esp-idf/components/wpa_supplicant/src/crypto/crypto.h
kapil.gupta ab784bb53a wpa_supplicant: Port dpp feature from supplicant
Add files required for DPP feature from upstream.
These file expose the functionality to create DPP packets.
Ported crypto layer from openssl to mbedtls.

Interfacing to use these API will be added in seperate commit
2020-04-14 18:53:35 +05:30

1038 lines
32 KiB
C

/*
* WPA Supplicant / wrapper functions for crypto libraries
* Copyright (c) 2004-2009, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*
* This file defines the cryptographic functions that need to be implemented
* for wpa_supplicant and hostapd. When TLS is not used, internal
* implementation of MD5, SHA1, and AES is used and no external libraries are
* required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
* crypto library used by the TLS implementation is expected to be used for
* non-TLS needs, too, in order to save space by not implementing these
* functions twice.
*
* Wrapper code for using each crypto library is in its own file (crypto*.c)
* and one of these files is build and linked in to provide the functions
* defined here.
*/
#ifndef CRYPTO_H
#define CRYPTO_H
#include "utils/common.h"
/**
* md4_vector - MD4 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
/**
* md5_vector - MD5 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
#ifdef CONFIG_FIPS
/**
* md5_vector_non_fips_allow - MD5 hash for data vector (non-FIPS use allowed)
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md5_vector_non_fips_allow(size_t num_elem, const u8 *addr[],
const size_t *len, u8 *mac);
#else /* CONFIG_FIPS */
#define md5_vector_non_fips_allow md5_vector
#endif /* CONFIG_FIPS */
/**
* sha1_vector - SHA-1 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
* @seed: Seed/key for the PRF
* @seed_len: Seed length in bytes
* @x: Buffer for PRF output
* @xlen: Output length in bytes
* Returns: 0 on success, -1 on failure
*
* This function implements random number generation specified in NIST FIPS
* Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
* SHA-1, but has different message padding.
*/
int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
size_t xlen);
/**
* sha256_vector - SHA256 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* des_encrypt - Encrypt one block with DES
* @clear: 8 octets (in)
* @key: 7 octets (in) (no parity bits included)
* @cypher: 8 octets (out)
*/
void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
/**
* aes_encrypt_init - Initialize AES for encryption
* @key: Encryption key
* @len: Key length in bytes (usually 16, i.e., 128 bits)
* Returns: Pointer to context data or %NULL on failure
*/
void * aes_encrypt_init(const u8 *key, size_t len);
/**
* aes_encrypt - Encrypt one AES block
* @ctx: Context pointer from aes_encrypt_init()
* @plain: Plaintext data to be encrypted (16 bytes)
* @crypt: Buffer for the encrypted data (16 bytes)
*/
void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
/**
* aes_encrypt_deinit - Deinitialize AES encryption
* @ctx: Context pointer from aes_encrypt_init()
*/
void aes_encrypt_deinit(void *ctx);
/**
* aes_decrypt_init - Initialize AES for decryption
* @key: Decryption key
* @len: Key length in bytes (usually 16, i.e., 128 bits)
* Returns: Pointer to context data or %NULL on failure
*/
void * aes_decrypt_init(const u8 *key, size_t len);
/**
* aes_decrypt - Decrypt one AES block
* @ctx: Context pointer from aes_encrypt_init()
* @crypt: Encrypted data (16 bytes)
* @plain: Buffer for the decrypted data (16 bytes)
*/
void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
/**
* aes_decrypt_deinit - Deinitialize AES decryption
* @ctx: Context pointer from aes_encrypt_init()
*/
void aes_decrypt_deinit(void *ctx);
enum crypto_hash_alg {
CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256
};
struct crypto_hash;
/**
* crypto_hash_init - Initialize hash/HMAC function
* @alg: Hash algorithm
* @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
* @key_len: Length of the key in bytes
* Returns: Pointer to hash context to use with other hash functions or %NULL
* on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
size_t key_len);
/**
* crypto_hash_update - Add data to hash calculation
* @ctx: Context pointer from crypto_hash_init()
* @data: Data buffer to add
* @len: Length of the buffer
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
/**
* crypto_hash_finish - Complete hash calculation
* @ctx: Context pointer from crypto_hash_init()
* @hash: Buffer for hash value or %NULL if caller is just freeing the hash
* context
* @len: Pointer to length of the buffer or %NULL if caller is just freeing the
* hash context; on return, this is set to the actual length of the hash value
* Returns: 0 on success, -1 if buffer is too small (len set to needed length),
* or -2 on other failures (including failed crypto_hash_update() operations)
*
* This function calculates the hash value and frees the context buffer that
* was used for hash calculation.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
enum crypto_cipher_alg {
CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
};
struct crypto_cipher;
/**
* crypto_cipher_init - Initialize block/stream cipher function
* @alg: Cipher algorithm
* @iv: Initialization vector for block ciphers or %NULL for stream ciphers
* @key: Cipher key
* @key_len: Length of key in bytes
* Returns: Pointer to cipher context to use with other cipher functions or
* %NULL on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len);
/**
* crypto_cipher_encrypt - Cipher encrypt
* @ctx: Context pointer from crypto_cipher_init()
* @plain: Plaintext to cipher
* @crypt: Resulting ciphertext
* @len: Length of the plaintext
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
const u8 *plain, u8 *crypt, size_t len);
/**
* crypto_cipher_decrypt - Cipher decrypt
* @ctx: Context pointer from crypto_cipher_init()
* @crypt: Ciphertext to decrypt
* @plain: Resulting plaintext
* @len: Length of the cipher text
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
const u8 *crypt, u8 *plain, size_t len);
/**
* crypto_cipher_decrypt - Free cipher context
* @ctx: Context pointer from crypto_cipher_init()
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_cipher_deinit(struct crypto_cipher *ctx);
struct crypto_public_key;
struct crypto_private_key;
/**
* crypto_public_key_import - Import an RSA public key
* @key: Key buffer (DER encoded RSA public key)
* @len: Key buffer length in bytes
* Returns: Pointer to the public key or %NULL on failure
*
* This function can just return %NULL if the crypto library supports X.509
* parsing. In that case, crypto_public_key_from_cert() is used to import the
* public key from a certificate.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
/**
* crypto_private_key_import - Import an RSA private key
* @key: Key buffer (DER encoded RSA private key)
* @len: Key buffer length in bytes
* @passwd: Key encryption password or %NULL if key is not encrypted
* Returns: Pointer to the private key or %NULL on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_private_key * crypto_private_key_import(const u8 *key,
size_t len,
const char *passwd);
/**
* crypto_public_key_from_cert - Import an RSA public key from a certificate
* @buf: DER encoded X.509 certificate
* @len: Certificate buffer length in bytes
* Returns: Pointer to public key or %NULL on failure
*
* This function can just return %NULL if the crypto library does not support
* X.509 parsing. In that case, internal code will be used to parse the
* certificate and public key is imported using crypto_public_key_import().
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
size_t len);
/**
* crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
* @key: Public key
* @in: Plaintext buffer
* @inlen: Length of plaintext buffer in bytes
* @out: Output buffer for encrypted data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_public_key_encrypt_pkcs1_v15(
struct crypto_public_key *key, const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
* @key: Private key
* @in: Encrypted buffer
* @inlen: Length of encrypted buffer in bytes
* @out: Output buffer for encrypted data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_private_key_decrypt_pkcs1_v15(
struct crypto_private_key *key, const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
* @key: Private key from crypto_private_key_import()
* @in: Plaintext buffer
* @inlen: Length of plaintext buffer in bytes
* @out: Output buffer for encrypted (signed) data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_public_key_free - Free public key
* @key: Public key
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_public_key_free(struct crypto_public_key *key);
/**
* crypto_private_key_free - Free private key
* @key: Private key from crypto_private_key_import()
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_private_key_free(struct crypto_private_key *key);
/**
* crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
* @key: Public key
* @crypt: Encrypted signature data (using the private key)
* @crypt_len: Encrypted signature data length
* @plain: Buffer for plaintext (at least crypt_len bytes)
* @plain_len: Plaintext length (max buffer size on input, real len on output);
* Returns: 0 on success, -1 on failure
*/
int __must_check crypto_public_key_decrypt_pkcs1(
struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
u8 *plain, size_t *plain_len);
/**
* crypto_global_init - Initialize crypto wrapper
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_global_init(void);
/**
* crypto_global_deinit - Deinitialize crypto wrapper
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_global_deinit(void);
/**
* crypto_mod_exp - Modular exponentiation of large integers
* @base: Base integer (big endian byte array)
* @base_len: Length of base integer in bytes
* @power: Power integer (big endian byte array)
* @power_len: Length of power integer in bytes
* @modulus: Modulus integer (big endian byte array)
* @modulus_len: Length of modulus integer in bytes
* @result: Buffer for the result
* @result_len: Result length (max buffer size on input, real len on output)
* Returns: 0 on success, -1 on failure
*
* This function calculates result = base ^ power mod modulus. modules_len is
* used as the maximum size of modulus buffer. It is set to the used size on
* success.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
const u8 *power, size_t power_len,
const u8 *modulus, size_t modulus_len,
u8 *result, size_t *result_len);
/**
* rc4_skip - XOR RC4 stream to given data with skip-stream-start
* @key: RC4 key
* @keylen: RC4 key length
* @skip: number of bytes to skip from the beginning of the RC4 stream
* @data: data to be XOR'ed with RC4 stream
* @data_len: buf length
* Returns: 0 on success, -1 on failure
*
* Generate RC4 pseudo random stream for the given key, skip beginning of the
* stream, and XOR the end result with the data buffer to perform RC4
* encryption/decryption.
*/
int rc4_skip(const u8 *key, size_t keylen, size_t skip,
u8 *data, size_t data_len);
/**
* struct crypto_bignum - bignum
*
* Internal data structure for bignum implementation. The contents is specific
* to the used crypto library.
*/
struct crypto_bignum;
/**
* struct crypto_key - key
*
* Internal data structure for ssl key. The contents is specific
* to the used crypto library.
*/
struct crypto_key;
/**
* crypto_bignum_init - Allocate memory for bignum
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init(void);
/**
* crypto_bignum_init_set - Allocate memory for bignum and set the value
* @buf: Buffer with unsigned binary value
* @len: Length of buf in octets
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
/**
* crypto_bignum_deinit - Free bignum
* @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
* @clear: Whether to clear the value from memory
*/
void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
/**
* crypto_bignum_to_bin - Set binary buffer to unsigned bignum
* @a: Bignum
* @buf: Buffer for the binary number
* @len: Length of @buf in octets
* @padlen: Length in octets to pad the result to or 0 to indicate no padding
* Returns: Number of octets written on success, -1 on failure
*/
int crypto_bignum_to_bin(const struct crypto_bignum *a,
u8 *buf, size_t buflen, size_t padlen);
/**
* crypto_bignum_add - c = a + b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a + b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_add(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_mod - c = a % b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a % b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_mod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
* @a: Bignum; base
* @b: Bignum; exponent
* @c: Bignum; modulus
* @d: Bignum; used to store the result of a^b (mod c)
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_exptmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_inverse(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_sub - c = a - b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a - b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_sub(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_div - c = a / b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a / b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_div(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_mulmod - d = a * b (mod c)
* @a: Bignum
* @b: Bignum
* @c: Bignum
* @d: Bignum; used to store the result of (a * b) % c
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_mulmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_cmp - Compare two bignums
* @a: Bignum
* @b: Bignum
* Returns: -1 if a < b, 0 if a == b, or 1 if a > b
*/
int crypto_bignum_cmp(const struct crypto_bignum *a,
const struct crypto_bignum *b);
/**
* crypto_bignum_bits - Get size of a bignum in bits
* @a: Bignum
* Returns: Number of bits in the bignum
*/
int crypto_bignum_bits(const struct crypto_bignum *a);
/**
* crypto_bignum_is_zero - Is the given bignum zero
* @a: Bignum
* Returns: 1 if @a is zero or 0 if not
*/
int crypto_bignum_is_zero(const struct crypto_bignum *a);
/**
* crypto_bignum_is_one - Is the given bignum one
* @a: Bignum
* Returns: 1 if @a is one or 0 if not
*/
int crypto_bignum_is_one(const struct crypto_bignum *a);
/**
* crypto_bignum_legendre - Compute the Legendre symbol (a/p)
* @a: Bignum
* @p: Bignum
* Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
*/
int crypto_bignum_legendre(const struct crypto_bignum *a,
const struct crypto_bignum *p);
/**
* struct crypto_ec - Elliptic curve context
*
* Internal data structure for EC implementation. The contents is specific
* to the used crypto library.
*/
struct crypto_ec;
/**
* crypto_ec_init - Initialize elliptic curve context
* @group: Identifying number for the ECC group (IANA "Group Description"
* attribute registrty for RFC 2409)
* Returns: Pointer to EC context or %NULL on failure
*/
struct crypto_ec * crypto_ec_init(int group);
/**
* crypto_ec_deinit - Deinitialize elliptic curve context
* @e: EC context from crypto_ec_init()
*/
void crypto_ec_deinit(struct crypto_ec *e);
/**
* crypto_ec_prime_len - Get length of the prime in octets
* @e: EC context from crypto_ec_init()
* Returns: Length of the prime defining the group
*/
size_t crypto_ec_prime_len(struct crypto_ec *e);
/**
* crypto_ec_prime_len_bits - Get length of the prime in bits
* @e: EC context from crypto_ec_init()
* Returns: Length of the prime defining the group in bits
*/
size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
/**
* crypto_ec_get_prime - Get prime defining an EC group
* @e: EC context from crypto_ec_init()
* Returns: Prime (bignum) defining the group
*/
const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
/**
* crypto_ec_get_order - Get order of an EC group
* @e: EC context from crypto_ec_init()
* Returns: Order (bignum) of the group
*/
const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
/**
* struct crypto_ec_point - Elliptic curve point
*
* Internal data structure for EC implementation to represent a point. The
* contents is specific to the used crypto library.
*/
struct crypto_ec_point;
/**
* crypto_ec_point_init - Initialize data for an EC point
* @e: EC context from crypto_ec_init()
* Returns: Pointer to EC point data or %NULL on failure
*/
struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
/**
* crypto_ec_point_deinit - Deinitialize EC point data
* @p: EC point data from crypto_ec_point_init()
* @clear: Whether to clear the EC point value from memory
*/
void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
/**
* crypto_ec_point_to_bin - Write EC point value as binary data
* @e: EC context from crypto_ec_init()
* @p: EC point data from crypto_ec_point_init()
* @x: Buffer for writing the binary data for x coordinate or %NULL if not used
* @y: Buffer for writing the binary data for y coordinate or %NULL if not used
* Returns: 0 on success, -1 on failure
*
* This function can be used to write an EC point as binary data in a format
* that has the x and y coordinates in big endian byte order fields padded to
* the length of the prime defining the group.
*/
int crypto_ec_point_to_bin(struct crypto_ec *e,
const struct crypto_ec_point *point, u8 *x, u8 *y);
/**
* crypto_ec_point_from_bin - Create EC point from binary data
* @e: EC context from crypto_ec_init()
* @val: Binary data to read the EC point from
* Returns: Pointer to EC point data or %NULL on failure
*
* This function readers x and y coordinates of the EC point from the provided
* buffer assuming the values are in big endian byte order with fields padded to
* the length of the prime defining the group.
*/
struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
const u8 *val);
/**
* crypto_bignum_add - c = a + b
* @e: EC context from crypto_ec_init()
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a + b
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
const struct crypto_ec_point *b,
struct crypto_ec_point *c);
/**
* crypto_bignum_mul - res = b * p
* @e: EC context from crypto_ec_init()
* @p: EC point
* @b: Bignum
* @res: EC point; used to store the result of b * p
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
const struct crypto_bignum *b,
struct crypto_ec_point *res);
/**
* crypto_ec_point_invert - Compute inverse of an EC point
* @e: EC context from crypto_ec_init()
* @p: EC point to invert (and result of the operation)
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
/**
* crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
* @e: EC context from crypto_ec_init()
* @p: EC point to use for the returning the result
* @x: x coordinate
* @y_bit: y-bit (0 or 1) for selecting the y value to use
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
struct crypto_ec_point *p,
const struct crypto_bignum *x, int y_bit);
/**
* crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
* @e: EC context from crypto_ec_init()
* @x: x coordinate
* Returns: y^2 on success, %NULL failure
*/
struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
const struct crypto_bignum *x);
/**
* crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
* @e: EC context from crypto_ec_init()
* @p: EC point
* Returns: 1 if the specified EC point is the neutral element of the group or
* 0 if not
*/
int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
const struct crypto_ec_point *p);
/**
* crypto_ec_point_is_on_curve - Check whether EC point is on curve
* @e: EC context from crypto_ec_init()
* @p: EC point
* Returns: 1 if the specified EC point is on the curve or 0 if not
*/
int crypto_ec_point_is_on_curve(struct crypto_ec *e,
const struct crypto_ec_point *p);
/**
* crypto_ec_point_cmp - Compare two EC points
* @e: EC context from crypto_ec_init()
* @a: EC point
* @b: EC point
* Returns: 0 on equal, non-zero otherwise
*/
int crypto_ec_point_cmp(const struct crypto_ec *e,
const struct crypto_ec_point *a,
const struct crypto_ec_point *b);
/**
* crypto_ec_get_publickey_buf - Write EC public key to buffer
* @key: crypto key
* @key_buf: key buffer
* @len: length of buffer
* Returns: 0 on success, non-zero otherwise
*/
int crypto_ec_get_publickey_buf(struct crypto_key *key, u8 *key_buf, int len);
/**
* crypto_ec_get_group_from_key - Write EC group from key
* @key: crypto key
* Returns: EC group
*/
struct crypto_ec_group *crypto_ec_get_group_from_key(struct crypto_key *key);
/**
* crypto_ec_get_private_key - Get EC private key (in bignum format)
* @key: crypto key
* Returns: Private key
*/
struct crypto_bignum *crypto_ec_get_private_key(struct crypto_key *key);
/**
* crypto_ec_get_key - Read key from character stream
* @privkey: Private key
* @privkey_len: private key len
* Returns: Crypto key
*/
struct crypto_key *crypto_ec_get_key(const u8 *privkey, size_t privkey_len);
/**
* crypto_ec_get_mbedtls_to_nist_group_id - get nist group from mbedtls internal group
* @id: mbedtls group
* Returns: NIST group
*/
unsigned int crypto_ec_get_mbedtls_to_nist_group_id(int id);
/**
* crypto_ec_get_curve_id - get curve id from ec group
* @group: EC group
* Returns: curve ID
*/
int crypto_ec_get_curve_id(const struct crypto_ec_group *group);
/**
* crypto_ecdh: crypto ecdh
* @key_own: own key
* @key_peer: peer key
* @secret: secret
* @secret_len: secret len
* Returns: 0 if success else negative value
*/
int crypto_ecdh(struct crypto_key *key_own, struct crypto_key *key_peer,
u8 *secret, size_t *secret_len);
/**
* crypto_ecdsa_get_sign: get crypto ecdsa signed hash
* @hash: signed hash
* @r: ecdsa r
* @s: ecdsa s
* @csign: csign
* @hash_len: length of hash
* Return: 0 if success else negative value
*/
int crypto_ecdsa_get_sign(unsigned char *hash,
const struct crypto_bignum *r, const struct crypto_bignum *s,
struct crypto_key *csign, int hash_len);
/**
* crypto_edcsa_sign_verify: verify crypto ecdsa signed hash
* @hash: signed hash
* @r: ecdsa r
* @s: ecdsa s
* @csign: csign
* @hlen: length of hash
* Return: 0 if success else negative value
*/
int crypto_edcsa_sign_verify(const unsigned char *hash, const struct crypto_bignum *r,
const struct crypto_bignum *s, struct crypto_key *csign, int hlen);
/**
* crypto_ec_parse_subpub_key: get EC key context from sub public key
* @p: data
* @len: data len
* Return: crypto_key
*/
struct crypto_key *crypto_ec_parse_subpub_key(const unsigned char *p, size_t len);
/**
* crypto_is_ec_key: check whether a key is EC key or not
* @key: crypto key
* Return: true if key else false
*/
int crypto_is_ec_key(struct crypto_key *key);
/**
* crypto_ec_gen_keypair: generate crypto ec keypair
* @ike_group: grpup
* Return: crypto key
*/
struct crypto_key * crypto_ec_gen_keypair(u16 ike_group);
/**
* crypto_ec_write_pub_key: return public key in charater buffer
* @key: crypto key
* @der_len: buffer len
* Return: public key buffer
*/
int crypto_ec_write_pub_key(struct crypto_key *key, unsigned char **key_buf);
/**
* crypto_ec_set_pubkey_point: set bignum point on ec curve
* @group: ec group
* @buf: x,y coordinate
* @len: length of x and y coordiate
* Return : crypto key
*/
struct crypto_key * crypto_ec_set_pubkey_point(const struct crypto_ec_group *group,
const u8 *buf, size_t len);
/**
* crypto_ec_free_key: free crypto key
* Return : None
*/
void crypto_ec_free_key(struct crypto_key *key);
/**
* crypto_debug_print_ec_key: print ec key
* @title: title
* @key: crypto key
* Return: None
*/
void crypto_debug_print_ec_key(const char *title, struct crypto_key *key);
/**
* crypto_ec_get_public_key: Public key from crypto key
* @key: crypto key
* Return : Public key
*/
struct crypto_ec_point *crypto_ec_get_public_key(struct crypto_key *key);
/**
* crypto_get_order: free crypto key
* Return : None
*/
int crypto_get_order(struct crypto_ec_group *group, struct crypto_bignum *x);
/**
* crypto_bignum_addmod: a = (b + c) mod d
* Return : 0 in success
*/
int crypto_bignum_addmod(struct crypto_bignum *a,
struct crypto_bignum *b,
struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_ec_get_affine_coordinates : get affine corrdinate of ec curve
* @e: ec curve
* @pt: point
* @x: x coordinate
* @y: y coordinate
* Return : 0 if success
*/
int crypto_ec_get_affine_coordinates(struct crypto_ec *e, struct crypto_ec_point *pt,
struct crypto_bignum *x, struct crypto_bignum *y);
/**
* crypto_ec_get_group_byname: get ec curve group by name
* @name: ec curve name
* Return : EC group
*/
struct crypto_ec_group *crypto_ec_get_group_byname(const char *name);
/**
* crypto_key_compare: check whether two keys belong to same
* Return : 1 if yes else 0
*/
int crypto_key_compare(struct crypto_key *key1, struct crypto_key *key2);
/*
* crypto_write_pubkey_der: get public key in der format
* @csign: key
* @key_buf: key buffer in charater format
* Return : len of char buffer if success
*/
int crypto_write_pubkey_der(struct crypto_key *csign, unsigned char **key_buf);
/**
* crypto_free_buffer: free buffer allocated by crypto API
* @buf: buffer pointer
* Return : None
*/
void crypto_free_buffer(unsigned char *buf);
/**
* @crypto_ec_get_priv_key_der: get private key in der format
* @key: key structure
* @key_data: key data in charater buffer
* @key_len = key lenght of charater buffer
* Return : 0 if success
*/
int crypto_ec_get_priv_key_der(struct crypto_key *key, unsigned char **key_data, int *key_len);
/**
* crypto_bignum_to_string: get big number in ascii format
* @a: big number
* @buf: buffer in which number will written to
* @buflen: buffer length
* @padlen: padding length
* Return : 0 if success
*/
int crypto_bignum_to_string(const struct crypto_bignum *a,
u8 *buf, size_t buflen, size_t padlen);
#endif /* CRYPTO_H */