mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
3d61c6d7d7
Due to poor accuracy the ESP32 ULP TSENS instructions is not recommend for use. We keep the instruction itself to support users which are already using it, but should remove it from examples and docs to avoid encouring any new usage of it.
1031 lines
36 KiB
C
1031 lines
36 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#pragma once
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include "esp_err.h"
|
|
#include "ulp_common.h"
|
|
#include "ulp_fsm_common.h"
|
|
#include "soc/reg_base.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @defgroup ulp_registers ULP coprocessor registers
|
|
* @{
|
|
*/
|
|
|
|
|
|
#define R0 0 /*!< general purpose register 0 */
|
|
#define R1 1 /*!< general purpose register 1 */
|
|
#define R2 2 /*!< general purpose register 2 */
|
|
#define R3 3 /*!< general purpose register 3 */
|
|
/**@}*/
|
|
|
|
/** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
|
|
*
|
|
* These definitions are not intended to be used directly.
|
|
* They are used in definitions of instructions later on.
|
|
*
|
|
* @{
|
|
*/
|
|
|
|
#define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) */
|
|
|
|
#define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) */
|
|
|
|
#define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
|
|
#define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
|
|
#define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
|
|
#define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
|
|
|
|
#define OPCODE_I2C 3 /*!< Instruction: read/write I2C */
|
|
#define SUB_OPCODE_I2C_RD 0 /*!< I2C read */
|
|
#define SUB_OPCODE_I2C_WR 1 /*!< I2C write */
|
|
|
|
#define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
|
|
|
|
#define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement */
|
|
|
|
#define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
|
|
#define SUB_OPCODE_ST 4 /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
|
|
|
|
#define OPCODE_ALU 7 /*!< Arithmetic instructions */
|
|
#define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
|
|
#define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
|
|
#define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction, stage counter and an immediate */
|
|
#define ALU_SEL_ADD 0 /*!< Addition */
|
|
#define ALU_SEL_SUB 1 /*!< Subtraction */
|
|
#define ALU_SEL_AND 2 /*!< Logical AND */
|
|
#define ALU_SEL_OR 3 /*!< Logical OR */
|
|
#define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
|
|
#define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
|
|
#define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
|
|
#define ALU_SEL_SINC 0 /*!< Increment the stage counter */
|
|
#define ALU_SEL_SDEC 1 /*!< Decrement the stage counter */
|
|
#define ALU_SEL_SRST 2 /*!< Reset the stage counter */
|
|
|
|
#define OPCODE_BRANCH 8 /*!< Branch instructions */
|
|
#define SUB_OPCODE_BX 0 /*!< Branch to absolute PC (immediate or in register) */
|
|
#define SUB_OPCODE_BR 1 /*!< Branch to relative PC, conditional on R0 */
|
|
#define SUB_OPCODE_BS 2 /*!< Branch to relative PC, conditional on the stage counter */
|
|
#define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
|
|
#define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
|
|
#define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
|
|
#define SUB_OPCODE_B 1 /*!< Branch to a relative offset */
|
|
#define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
|
|
#define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */
|
|
#define JUMPS_LT 0 /*!< Branch if the stage counter < */
|
|
#define JUMPS_GE 1 /*!< Branch if the stage counter >= */
|
|
#define JUMPS_LE 2 /*!< Branch if the stage counter <= */
|
|
|
|
#define OPCODE_END 9 /*!< Stop executing the program */
|
|
#define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
|
|
#define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
|
|
|
|
#define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement. Poor accuracy, not recommended for most use-cases */
|
|
|
|
#define OPCODE_HALT 11 /*!< Halt the coprocessor */
|
|
|
|
#define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
|
|
|
|
#define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
|
|
#define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
|
|
#define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
|
|
#define SUB_OPCODE_MACRO_LABELPC 2 /*!< Label pointer macro */
|
|
/**@}*/
|
|
|
|
|
|
/**
|
|
* @brief Instruction format structure
|
|
*
|
|
* All ULP instructions are 32 bit long.
|
|
* This union contains field layouts used by all of the supported instructions.
|
|
* This union also includes a special "macro" instruction layout.
|
|
* This is not a real instruction which can be executed by the CPU. It acts
|
|
* as a token which is removed from the program by the
|
|
* ulp_process_macros_and_load function.
|
|
*
|
|
* These structures are not intended to be used directly.
|
|
* Preprocessor definitions provided below fill the fields of these structure with
|
|
* the right arguments.
|
|
*/
|
|
union ulp_insn {
|
|
|
|
struct {
|
|
uint32_t cycles : 16; /*!< Number of cycles to sleep */
|
|
uint32_t unused : 12; /*!< Unused */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
|
|
} delay; /*!< Format of DELAY instruction */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Register which contains data to store */
|
|
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
|
uint32_t unused1 : 6; /*!< Unused */
|
|
uint32_t offset : 11; /*!< Offset to add to sreg */
|
|
uint32_t unused2 : 4; /*!< Unused */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
|
|
} st; /*!< Format of ST instruction */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Register where the data should be loaded to */
|
|
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
|
uint32_t unused1 : 6; /*!< Unused */
|
|
uint32_t offset : 11; /*!< Offset to add to sreg */
|
|
uint32_t unused2 : 7; /*!< Unused */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
|
|
} ld; /*!< Format of LD instruction */
|
|
|
|
struct {
|
|
uint32_t unused : 28; /*!< Unused */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
|
|
} halt; /*!< Format of HALT instruction */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
|
|
uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
|
|
uint32_t unused : 8; /*!< Unused */
|
|
uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
|
|
uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BX) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
|
} bx; /*!< Format of BRANCH instruction (absolute address) */
|
|
|
|
struct {
|
|
uint32_t imm : 16; /*!< Immediate value to compare against */
|
|
uint32_t cmp : 1; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
|
|
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
|
|
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_B) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
|
} b; /*!< Format of BRANCH instruction (relative address, conditional on R0) */
|
|
|
|
struct {
|
|
uint32_t imm : 8; /*!< Immediate value to compare against */
|
|
uint32_t unused : 7; /*!< Unused */
|
|
uint32_t cmp : 2; /*!< Comparison to perform: JUMPS_LT, JUMPS_GE or JUMPS_LE */
|
|
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
|
|
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BS) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
|
} bs; /*!< Format of BRANCH instruction (relative address, conditional on the stage counter) */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Destination register */
|
|
uint32_t sreg : 2; /*!< Register with operand A */
|
|
uint32_t treg : 2; /*!< Register with operand B */
|
|
uint32_t unused : 15; /*!< Unused */
|
|
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
|
} alu_reg; /*!< Format of ALU instruction (both sources are registers) */
|
|
|
|
struct {
|
|
uint32_t unused1 : 4; /*!< Unused */
|
|
uint32_t imm : 8; /*!< Immediate value of operand */
|
|
uint32_t unused2 : 9; /*!< Unused */
|
|
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_Sxxx */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_CNT) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
|
} alu_reg_s; /*!< Format of ALU instruction (stage counter and an immediate) */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Destination register */
|
|
uint32_t sreg : 2; /*!< Register with operand A */
|
|
uint32_t imm : 16; /*!< Immediate value of operand B */
|
|
uint32_t unused : 1; /*!< Unused */
|
|
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
|
} alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
|
|
|
|
struct {
|
|
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
|
|
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
|
|
uint32_t data : 8; /*!< 8 bits of data to write */
|
|
uint32_t low : 5; /*!< Low bit */
|
|
uint32_t high : 5; /*!< High bit */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
|
|
} wr_reg; /*!< Format of WR_REG instruction */
|
|
|
|
struct {
|
|
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
|
|
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
|
|
uint32_t unused : 8; /*!< Unused */
|
|
uint32_t low : 5; /*!< Low bit */
|
|
uint32_t high : 5; /*!< High bit */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_RD_REG) */
|
|
} rd_reg; /*!< Format of RD_REG instruction */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Register where to store ADC result */
|
|
uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
|
|
uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
|
|
uint32_t unused1 : 1; /*!< Unused */
|
|
uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
|
|
uint32_t unused2 : 4; /*!< Unused */
|
|
uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
|
|
} adc; /*!< Format of ADC instruction */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
|
|
uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
|
|
uint32_t reserved: 12; /*!< Reserved, set to 0 */
|
|
uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
|
|
} tsens; /*!< Format of TSENS instruction */
|
|
|
|
struct {
|
|
uint32_t i2c_addr : 8; /*!< I2C slave address */
|
|
uint32_t data : 8; /*!< 8 bits of data for write operation */
|
|
uint32_t low_bits : 3; /*!< low bit of range for write operation (lower bits are masked) */
|
|
uint32_t high_bits : 3; /*!< high bit of range for write operation (higher bits are masked) */
|
|
uint32_t i2c_sel : 4; /*!< index of slave address register [7:0] */
|
|
uint32_t unused : 1; /*!< Unused */
|
|
uint32_t rw : 1; /*!< Write (1) or read (0) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
|
|
} i2c; /*!< Format of I2C instruction */
|
|
|
|
struct {
|
|
uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
|
|
uint32_t unused : 24; /*!< Unused */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
|
} end; /*!< Format of END instruction with wakeup */
|
|
|
|
struct {
|
|
uint32_t cycle_sel : 4; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
|
|
uint32_t unused : 21; /*!< Unused */
|
|
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_SLEEP) */
|
|
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
|
} sleep; /*!< Format of END instruction with sleep */
|
|
|
|
struct {
|
|
uint32_t dreg : 2; /*!< Destination register (for SUB_OPCODE_MACRO_LABELPC) > */
|
|
uint32_t label : 16; /*!< Label number */
|
|
uint32_t unused : 6; /*!< Unused */
|
|
uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH or SUB_OPCODE_MACRO_LABELPC */
|
|
uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
|
|
} macro; /*!< Format of tokens used by MACROs */
|
|
|
|
uint32_t instruction; /*!< Encoded instruction for ULP coprocessor */
|
|
|
|
};
|
|
|
|
/**
|
|
* Delay (nop) for a given number of cycles
|
|
*/
|
|
#define I_DELAY(cycles_) { .delay = {\
|
|
.cycles = cycles_, \
|
|
.unused = 0, \
|
|
.opcode = OPCODE_DELAY } }
|
|
|
|
/**
|
|
* Halt the coprocessor.
|
|
*
|
|
* This instruction halts the coprocessor, but keeps ULP timer active.
|
|
* As such, ULP program will be restarted again by timer.
|
|
* To stop the program and prevent the timer from restarting the program,
|
|
* use I_END(0) instruction.
|
|
*/
|
|
#define I_HALT() { .halt = {\
|
|
.unused = 0, \
|
|
.opcode = OPCODE_HALT } }
|
|
|
|
/**
|
|
* Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
|
|
* instructions.
|
|
*
|
|
* @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
|
|
* @return periph_sel value for the peripheral to which this register belongs.
|
|
*/
|
|
static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
|
|
uint32_t ret = 3;
|
|
if (reg < DR_REG_RTCCNTL_BASE) {
|
|
assert(0 && "invalid register base");
|
|
} else if (reg < DR_REG_RTCIO_BASE) {
|
|
ret = RD_REG_PERIPH_RTC_CNTL;
|
|
} else if (reg < DR_REG_SENS_BASE) {
|
|
ret = RD_REG_PERIPH_RTC_IO;
|
|
} else if (reg < DR_REG_RTC_I2C_BASE){
|
|
ret = RD_REG_PERIPH_SENS;
|
|
} else if (reg < DR_REG_IO_MUX_BASE){
|
|
ret = RD_REG_PERIPH_RTC_I2C;
|
|
} else {
|
|
assert(0 && "invalid register base");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Write literal value to a peripheral register
|
|
*
|
|
* reg[high_bit : low_bit] = val
|
|
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
|
|
*/
|
|
#define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
|
|
.addr = (reg & 0xff) / sizeof(uint32_t), \
|
|
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
|
|
.data = val, \
|
|
.low = low_bit, \
|
|
.high = high_bit, \
|
|
.opcode = OPCODE_WR_REG } }
|
|
|
|
/**
|
|
* Read from peripheral register into R0
|
|
*
|
|
* R0 = reg[high_bit : low_bit]
|
|
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
|
|
*/
|
|
#define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
|
|
.addr = (reg & 0xff) / sizeof(uint32_t), \
|
|
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
|
|
.unused = 0, \
|
|
.low = low_bit, \
|
|
.high = high_bit, \
|
|
.opcode = OPCODE_RD_REG } }
|
|
|
|
/**
|
|
* Set or clear a bit in the peripheral register.
|
|
*
|
|
* Sets bit (1 << shift) of register reg to value val.
|
|
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
|
|
*/
|
|
#define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
|
|
|
|
/**
|
|
* Wake the SoC from deep sleep.
|
|
*
|
|
* This instruction initiates wake up from deep sleep.
|
|
* Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
|
|
* triggered by the ULP before going into deep sleep.
|
|
* Note that ULP program will still keep running until the I_HALT
|
|
* instruction, and it will still be restarted by timer at regular
|
|
* intervals, even when the SoC is woken up.
|
|
*
|
|
* To stop the ULP program, use I_HALT instruction.
|
|
*
|
|
* To disable the timer which start ULP program, use I_END()
|
|
* instruction. I_END instruction clears the
|
|
* RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG
|
|
* register, which controls the ULP timer.
|
|
*/
|
|
#define I_WAKE() { .end = { \
|
|
.wakeup = 1, \
|
|
.unused = 0, \
|
|
.sub_opcode = SUB_OPCODE_END, \
|
|
.opcode = OPCODE_END } }
|
|
|
|
/**
|
|
* Stop ULP program timer.
|
|
*
|
|
* This is a convenience macro which disables the ULP program timer.
|
|
* Once this instruction is used, ULP program will not be restarted
|
|
* anymore until ulp_run function is called.
|
|
*
|
|
* ULP program will continue running after this instruction. To stop
|
|
* the currently running program, use I_HALT().
|
|
*/
|
|
#define I_END() \
|
|
I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
|
|
/**
|
|
* Select the time interval used to run ULP program.
|
|
*
|
|
* This instructions selects which of the SENS_SLEEP_CYCLES_Sx
|
|
* registers' value is used by the ULP program timer.
|
|
* When the ULP program stops at I_HALT instruction, ULP program
|
|
* timer start counting. When the counter reaches the value of
|
|
* the selected SENS_SLEEP_CYCLES_Sx register, ULP program
|
|
* start running again from the start address (passed to the ulp_run
|
|
* function).
|
|
* There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
|
|
*
|
|
* By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP
|
|
* program timer.
|
|
*/
|
|
#define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
|
|
.cycle_sel = timer_idx, \
|
|
.unused = 0, \
|
|
.sub_opcode = SUB_OPCODE_SLEEP, \
|
|
.opcode = OPCODE_END } }
|
|
|
|
/**
|
|
* Perform temperature sensor measurement and store it into reg_dest.
|
|
*
|
|
* Delay can be set between 1 and ((1 << 14) - 1). Higher values give
|
|
* higher measurement resolution.
|
|
*/
|
|
#define I_TSENS(reg_dest, delay) { .tsens = { \
|
|
.dreg = reg_dest, \
|
|
.wait_delay = delay, \
|
|
.reserved = 0, \
|
|
.opcode = OPCODE_TSENS } }
|
|
|
|
/**
|
|
* Perform ADC measurement and store result in reg_dest.
|
|
*
|
|
* adc_idx selects ADC (0 or 1).
|
|
* pad_idx selects ADC pad (0 - 7).
|
|
*/
|
|
#define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
|
|
.dreg = reg_dest, \
|
|
.mux = pad_idx + 1, \
|
|
.sar_sel = adc_idx, \
|
|
.unused1 = 0, \
|
|
.cycles = 0, \
|
|
.unused2 = 0, \
|
|
.opcode = OPCODE_ADC } }
|
|
|
|
/**
|
|
* Store value from register reg_val into RTC memory.
|
|
*
|
|
* The value is written to an offset calculated by adding value of
|
|
* reg_addr register and offset_ field (this offset is expressed in 32-bit words).
|
|
* 32 bits written to RTC memory are built as follows:
|
|
* - bits [31:21] hold the PC of current instruction, expressed in 32-bit words
|
|
* - bits [20:18] = 3'b0
|
|
* - bits [17:16] reg_addr (0..3)
|
|
* - bits [15:0] are assigned the contents of reg_val
|
|
*
|
|
* RTC_SLOW_MEM[addr + offset_] = { insn_PC[10:0], 3'b0, reg_addr, reg_val[15:0] }
|
|
*/
|
|
#define I_ST(reg_val, reg_addr, offset_) { .st = { \
|
|
.dreg = reg_val, \
|
|
.sreg = reg_addr, \
|
|
.unused1 = 0, \
|
|
.offset = offset_, \
|
|
.unused2 = 0, \
|
|
.sub_opcode = SUB_OPCODE_ST, \
|
|
.opcode = OPCODE_ST } }
|
|
|
|
|
|
/**
|
|
* Load value from RTC memory into reg_dest register.
|
|
*
|
|
* Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
|
|
* value of offset_.
|
|
*/
|
|
#define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_addr, \
|
|
.unused1 = 0, \
|
|
.offset = offset_, \
|
|
.unused2 = 0, \
|
|
.opcode = OPCODE_LD } }
|
|
|
|
|
|
/**
|
|
* Branch relative if R0 less than immediate value.
|
|
*
|
|
* pc_offset is expressed in words, and can be from -127 to 127
|
|
* imm_value is a 16-bit value to compare R0 against
|
|
*/
|
|
#define I_BL(pc_offset, imm_value) { .b = { \
|
|
.imm = imm_value, \
|
|
.cmp = B_CMP_L, \
|
|
.offset = abs(pc_offset), \
|
|
.sign = (pc_offset >= 0) ? 0 : 1, \
|
|
.sub_opcode = SUB_OPCODE_B, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Branch relative if R0 greater or equal than immediate value.
|
|
*
|
|
* pc_offset is expressed in words, and can be from -127 to 127
|
|
* imm_value is a 16-bit value to compare R0 against
|
|
*/
|
|
#define I_BGE(pc_offset, imm_value) { .b = { \
|
|
.imm = imm_value, \
|
|
.cmp = B_CMP_GE, \
|
|
.offset = abs(pc_offset), \
|
|
.sign = (pc_offset >= 0) ? 0 : 1, \
|
|
.sub_opcode = SUB_OPCODE_B, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Unconditional branch to absolute PC, address in register.
|
|
*
|
|
* reg_pc is the register which contains address to jump to.
|
|
* Address is expressed in 32-bit words.
|
|
*/
|
|
#define I_BXR(reg_pc) { .bx = { \
|
|
.dreg = reg_pc, \
|
|
.addr = 0, \
|
|
.unused = 0, \
|
|
.reg = 1, \
|
|
.type = BX_JUMP_TYPE_DIRECT, \
|
|
.sub_opcode = SUB_OPCODE_BX, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Unconditional branch to absolute PC, immediate address.
|
|
*
|
|
* Address imm_pc is expressed in 32-bit words.
|
|
*/
|
|
#define I_BXI(imm_pc) { .bx = { \
|
|
.dreg = 0, \
|
|
.addr = imm_pc, \
|
|
.unused = 0, \
|
|
.reg = 0, \
|
|
.type = BX_JUMP_TYPE_DIRECT, \
|
|
.sub_opcode = SUB_OPCODE_BX, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Branch to absolute PC if ALU result is zero, address in register.
|
|
*
|
|
* reg_pc is the register which contains address to jump to.
|
|
* Address is expressed in 32-bit words.
|
|
*/
|
|
#define I_BXZR(reg_pc) { .bx = { \
|
|
.dreg = reg_pc, \
|
|
.addr = 0, \
|
|
.unused = 0, \
|
|
.reg = 1, \
|
|
.type = BX_JUMP_TYPE_ZERO, \
|
|
.sub_opcode = SUB_OPCODE_BX, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Branch to absolute PC if ALU result is zero, immediate address.
|
|
*
|
|
* Address imm_pc is expressed in 32-bit words.
|
|
*/
|
|
#define I_BXZI(imm_pc) { .bx = { \
|
|
.dreg = 0, \
|
|
.addr = imm_pc, \
|
|
.unused = 0, \
|
|
.reg = 0, \
|
|
.type = BX_JUMP_TYPE_ZERO, \
|
|
.sub_opcode = SUB_OPCODE_BX, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Branch to absolute PC if ALU overflow, address in register
|
|
*
|
|
* reg_pc is the register which contains address to jump to.
|
|
* Address is expressed in 32-bit words.
|
|
*/
|
|
#define I_BXFR(reg_pc) { .bx = { \
|
|
.dreg = reg_pc, \
|
|
.addr = 0, \
|
|
.unused = 0, \
|
|
.reg = 1, \
|
|
.type = BX_JUMP_TYPE_OVF, \
|
|
.sub_opcode = SUB_OPCODE_BX, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Branch to absolute PC if ALU overflow, immediate address
|
|
*
|
|
* Address imm_pc is expressed in 32-bit words.
|
|
*/
|
|
#define I_BXFI(imm_pc) { .bx = { \
|
|
.dreg = 0, \
|
|
.addr = imm_pc, \
|
|
.unused = 0, \
|
|
.reg = 0, \
|
|
.type = BX_JUMP_TYPE_OVF, \
|
|
.sub_opcode = SUB_OPCODE_BX, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
|
|
/**
|
|
* Addition: dest = src1 + src2
|
|
*/
|
|
#define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src1, \
|
|
.treg = reg_src2, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_ADD, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Subtraction: dest = src1 - src2
|
|
*/
|
|
#define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src1, \
|
|
.treg = reg_src2, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_SUB, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Logical AND: dest = src1 & src2
|
|
*/
|
|
#define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src1, \
|
|
.treg = reg_src2, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_AND, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Logical OR: dest = src1 | src2
|
|
*/
|
|
#define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src1, \
|
|
.treg = reg_src2, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_OR, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Copy: dest = src
|
|
*/
|
|
#define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.treg = 0, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_MOV, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Logical shift left: dest = src << shift
|
|
*/
|
|
#define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.treg = reg_shift, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_LSH, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
|
|
/**
|
|
* Logical shift right: dest = src >> shift
|
|
*/
|
|
#define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.treg = reg_shift, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_RSH, \
|
|
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Add register and an immediate value: dest = src1 + imm
|
|
*/
|
|
#define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_ADD, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
|
|
/**
|
|
* Subtract register and an immediate value: dest = src - imm
|
|
*/
|
|
#define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_SUB, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Logical AND register and an immediate value: dest = src & imm
|
|
*/
|
|
#define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_AND, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Logical OR register and an immediate value: dest = src | imm
|
|
*/
|
|
#define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_OR, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Copy an immediate value into register: dest = imm
|
|
*/
|
|
#define I_MOVI(reg_dest, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = 0, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_MOV, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Logical shift left register value by an immediate: dest = src << imm
|
|
*/
|
|
#define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_LSH, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
|
|
/**
|
|
* Logical shift right register value by an immediate: dest = val >> imm
|
|
*/
|
|
#define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
|
.dreg = reg_dest, \
|
|
.sreg = reg_src, \
|
|
.imm = imm_, \
|
|
.unused = 0, \
|
|
.sel = ALU_SEL_RSH, \
|
|
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Define a label with number label_num.
|
|
*
|
|
* This is a macro which doesn't generate a real instruction.
|
|
* The token generated by this macro is removed by ulp_process_macros_and_load
|
|
* function. Label defined using this macro can be used in branch macros defined
|
|
* below.
|
|
*/
|
|
#define M_LABEL(label_num) { .macro = { \
|
|
.dreg = 0, \
|
|
.label = label_num, \
|
|
.unused = 0, \
|
|
.sub_opcode = SUB_OPCODE_MACRO_LABEL, \
|
|
.opcode = OPCODE_MACRO } }
|
|
|
|
/**
|
|
* Token macro used by M_B and M_BX macros. Not to be used directly.
|
|
*/
|
|
#define M_BRANCH(label_num) { .macro = { \
|
|
.dreg = 0, \
|
|
.label = label_num, \
|
|
.unused = 0, \
|
|
.sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
|
|
.opcode = OPCODE_MACRO } }
|
|
|
|
/**
|
|
* Token macro used by M_MOVL macro. Not to be used directly.
|
|
*/
|
|
#define M_LABELPC(label_num) { .macro = { \
|
|
.dreg = 0, \
|
|
.label = label_num, \
|
|
.unused = 0, \
|
|
.sub_opcode = SUB_OPCODE_MACRO_LABELPC, \
|
|
.opcode = OPCODE_MACRO } }
|
|
|
|
/**
|
|
* Macro: Move the program counter at the given label into the register.
|
|
* This address can then be used with I_BXR, I_BXZR, I_BXFR, etc.
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_MOVL(reg_dest, label_num) \
|
|
M_LABELPC(label_num), \
|
|
I_MOVI(reg_dest, 0)
|
|
|
|
/**
|
|
* Macro: branch to label label_num if R0 is less than immediate value.
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BL(label_num, imm_value) \
|
|
M_BRANCH(label_num), \
|
|
I_BL(0, imm_value)
|
|
|
|
/**
|
|
* Macro: branch to label label_num if R0 is greater or equal than immediate value
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BGE(label_num, imm_value) \
|
|
M_BRANCH(label_num), \
|
|
I_BGE(0, imm_value)
|
|
|
|
/**
|
|
* Macro: unconditional branch to label
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BX(label_num) \
|
|
M_BRANCH(label_num), \
|
|
I_BXI(0)
|
|
|
|
/**
|
|
* Macro: branch to label if ALU result is zero
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BXZ(label_num) \
|
|
M_BRANCH(label_num), \
|
|
I_BXZI(0)
|
|
|
|
/**
|
|
* Macro: branch to label if ALU overflow
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BXF(label_num) \
|
|
M_BRANCH(label_num), \
|
|
I_BXFI(0)
|
|
|
|
/**
|
|
* Increment the stage counter by immediate value
|
|
*/
|
|
#define I_STAGE_INC(imm_) { .alu_reg_s = { \
|
|
.unused1 = 0, \
|
|
.imm = imm_, \
|
|
.unused2 = 0, \
|
|
.sel = ALU_SEL_SINC, \
|
|
.sub_opcode = SUB_OPCODE_ALU_CNT, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Decrement the stage counter by immediate value
|
|
*/
|
|
#define I_STAGE_DEC(imm_) { .alu_reg_s = { \
|
|
.unused1 = 0, \
|
|
.imm = imm_, \
|
|
.unused2 = 0, \
|
|
.sel = ALU_SEL_SDEC, \
|
|
.sub_opcode = SUB_OPCODE_ALU_CNT, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Reset the stage counter
|
|
*/
|
|
#define I_STAGE_RST() { .alu_reg_s = { \
|
|
.unused1 = 0, \
|
|
.imm = 0, \
|
|
.unused2 = 0, \
|
|
.sel = ALU_SEL_SRST, \
|
|
.sub_opcode = SUB_OPCODE_ALU_CNT, \
|
|
.opcode = OPCODE_ALU } }
|
|
|
|
/**
|
|
* Macro: branch to label if the stage counter is less than immediate value
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BSLT(label_num, imm_value) \
|
|
M_BRANCH(label_num), \
|
|
I_JUMPS(0, imm_value, JUMPS_LT)
|
|
|
|
/**
|
|
* Macro: branch to label if the stage counter is greater than or equal to immediate value
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BSGE(label_num, imm_value) \
|
|
M_BRANCH(label_num), \
|
|
I_JUMPS(0, imm_value, JUMPS_GE)
|
|
|
|
/**
|
|
* Macro: branch to label if the stage counter is less than or equal to immediate value
|
|
*
|
|
* This macro generates two ulp_insn_t values separated by a comma, and should
|
|
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BSLE(label_num, imm_value) \
|
|
M_BRANCH(label_num), \
|
|
I_JUMPS(0, imm_value, JUMPS_LE)
|
|
|
|
/**
|
|
* Macro: branch to label if the stage counter is equal to immediate value.
|
|
* Implemented using two JUMPS instructions:
|
|
* JUMPS next, imm_value, LT
|
|
* JUMPS label_num, imm_value, LE
|
|
*
|
|
* This macro generates three ulp_insn_t values separated by commas, and should
|
|
* be used when defining contents of ulp_insn_t arrays. Second value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BSEQ(label_num, imm_value) \
|
|
I_JUMPS(2, imm_value, JUMPS_LT), \
|
|
M_BRANCH(label_num), \
|
|
I_JUMPS(0, imm_value, JUMPS_LE)
|
|
|
|
/**
|
|
* Macro: branch to label if the stage counter is greater than immediate value.
|
|
* Implemented using two instructions:
|
|
* JUMPS next, imm_value, LE
|
|
* JUMPS label_num, imm_value, GE
|
|
*
|
|
* This macro generates three ulp_insn_t values separated by commas, and should
|
|
* be used when defining contents of ulp_insn_t arrays. Second value is not a
|
|
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
|
* function.
|
|
*/
|
|
#define M_BSGT(label_num, imm_value) \
|
|
I_JUMPS(2, imm_value, JUMPS_LE), \
|
|
M_BRANCH(label_num), \
|
|
I_JUMPS(0, imm_value, JUMPS_GE)
|
|
|
|
/**
|
|
* Branch relative if (stage counter [comp_type] [imm_value]) evaluates to true.
|
|
*
|
|
* pc_offset is expressed in words, and can be from -127 to 127
|
|
* imm_value is an 8-bit value to compare the stage counter against
|
|
* comp_type is the type of comparison to perform: JUMPS_LT (<), JUMPS_GE (>=) or JUMPS_LE (<=)
|
|
*/
|
|
#define I_JUMPS(pc_offset, imm_value, comp_type) { .bs = { \
|
|
.imm = imm_value, \
|
|
.unused = 0, \
|
|
.cmp = comp_type, \
|
|
.offset = abs(pc_offset), \
|
|
.sign = (pc_offset >= 0) ? 0 : 1, \
|
|
.sub_opcode = SUB_OPCODE_BS, \
|
|
.opcode = OPCODE_BRANCH } }
|
|
|
|
/**
|
|
* Perform an I2C transaction with a slave device.
|
|
* I_I2C_READ and I_I2C_WRITE are provided for convenience, instead of using this directly.
|
|
*
|
|
* Slave address (in 7-bit format) has to be set in advance into SENS_I2C_SLAVE_ADDRx register field, where x == slave_sel.
|
|
* For read operations, 8 bits of read result is stored into R0 register.
|
|
* For write operations, val will be written to sub_addr at [high_bit:low_bit]. Bits outside of this range are masked.
|
|
*/
|
|
#define I_I2C_RW(sub_addr, val, low_bit, high_bit, slave_sel, rw_bit) { .i2c = {\
|
|
.i2c_addr = sub_addr, \
|
|
.data = val, \
|
|
.low_bits = low_bit, \
|
|
.high_bits = high_bit, \
|
|
.i2c_sel = slave_sel, \
|
|
.unused = 0, \
|
|
.rw = rw_bit, \
|
|
.opcode = OPCODE_I2C } }
|
|
|
|
/**
|
|
* Read a byte from the sub address of an I2C slave, and store the result in R0.
|
|
*
|
|
* Slave address (in 7-bit format) has to be set in advance into SENS_I2C_SLAVE_ADDRx register field, where x == slave_sel.
|
|
*/
|
|
#define I_I2C_READ(slave_sel, sub_addr) I_I2C_RW(sub_addr, 0, 0, 0, slave_sel, SUB_OPCODE_I2C_RD)
|
|
|
|
/**
|
|
* Write a byte to the sub address of an I2C slave.
|
|
*
|
|
* Slave address (in 7-bit format) has to be set in advance into SENS_I2C_SLAVE_ADDRx register field, where x == slave_sel.
|
|
*/
|
|
#define I_I2C_WRITE(slave_sel, sub_addr, val) I_I2C_RW(sub_addr, val, 0, 7, slave_sel, SUB_OPCODE_I2C_WR)
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|