad data, choose 'n'.
Two cases for example, you should choose 'n':
1.If your board is easy to be booted up with antenna disconnected.
2.Because of your board design, each time when you do calibration, the result are too unstable.
If unsure, choose 'y'.
menuconfig ESP32_PHY_INIT_DATA_IN_PARTITION
bool "Use a partition to store PHY init data"
default n
help
If enabled, PHY init data will be loaded from a partition.
When using a custom partition table, make sure that PHY data
partition is included (type: 'data', subtype: 'phy').
With default partition tables, this is done automatically.
If PHY init data is stored in a partition, it has to be flashed there,
otherwise runtime error will occur.
If this option is not enabled, PHY init data will be embedded
into the application binary.
If unsure, choose 'n'.
config ESP32_PHY_DEFAULT_INIT_IF_INVALID
bool "Reset default PHY init data if invalid"
default n
depends on ESP32_PHY_INIT_DATA_IN_PARTITION
help
If enabled, PHY init data will be restored to default if
it cannot be verified successfully to avoid endless bootloops.
If unsure, choose 'n'.
if ESP32_PHY_INIT_DATA_IN_PARTITION
config ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
bool "Support multiple PHY init data bin"
depends on ESP32_PHY_INIT_DATA_IN_PARTITION
default n
help
If enabled, the corresponding PHY init data type can be automatically switched
according to the country code. China's PHY init data bin is used by default.
Can be modified by country information in API esp_wifi_set_country().
The priority of switching the PHY init data type is:
1. Country configured by API esp_wifi_set_country()
and the parameter policy is WIFI_COUNTRY_POLICY_MANUAL.
2. Country notified by the connected AP.
3. Country configured by API esp_wifi_set_country()
and the parameter policy is WIFI_COUNTRY_POLICY_AUTO.
config ESP32_MULTIPLE_PHY_DATA_BIN_EMBEDDED
bool "Support embedded multiple phy init data bin to app bin"
depends on ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
default n
help
If enabled, multiple phy init data bin will embedded into app bin
If not enabled, multiple phy init data bin will still leave alone, and need to be flashed by users.
config ESP32_PHY_INIT_DATA_ERROR
bool "Terminate operation when PHY init data error"
depends on ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
default n
help
If enabled, when an error occurs while the PHY init data is updated,
the program will terminate and restart.
If not enabled, the PHY init data will not be updated when an error occurs.
endif
config ESP32_PHY_MAX_WIFI_TX_POWER
int "Max WiFi TX power (dBm)"
range 10 20
default 20
help
Set maximum transmit power for WiFi radio. Actual transmit power for high
data rates may be lower than this setting.
config ESP32_PHY_MAX_TX_POWER
int
default ESP32_PHY_MAX_WIFI_TX_POWER
config ESP32_PHY_MAC_BB_PD
bool "Power down MAC and baseband of Wi-Fi and Bluetooth when PHY is disabled"
depends on (IDF_TARGET_ESP32C3 && FREERTOS_USE_TICKLESS_IDLE)
default n
help
If enabled, the MAC and baseband of Wi-Fi and Bluetooth will be powered
down when PHY is disabled. Enabling this setting reduces power consumption
by a small amount but increases RAM use by approximately 4 KB(Wi-Fi only),
2 KB(Bluetooth only) or 5.3 KB(Wi-Fi + Bluetooth).
config ESP_PHY_ENABLE_USB
bool "Enable USB when phy init"
depends on USB_OTG_SUPPORTED || ESP_CONSOLE_USB_SERIAL_JTAG || ESP_CONSOLE_SECONDARY_USB_SERIAL_JTAG
default y if IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32S3
default n
help
When using USB Serial/JTAG/OTG/CDC, PHY should enable USB, otherwise USB module
can not work properly. Notice: Enabling this configuration option will slightly impact wifi performance.
choice ESP_PHY_CALIBRATION_MODE
prompt "Calibration mode"
default ESP_PHY_RF_CAL_PARTIAL
help
Select PHY calibration mode. During RF initialization, the partial calibration
method is used by default for RF calibration. Full calibration takes about 100ms
more than partial calibration. If boot duration is not critical, it is suggested
to use the full calibration method. No calibration method is only used when the
device wakes up from deep sleep.
config ESP_PHY_RF_CAL_PARTIAL
bool "Calibration partial"
config ESP_PHY_RF_CAL_NONE
bool "Calibration none"
config ESP_PHY_RF_CAL_FULL
bool "Calibration full"
endchoice #ESP_PHY_CALIBRATION_MODE
config ESP_PHY_CALIBRATION_MODE
int
default 0 if ESP_PHY_RF_CAL_PARTIAL
default 1 if ESP_PHY_RF_CAL_NONE
default 2 if ESP_PHY_RF_CAL_FULL
endmenu # PHY