esp-idf/components/mbedtls/port/esp32s2/aes.c
Mahavir Jain 0d208aabab mbedtls: esp32s2: check and reallocate output buffer if its from non-DMA range
Earlier check was for only input buffer but it is quite likely to have
output buffer also from non-DMA memory range and hence requirement to
reallocate and then copy data from AES engine.
2020-05-14 13:12:26 +00:00

1525 lines
42 KiB
C

/**
* \brief AES block cipher, ESP32-S2 hardware accelerated version
* Based on mbedTLS FIPS-197 compliant version.
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
*
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
#include <stdio.h>
#include <string.h>
#include <sys/lock.h>
#include "mbedtls/aes.h"
#include "esp32s2/aes.h"
#include "esp32s2/gcm.h"
#include "soc/cpu.h"
#include "soc/dport_reg.h"
#include "soc/hwcrypto_reg.h"
#include "soc/crypto_dma_reg.h"
#include "soc/periph_defs.h"
#include "esp32s2/rom/lldesc.h"
#include "esp32s2/rom/cache.h"
#include "esp_intr_alloc.h"
#include "driver/periph_ctrl.h"
#include "esp_log.h"
#include "soc/lldesc.h"
#include "esp_heap_caps.h"
#include "sys/param.h"
#include "esp_pm.h"
#include "esp_crypto_lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#define AES_BLOCK_BYTES 16
#define IV_WORDS 4
/* Max size of each chunk to process when output buffer is in unaligned external ram
must be a multiple of block size
*/
#define AES_MAX_CHUNK_WRITE_SIZE 1600
/* Input over this length will yield and wait for interrupt instead of
busy-waiting, 30000 bytes is approx 0.5 ms */
#define AES_DMA_INTR_TRIG_LEN 2000
#define ESP_PUT_BE64(a, val) \
do { \
*(uint64_t*)(a) = __builtin_bswap64( (uint64_t)(val) ); \
} while (0)
/* DMA AES working modes*/
typedef enum {
ESP_AES_BLOCK_MODE_ECB = 0,
ESP_AES_BLOCK_MODE_CBC,
ESP_AES_BLOCK_MODE_OFB,
ESP_AES_BLOCK_MODE_CTR,
ESP_AES_BLOCK_MODE_CFB8,
ESP_AES_BLOCK_MODE_CFB128,
ESP_AES_BLOCK_MODE_GCM,
} esp_aes_mode_t;
#if defined(CONFIG_MBEDTLS_AES_USE_INTERRUPT)
static SemaphoreHandle_t op_complete_sem;
#if defined(CONFIG_PM_ENABLE)
static esp_pm_lock_handle_t s_pm_cpu_lock;
static esp_pm_lock_handle_t s_pm_sleep_lock;
#endif
#endif
static const char *TAG = "esp-aes";
static inline bool valid_key_length(const esp_aes_context *ctx)
{
return ctx->key_bytes == 128 / 8 || ctx->key_bytes == 192 / 8 || ctx->key_bytes == 256 / 8;
}
void esp_aes_acquire_hardware( void )
{
/* Need to lock DMA since it is shared with SHA block */
esp_crypto_dma_lock_acquire();
/* Enable AES hardware */
periph_module_enable(PERIPH_AES_DMA_MODULE);
}
/* Function to disable AES and Crypto DMA clocks and release locks */
void esp_aes_release_hardware( void )
{
/* Disable AES hardware */
periph_module_disable(PERIPH_AES_DMA_MODULE);
esp_crypto_dma_lock_release();
}
/* Function to init AES context to zero */
void esp_aes_init( esp_aes_context *ctx )
{
if ( ctx == NULL ) {
return;
}
bzero( ctx, sizeof( esp_aes_context ) );
}
/* Function to clear AES context */
void esp_aes_free( esp_aes_context *ctx )
{
if ( ctx == NULL ) {
return;
}
bzero( ctx, sizeof( esp_aes_context ) );
}
/*
* AES key schedule (same for encryption or decryption, as hardware handles schedule)
*
*/
int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
unsigned int keybits )
{
if (keybits != 128 && keybits != 192 && keybits != 256) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
ctx->key_bytes = keybits / 8;
memcpy(ctx->key, key, ctx->key_bytes);
ctx->key_in_hardware = 0;
return 0;
}
/*
* Helper function to copy key from esp_aes_context buffer
* to hardware key registers.
*
* Call only while holding esp_aes_acquire_hardware().
*/
static void esp_aes_setkey_hardware( esp_aes_context *ctx, int crypt_mode)
{
const uint32_t MODE_DECRYPT_BIT = 4;
unsigned mode_reg_base = (crypt_mode == ESP_AES_ENCRYPT) ? 0 : MODE_DECRYPT_BIT;
ctx->key_in_hardware = 0;
for (int i = 0; i < ctx->key_bytes / 4; ++i) {
REG_WRITE(AES_KEY_BASE + i * 4, *(((uint32_t *)ctx->key) + i));
ctx->key_in_hardware += 4;
}
REG_WRITE(AES_MODE_REG, mode_reg_base + ((ctx->key_bytes / 8) - 2));
/* Fault injection check: all words of key data should have been written to hardware */
if (ctx->key_in_hardware < 16
|| ctx->key_in_hardware != ctx->key_bytes) {
abort();
}
}
/*
* Sets the AES DMA block mode (ECB, CBC, CFB, OFB, GCM, CTR)
* and intializes the required registers for that working mode
*/
static inline void esp_aes_mode_init(esp_aes_mode_t mode)
{
/* Set the algorithm mode CBC, CFB ... */
REG_WRITE(AES_BLOCK_MODE_REG, mode);
/* Presently hard-coding the INC function to 32 bit */
if (mode == ESP_AES_BLOCK_MODE_CTR) {
REG_WRITE(AES_INC_SEL_REG, 0);
}
}
/*
* Write IV to hardware iv registers
*/
static inline void esp_aes_set_iv(uint8_t *iv)
{
uint32_t *iv_words = (uint32_t*)iv;
uint32_t *reg_addr_buf = (uint32_t *)(AES_IV_BASE);
for (int i = 0; i<IV_WORDS; i++ ) {
REG_WRITE(&reg_addr_buf[i], iv_words[i]);
}
}
/*
* Read IV from hardware iv registers
*/
static inline void esp_aes_get_iv(uint8_t *iv)
{
esp_dport_access_read_buffer((uint32_t*)iv, AES_IV_BASE, IV_WORDS);
}
#if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
static IRAM_ATTR void esp_aes_complete_isr(void *arg)
{
BaseType_t higher_woken;
REG_WRITE(AES_INT_CLR_REG, 1);
xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
if (higher_woken) {
portYIELD_FROM_ISR();
}
}
static esp_err_t esp_aes_isr_initialise( void )
{
REG_WRITE(AES_INT_CLR_REG, 1);
REG_WRITE(AES_INT_ENA_REG, 1);
if (op_complete_sem == NULL) {
op_complete_sem = xSemaphoreCreateBinary();
if (op_complete_sem == NULL) {
ESP_LOGE(TAG, "Failed to create intr semaphore");
return ESP_FAIL;
}
esp_intr_alloc(ETS_AES_INTR_SOURCE, 0, esp_aes_complete_isr, NULL, NULL);
}
/* AES is clocked proportionally to CPU clock, take power management lock */
#ifdef CONFIG_PM_ENABLE
if (s_pm_cpu_lock == NULL) {
if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "aes_sleep", &s_pm_sleep_lock) != ESP_OK) {
ESP_LOGE(TAG, "Failed to create PM sleep lock");
return ESP_FAIL;
}
if (esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "aes_cpu", &s_pm_cpu_lock) != ESP_OK) {
ESP_LOGE(TAG, "Failed to create PM CPU lock");
return ESP_FAIL;
}
}
esp_pm_lock_acquire(s_pm_cpu_lock);
esp_pm_lock_acquire(s_pm_sleep_lock);
#endif
return ESP_OK;
}
#endif // CONFIG_MBEDTLS_AES_USE_INTERRUPT
/* Wait for AES hardware block operation to complete */
static void esp_aes_dma_wait_complete(bool use_intr, lldesc_t *output_desc)
{
volatile uint32_t dma_done;
#if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
if (use_intr) {
if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
/* indicates a fundamental problem with driver */
ESP_LOGE("AES", "Timed out waiting for completion of AES Interrupt");
abort();
}
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_cpu_lock);
esp_pm_lock_release(s_pm_sleep_lock);
#endif // CONFIG_PM_ENABLE
}
#endif
/* Checking this if interrupt is used also, to avoid
issues with AES fault injection
*/
while (REG_READ(AES_STATE_REG) != AES_STATE_DONE) {
}
/* Wait for DMA write operation to complete */
while (1) {
dma_done = REG_READ(CRYPTO_DMA_INT_RAW_REG);
// Wait for ownership of buffer to be transferred back to CPU
if ( ((dma_done & INT_RAW_IN_SUC_EOF) == INT_RAW_IN_SUC_EOF) && (output_desc->owner == 0) ) {
break;
}
}
}
/* Init DMA related registers for AES operation */
static void esp_aes_dma_init(lldesc_t *input, lldesc_t *output)
{
/* Enable DMA mode */
REG_WRITE(AES_DMA_ENABLE_REG, 1);
/* Reset DMA */
SET_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_IN_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
CLEAR_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_IN_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
/* Set DMA for AES Use */
REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 0);
/* Set descriptors */
CLEAR_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_ADDR);
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(input))&OUT_LINK_REG_OUTLINK_ADDR);
CLEAR_PERI_REG_MASK(CRYPTO_DMA_IN_LINK_REG, IN_LINK_REG_INLINK_ADDR);
SET_PERI_REG_MASK(CRYPTO_DMA_IN_LINK_REG, ((uint32_t)(output))&IN_LINK_REG_INLINK_ADDR);
/* Start transfer */
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_START);
SET_PERI_REG_MASK(CRYPTO_DMA_IN_LINK_REG, IN_LINK_REG_INLINK_START);
}
static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out);
/* Output buffers in external ram needs to be 16-byte aligned and DMA cant access input in the iCache mem range,
reallocate them into internal memory and encrypt in chunks to avoid
having to malloc too big of a buffer
*/
static int esp_aes_process_dma_ext_ram(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out, bool realloc_input, bool realloc_output)
{
size_t chunk_len;
int ret = 0;
int offset = 0;
unsigned char *input_buf = NULL;
unsigned char *output_buf = NULL;
const unsigned char *dma_input;
chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len);
if (realloc_input) {
input_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA);
if (input_buf == NULL) {
ESP_LOGE(TAG, "Failed to allocate memory");
ret = -1;
goto cleanup;
}
}
if (realloc_output) {
output_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA);
if (output_buf == NULL) {
ESP_LOGE(TAG, "Failed to allocate memory");
ret = -1;
goto cleanup;
}
} else {
output_buf = output;
}
while (len) {
chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len);
/* If input needs realloc then copy it, else use the input with offset*/
if (realloc_input) {
memcpy(input_buf, input + offset, chunk_len);
dma_input = input_buf;
} else {
dma_input = input + offset;
}
if (esp_aes_process_dma(ctx, dma_input, output_buf, chunk_len, stream_out) != 0) {
ret = -1;
goto cleanup;
}
if (realloc_output) {
memcpy(output + offset, output_buf, chunk_len);
} else {
output_buf = output + offset + chunk_len;
}
len -= chunk_len;
offset += chunk_len;
}
cleanup:
if (realloc_input) {
free(input_buf);
}
if (realloc_output) {
free(output_buf);
}
return ret;
}
/* Encrypt/decrypt the input using DMA */
static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out)
{
lldesc_t stream_in_desc, stream_out_desc;
lldesc_t *in_desc_head, *out_desc_head;
lldesc_t *block_desc = NULL, *block_in_desc, *block_out_desc;
size_t lldesc_num;
uint8_t stream_in[16] = {};
unsigned stream_bytes = len % AES_BLOCK_BYTES; // bytes which aren't in a full block
unsigned block_bytes = len - stream_bytes; // bytes which are in a full block
unsigned char *non_icache_input = NULL;
unsigned blocks = (block_bytes / AES_BLOCK_BYTES) + ((stream_bytes > 0) ? 1 : 0);
bool use_intr = false;
bool input_needs_realloc = false;
bool output_needs_realloc = false;
int ret = 0;
assert(len > 0); // caller shouldn't ever have len set to zero
assert(stream_bytes == 0 || stream_out != NULL); // stream_out can be NULL if we're processing full block(s)
/* If no key is written to hardware yet, either the user hasn't called
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
know which mode to use - or a fault skipped the
key write to hardware. Treat this as a fatal error and zero the output block.
*/
if (ctx->key_in_hardware != ctx->key_bytes) {
bzero(output, len);
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
}
if (block_bytes > 0) {
/* Flush cache if input in external ram */
#if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
if (esp_ptr_external_ram(input)) {
Cache_WriteBack_All();
}
if (esp_ptr_external_ram(output)) {
if (((intptr_t)(output) & 0xF) != 0) {
// Non aligned ext-mem buffer
output_needs_realloc = true;
}
}
#endif
/* DMA cannot access memory in the iCache range, copy input to internal ram */
if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input)) {
input_needs_realloc = true;
}
if (!esp_ptr_dma_ext_capable(output) && !esp_ptr_dma_capable(output)) {
output_needs_realloc = true;
}
/* If either input or output is unaccessible to the DMA then they need to be reallocated */
if (input_needs_realloc || output_needs_realloc) {
return esp_aes_process_dma_ext_ram(ctx, input, output, len, stream_out, input_needs_realloc, output_needs_realloc);
}
/* Set up dma descriptors for input and output */
lldesc_num = lldesc_get_required_num(block_bytes);
/* Allocate both in and out descriptors to save a malloc/free per function call */
block_desc = heap_caps_malloc(sizeof(lldesc_t) * lldesc_num * 2, MALLOC_CAP_DMA);
if (block_desc == NULL) {
ESP_LOGE(TAG, "Failed to allocate memory");
ret = -1;
goto cleanup;
}
block_in_desc = block_desc;
block_out_desc = block_desc + lldesc_num;
lldesc_setup_link(block_desc, input, block_bytes, 0);
lldesc_setup_link(block_desc + lldesc_num, output, block_bytes, 0);
}
/* Any leftover bytes which are appended as an additional DMA list */
if (stream_bytes > 0) {
memcpy(stream_in, input + block_bytes, stream_bytes);
lldesc_setup_link(&stream_in_desc, stream_in, AES_BLOCK_BYTES, 0);
lldesc_setup_link(&stream_out_desc, stream_out, AES_BLOCK_BYTES, 0);
if (block_bytes > 0) {
/* Link with block descriptors*/
block_in_desc[lldesc_num - 1].empty = (uint32_t)&stream_in_desc;
block_out_desc[lldesc_num - 1].empty = (uint32_t)&stream_out_desc;
}
}
// block buffers are sent to DMA first, unless there aren't any
in_desc_head = (block_bytes > 0) ? block_in_desc : &stream_in_desc;
out_desc_head = (block_bytes > 0) ? block_out_desc : &stream_out_desc;
esp_aes_dma_init(in_desc_head, out_desc_head);
/* Write the number of blocks */
REG_WRITE(AES_BLOCK_NUM_REG, blocks);
#if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
/* Only use interrupt for long AES operations */
if (len > AES_DMA_INTR_TRIG_LEN) {
use_intr = true;
if (esp_aes_isr_initialise() == ESP_FAIL) {
ret = -1;
goto cleanup;
}
} else
#endif
{
REG_WRITE(AES_INT_ENA_REG, 0);
}
/* Start AES operation */
REG_WRITE(AES_TRIGGER_REG, 1);
esp_aes_dma_wait_complete(use_intr, out_desc_head);
#if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
if (block_bytes > 0) {
if (esp_ptr_external_ram(output)) {
Cache_Invalidate_DCache_All();
}
}
#endif
REG_WRITE(AES_DMA_EXIT_REG, 0);
/* Disable DMA mode */
REG_WRITE(AES_DMA_ENABLE_REG, 0);
if (stream_bytes > 0) {
memcpy(output + block_bytes, stream_out, stream_bytes);
}
cleanup:
free(non_icache_input);
free(block_desc);
return ret;
}
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
unsigned char *output )
{
if (!ctx) {
ESP_LOGE(TAG, "No AES context supplied");
return -1;
}
if (!input) {
ESP_LOGE(TAG, "No input supplied");
return -1;
}
if (!output) {
ESP_LOGE(TAG, "No output supplied");
return -1;
}
return 0;
}
/*
* AES-ECB single block encryption
*/
int esp_internal_aes_encrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int r;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
esp_aes_release_hardware();
return r;
}
void esp_aes_encrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_internal_aes_encrypt(ctx, input, output);
}
/*
* AES-ECB single block decryption
*/
int esp_internal_aes_decrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int r;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
esp_aes_release_hardware();
return r;
}
void esp_aes_decrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_internal_aes_decrypt(ctx, input, output);
}
/*
* AES-ECB block encryption/decryption
*/
int esp_aes_crypt_ecb( esp_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16] )
{
int r;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, mode);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
esp_aes_release_hardware();
return r;
}
/*
* AES-CBC buffer encryption/decryption
*/
int esp_aes_crypt_cbc( esp_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int r = 0;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return -1;
}
/* For CBC input length should be multiple of
* AES BLOCK BYTES
* */
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, mode);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_CBC);
esp_aes_set_iv(iv);
r = esp_aes_process_dma(ctx, input, output, length, NULL);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
esp_aes_get_iv(iv);
esp_aes_release_hardware();
return r;
}
/*
* AES-CFB8 buffer encryption/decryption
*/
int esp_aes_crypt_cfb8( esp_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
unsigned char c;
unsigned char ov[17];
int r = 0;
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return -1;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
/* The DMA engine will only output correct IV if it runs
full blocks of input in CFB8 mode
*/
esp_aes_acquire_hardware();
if (block_bytes > 0) {
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, mode);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_CFB8);
esp_aes_set_iv(iv);
r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
esp_aes_get_iv(iv);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
length -= block_bytes;
input += block_bytes;
output += block_bytes;
}
// Process remaining bytes block-at-a-time in ECB mode
if (length > 0) {
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, MBEDTLS_AES_ENCRYPT);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
while ( length-- ) {
memcpy( ov, iv, 16 );
r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
if ( mode == MBEDTLS_AES_DECRYPT ) {
ov[16] = *input;
}
c = *output++ = ( iv[0] ^ *input++ );
if ( mode == MBEDTLS_AES_ENCRYPT ) {
ov[16] = c;
}
memcpy( iv, ov + 1, 16 );
}
}
esp_aes_release_hardware();
return r;
}
/*
* AES-CFB128 buffer encryption/decryption
*/
int esp_aes_crypt_cfb128( esp_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
uint8_t c;
int r = 0;
size_t stream_bytes = 0;
size_t n;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return -1;
}
if (!iv_off) {
ESP_LOGE(TAG, "No IV offset supplied");
return -1;
}
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
n = *iv_off;
/* First process the *iv_off bytes
* which are pending from the previous call to this API
*/
while (n > 0 && length > 0) {
if (mode == MBEDTLS_AES_ENCRYPT) {
iv[n] = *output++ = *input++ ^ iv[n];
} else {
c = *input++;
*output++ = c ^ iv[n];
iv[n] = c;
}
n = (n + 1) % AES_BLOCK_BYTES;
length--;
}
if (length > 0) {
stream_bytes = length % AES_BLOCK_BYTES;
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, mode);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_CFB128);
esp_aes_set_iv(iv);
r = esp_aes_process_dma(ctx, input, output, length, iv);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
if (stream_bytes == 0) {
// if we didn't need the partial 'stream block' then the new IV is in the IV register
esp_aes_get_iv(iv);
} else {
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
// block uses ciphertext as its IV input)
//
// Note: It may be more efficient to not process the partial block via DMA in this case.
if (mode == MBEDTLS_AES_DECRYPT) {
memcpy(iv, input + length - stream_bytes, stream_bytes);
}
}
esp_aes_release_hardware();
}
*iv_off = n + stream_bytes;
return r;
}
/*
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
*/
int esp_aes_crypt_ofb( esp_aes_context *ctx,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int r = 0;
size_t n;
size_t stream_bytes = 0;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return -1;
}
if (!iv_off) {
ESP_LOGE(TAG, "No IV offset supplied");
return -1;
}
n = *iv_off;
/* If there is an offset then use the output of the previous AES block
(the updated IV) to calculate the new output */
while (n > 0 && length > 0) {
*output++ = (*input++ ^ iv[n]);
n = (n + 1) & 0xF;
length--;
}
if (length > 0) {
stream_bytes = (length % AES_BLOCK_BYTES);
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_OFB);
esp_aes_set_iv(iv);
r = esp_aes_process_dma(ctx, input, output, length, iv);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
esp_aes_get_iv(iv);
esp_aes_release_hardware();
}
*iv_off = n + stream_bytes;
return r;
}
/*
* AES-CTR buffer encryption/decryption
*/
int esp_aes_crypt_ctr( esp_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output )
{
int r = 0;
size_t n;
if (esp_aes_validate_input(ctx, input, output)) {
return -1;
}
if (!nonce_counter) {
ESP_LOGE(TAG, "No nonce supplied");
return -1;
}
if (!nc_off) {
ESP_LOGE(TAG, "No nonce offset supplied");
return -1;
}
n = *nc_off;
if (!valid_key_length(ctx)) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
/* Process any unprocessed bytes left in stream block from
last operation */
while (n > 0 && length > 0) {
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
n = (n + 1) & 0xF;
length--;
}
if (length > 0) {
esp_aes_acquire_hardware();
ctx->key_in_hardware = 0;
esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_CTR);
esp_aes_set_iv(nonce_counter);
r = esp_aes_process_dma(ctx, input, output, length, stream_block);
if (r != 0) {
esp_aes_release_hardware();
return r;
}
esp_aes_get_iv(nonce_counter);
esp_aes_release_hardware();
}
*nc_off = n + (length % AES_BLOCK_BYTES);
return r;
}
static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z);
/*
* Calculates the Initial Counter Block, J0
* and copies to to the esp_gcm_context
*/
static void esp_gcm_derive_J0(esp_gcm_context *ctx)
{
uint8_t len_buf[16];
memset(ctx->J0, 0, AES_BLOCK_BYTES);
memset(len_buf, 0, AES_BLOCK_BYTES);
/* If IV is 96 bits J0 = ( IV || 0^31 || 1 ) */
if (ctx->iv_len == 12) {
memcpy(ctx->J0, ctx->iv, ctx->iv_len);
ctx->J0[AES_BLOCK_BYTES - 1] |= 1;
} else {
/* For IV != 96 bit, J0 = GHASH(IV || 0[s+64] || [len(IV)]64) */
/* First calculate GHASH on IV */
esp_gcm_ghash(ctx, ctx->iv, ctx->iv_len, ctx->J0);
/* Next create 128 bit block which is equal to
64 bit 0 + iv length truncated to 64 bits */
ESP_PUT_BE64(len_buf + 8, ctx->iv_len * 8);
/* Calculate GHASH on last block */
esp_gcm_ghash(ctx, len_buf, 16, ctx->J0);
}
}
/*
* Increment J0 as per GCM spec, by applying the Standard Incrementing
Function INC_32 to it.
* j is the counter which needs to be incremented which is
* copied to ctx->J0 after incrementing
*/
static void increment32_j0(esp_gcm_context *ctx, uint8_t *j)
{
uint8_t j_len = AES_BLOCK_BYTES;
memcpy(j, ctx->J0, AES_BLOCK_BYTES);
if (j) {
for (uint32_t i = j_len; i > (j_len - 4); i--) {
if (++j[i - 1] != 0) {
break;
}
}
memcpy(ctx->J0, j, AES_BLOCK_BYTES);
}
}
/* Function to xor two data blocks */
static void xor_data(uint8_t *d, const uint8_t *s)
{
uint32_t *dst = (uint32_t *) d;
uint32_t *src = (uint32_t *) s;
*dst++ ^= *src++;
*dst++ ^= *src++;
*dst++ ^= *src++;
*dst++ ^= *src++;
}
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/* Based on MbedTLS's implemenation
*
* Precompute small multiples of H, that is set
* HH[i] || HL[i] = H times i,
* where i is seen as a field element as in [MGV], ie high-order bits
* correspond to low powers of P. The result is stored in the same way, that
* is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
* corresponds to P^127.
*/
static int gcm_gen_table( esp_gcm_context *ctx )
{
int i, j;
uint64_t hi, lo;
uint64_t vl, vh;
unsigned char *h;
h = ctx->H;
/* pack h as two 64-bits ints, big-endian */
GET_UINT32_BE( hi, h, 0 );
GET_UINT32_BE( lo, h, 4 );
vh = (uint64_t) hi << 32 | lo;
GET_UINT32_BE( hi, h, 8 );
GET_UINT32_BE( lo, h, 12 );
vl = (uint64_t) hi << 32 | lo;
/* 8 = 1000 corresponds to 1 in GF(2^128) */
ctx->HL[8] = vl;
ctx->HH[8] = vh;
/* 0 corresponds to 0 in GF(2^128) */
ctx->HH[0] = 0;
ctx->HL[0] = 0;
for( i = 4; i > 0; i >>= 1 )
{
uint32_t T = ( vl & 1 ) * 0xe1000000U;
vl = ( vh << 63 ) | ( vl >> 1 );
vh = ( vh >> 1 ) ^ ( (uint64_t) T << 32);
ctx->HL[i] = vl;
ctx->HH[i] = vh;
}
for( i = 2; i <= 8; i *= 2 )
{
uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
vh = *HiH;
vl = *HiL;
for( j = 1; j < i; j++ )
{
HiH[j] = vh ^ ctx->HH[j];
HiL[j] = vl ^ ctx->HL[j];
}
}
return( 0 );
}
/*
* Shoup's method for multiplication use this table with
* last4[x] = x times P^128
* where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
*/
static const uint64_t last4[16] =
{
0x0000, 0x1c20, 0x3840, 0x2460,
0x7080, 0x6ca0, 0x48c0, 0x54e0,
0xe100, 0xfd20, 0xd940, 0xc560,
0x9180, 0x8da0, 0xa9c0, 0xb5e0
};
/* Based on MbedTLS's implemenation
*
* Sets output to x times H using the precomputed tables.
* x and output are seen as elements of GF(2^128) as in [MGV].
*/
static void gcm_mult( esp_gcm_context *ctx, const unsigned char x[16],
unsigned char output[16] )
{
int i = 0;
unsigned char lo, hi, rem;
uint64_t zh, zl;
lo = x[15] & 0xf;
zh = ctx->HH[lo];
zl = ctx->HL[lo];
for( i = 15; i >= 0; i-- )
{
lo = x[i] & 0xf;
hi = x[i] >> 4;
if( i != 15 )
{
rem = (unsigned char) zl & 0xf;
zl = ( zh << 60 ) | ( zl >> 4 );
zh = ( zh >> 4 );
zh ^= (uint64_t) last4[rem] << 48;
zh ^= ctx->HH[lo];
zl ^= ctx->HL[lo];
}
rem = (unsigned char) zl & 0xf;
zl = ( zh << 60 ) | ( zl >> 4 );
zh = ( zh >> 4 );
zh ^= (uint64_t) last4[rem] << 48;
zh ^= ctx->HH[hi];
zl ^= ctx->HL[hi];
}
PUT_UINT32_BE( zh >> 32, output, 0 );
PUT_UINT32_BE( zh, output, 4 );
PUT_UINT32_BE( zl >> 32, output, 8 );
PUT_UINT32_BE( zl, output, 12 );
}
/* Update the key value in gcm context */
int esp_aes_gcm_setkey( esp_gcm_context *ctx,
mbedtls_cipher_id_t cipher,
const unsigned char *key,
unsigned int keybits )
{
if (keybits != 128 && keybits != 192 && keybits != 256) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
ctx->aes_ctx.key_bytes = keybits / 8;
memcpy(ctx->aes_ctx.key, key, ctx->aes_ctx.key_bytes);
return ( 0 );
}
/* AES-GCM GHASH calculation z = GHASH(x) using h0 hash key
*/
static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z)
{
uint8_t tmp[AES_BLOCK_BYTES];
memset(tmp, 0, AES_BLOCK_BYTES);
/* GHASH(X) is calculated on input string which is multiple of 128 bits
* If input string bit length is not multiple of 128 bits it needs to
* be padded by 0
*
* Steps:
* 1. Let X1, X2, ... , Xm-1, Xm denote the unique sequence of blocks such
* that X = X1 || X2 || ... || Xm-1 || Xm.
* 2. Let Y0 be the “zero block,” 0128.
* 3. Fori=1,...,m,letYi =(Yi-1 ^ Xi)•H.
* 4. Return Ym
*/
/* If input bit string is >= 128 bits, process full 128 bit blocks */
while (x_len >= AES_BLOCK_BYTES) {
xor_data(z, x);
gcm_mult(ctx, z, z);
x += AES_BLOCK_BYTES;
x_len -= AES_BLOCK_BYTES;
}
/* If input bit string is not multiple of 128 create last 128 bit
* block by padding necessary 0s
*/
if (x_len) {
memcpy(tmp, x, x_len);
xor_data(z, tmp);
gcm_mult(ctx, z, z);
}
}
/* Function to init AES GCM context to zero */
void esp_aes_gcm_init( esp_gcm_context *ctx)
{
if (ctx == NULL) {
return;
}
bzero(ctx, sizeof(esp_gcm_context));
ctx->gcm_state = ESP_AES_GCM_STATE_INIT;
}
/* Function to clear AES-GCM context */
void esp_aes_gcm_free( esp_gcm_context *ctx)
{
if (ctx == NULL) {
return;
}
bzero(ctx, sizeof(esp_gcm_context));
}
/* Setup AES-GCM */
int esp_aes_gcm_starts( esp_gcm_context *ctx,
int mode,
const unsigned char *iv,
size_t iv_len,
const unsigned char *aad,
size_t aad_len )
{
/* IV and AD are limited to 2^64 bits, so 2^61 bytes */
/* IV is not allowed to be zero length */
if ( iv_len == 0 ||
( (uint64_t) iv_len ) >> 61 != 0 ||
( (uint64_t) aad_len ) >> 61 != 0 ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
if (!ctx) {
ESP_LOGE(TAG, "No AES context supplied");
return -1;
}
if (!iv) {
ESP_LOGE(TAG, "No IV supplied");
return -1;
}
if ( (aad_len > 0) && !aad) {
ESP_LOGE(TAG, "No aad supplied");
return -1;
}
/* Initialize AES-GCM context */
memset(ctx->ghash, 0, sizeof(ctx->ghash));
ctx->data_len = 0;
ctx->iv = iv;
ctx->iv_len = iv_len;
ctx->aad = aad;
ctx->aad_len = aad_len;
ctx->mode = mode;
/* H and the lookup table are only generated once per ctx */
if (ctx->gcm_state == ESP_AES_GCM_STATE_INIT) {
/* Lock the AES engine to calculate ghash key H in hardware */
esp_aes_acquire_hardware();
esp_aes_setkey_hardware( &ctx->aes_ctx, mode);
esp_aes_mode_init(ESP_AES_BLOCK_MODE_GCM);
/* Enable DMA mode */
REG_WRITE(AES_DMA_ENABLE_REG, 1);
REG_WRITE(AES_TRIGGER_REG, 1);
while (REG_READ(AES_STATE_REG) != AES_STATE_IDLE);
memcpy(ctx->H, (uint8_t *)AES_H_BASE, AES_BLOCK_BYTES);
esp_aes_release_hardware();
gcm_gen_table(ctx);
}
ctx->gcm_state = ESP_AES_GCM_STATE_START;
/* Once H is obtained we need to derive J0 (Initial Counter Block) */
esp_gcm_derive_J0(ctx);
/* The initial counter block keeps updating during the esp_gcm_update call
* however to calculate final authentication tag T we need original J0
* so we make a copy here
*/
memcpy(ctx->ori_j0, ctx->J0, 16);
esp_gcm_ghash(ctx, ctx->aad, ctx->aad_len, ctx->ghash);
return ( 0 );
}
/* Perform AES-GCM operation */
int esp_aes_gcm_update( esp_gcm_context *ctx,
size_t length,
const unsigned char *input,
unsigned char *output )
{
size_t nc_off = 0;
uint8_t nonce_counter[AES_BLOCK_BYTES] = {0};
uint8_t stream[AES_BLOCK_BYTES] = {0};
if (!ctx) {
ESP_LOGE(TAG, "No GCM context supplied");
return -1;
}
if (!input) {
ESP_LOGE(TAG, "No input supplied");
return -1;
}
if (!output) {
ESP_LOGE(TAG, "No output supplied");
return -1;
}
if ( output > input && (size_t) ( output - input ) < length ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
/* If this is the first time esp_gcm_update is getting called
* calculate GHASH on aad and preincrement the ICB
*/
if (ctx->gcm_state == ESP_AES_GCM_STATE_START) {
/* Jo needs to be incremented first time, later the CTR
* operation will auto update it
*/
increment32_j0(ctx, nonce_counter);
ctx->gcm_state = ESP_AES_GCM_STATE_UPDATE;
} else if (ctx->gcm_state == ESP_AES_GCM_STATE_UPDATE) {
memcpy(nonce_counter, ctx->J0, AES_BLOCK_BYTES);
}
/* Perform intermediate GHASH on "encrypted" data during decryption */
if (ctx->mode == ESP_AES_DECRYPT) {
esp_gcm_ghash(ctx, input, length, ctx->ghash);
}
/* Output = GCTR(J0, Input): Encrypt/Decrypt the input */
esp_aes_crypt_ctr(&ctx->aes_ctx, length, &nc_off, nonce_counter, stream, input, output);
/* ICB gets auto incremented after GCTR operation here so update the context */
memcpy(ctx->J0, nonce_counter, AES_BLOCK_BYTES);
/* Keep updating the length counter for final tag calculation */
ctx->data_len += length;
/* Perform intermediate GHASH on "encrypted" data during encryption*/
if (ctx->mode == ESP_AES_ENCRYPT) {
esp_gcm_ghash(ctx, output, length, ctx->ghash);
}
return 0;
}
/* Function to read the tag value */
int esp_aes_gcm_finish( esp_gcm_context *ctx,
unsigned char *tag,
size_t tag_len )
{
size_t nc_off = 0;
uint8_t len_block[AES_BLOCK_BYTES] = {0};
if ( tag_len > 16 || tag_len < 4 ) {
return ( MBEDTLS_ERR_GCM_BAD_INPUT );
}
/* Calculate final GHASH on aad_len, data length */
ESP_PUT_BE64(len_block, ctx->aad_len * 8);
ESP_PUT_BE64(len_block + 8, ctx->data_len * 8);
esp_gcm_ghash(ctx, len_block, AES_BLOCK_BYTES, ctx->ghash);
/* Tag T = GCTR(J0, ) where T is truncated to tag_len */
esp_aes_crypt_ctr(&ctx->aes_ctx, tag_len, &nc_off, ctx->ori_j0, 0, ctx->ghash, tag);
return 0;
}
int esp_aes_gcm_crypt_and_tag( esp_gcm_context *ctx,
int mode,
size_t length,
const unsigned char *iv,
size_t iv_len,
const unsigned char *add,
size_t add_len,
const unsigned char *input,
unsigned char *output,
size_t tag_len,
unsigned char *tag )
{
int ret;
if ( ( ret = esp_aes_gcm_starts( ctx, mode, iv, iv_len, add, add_len ) ) != 0 ) {
return ( ret );
}
if ( ( ret = esp_aes_gcm_update( ctx, length, input, output ) ) != 0 ) {
return ( ret );
}
if ( ( ret = esp_aes_gcm_finish( ctx, tag, tag_len ) ) != 0 ) {
return ( ret );
}
return ( 0 );
}
int esp_aes_gcm_auth_decrypt( esp_gcm_context *ctx,
size_t length,
const unsigned char *iv,
size_t iv_len,
const unsigned char *add,
size_t add_len,
const unsigned char *tag,
size_t tag_len,
const unsigned char *input,
unsigned char *output )
{
int ret;
unsigned char check_tag[16];
size_t i;
int diff;
if ( ( ret = esp_aes_gcm_crypt_and_tag( ctx, ESP_AES_DECRYPT, length,
iv, iv_len, add, add_len,
input, output, tag_len, check_tag ) ) != 0 ) {
return ( ret );
}
/* Check tag in "constant-time" */
for ( diff = 0, i = 0; i < tag_len; i++ ) {
diff |= tag[i] ^ check_tag[i];
}
if ( diff != 0 ) {
bzero( output, length );
return ( MBEDTLS_ERR_GCM_AUTH_FAILED );
}
return ( 0 );
}