esp-idf/components/esp_ringbuf/test/test_ringbuf.c

690 lines
29 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/ringbuf.h"
#include "driver/timer.h"
#include "esp_heap_caps.h"
#include "esp_spi_flash.h"
#include "unity.h"
#include "test_utils.h"
//Definitions used in multiple test cases
#define TIMEOUT_TICKS 10
#define NO_OF_RB_TYPES 3
#define ITEM_HDR_SIZE 8
#define SMALL_ITEM_SIZE 8
#define LARGE_ITEM_SIZE (2 * SMALL_ITEM_SIZE)
#define BUFFER_SIZE 160 //4Byte aligned size
static const uint8_t small_item[SMALL_ITEM_SIZE] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
static const uint8_t large_item[LARGE_ITEM_SIZE] = { 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17};
static RingbufHandle_t buffer_handles[NO_OF_RB_TYPES];
static SemaphoreHandle_t done_sem;
static void send_item_and_check(RingbufHandle_t handle, const uint8_t *item, size_t item_size, TickType_t ticks_to_wait, bool in_isr)
{
BaseType_t ret;
if (in_isr) {
ret = xRingbufferSendFromISR(handle, (void *)item, item_size, NULL);
} else {
ret = xRingbufferSend(handle, (void *)item, item_size, ticks_to_wait);
}
TEST_ASSERT_MESSAGE(ret == pdTRUE, "Failed to send item");
}
static void receive_check_and_return_item_no_split(RingbufHandle_t handle, const uint8_t *expected_data, size_t expected_size, TickType_t ticks_to_wait, bool in_isr)
{
//Receive item from no-split buffer
size_t item_size;
uint8_t *item;
if (in_isr) {
item = (uint8_t *)xRingbufferReceiveFromISR(handle, &item_size);
} else {
item = (uint8_t *)xRingbufferReceive(handle, &item_size, ticks_to_wait);
}
TEST_ASSERT_MESSAGE(item != NULL, "Failed to receive item");
TEST_ASSERT_MESSAGE(item_size == expected_size, "Item size is incorrect");
//Check data of received item
for (int i = 0; i < item_size; i++) {
TEST_ASSERT_MESSAGE(item[i] == expected_data[i], "Item data is invalid");
}
//Return item
if (in_isr) {
vRingbufferReturnItemFromISR(handle, (void *)item, NULL);
} else {
vRingbufferReturnItem(handle, (void *)item);
}
}
static void receive_check_and_return_item_allow_split(RingbufHandle_t handle, const uint8_t *expected_data, size_t expected_size, TickType_t ticks_to_wait, bool in_isr)
{
//Receive item
size_t item_size1, item_size2;
uint8_t *item1, *item2;
BaseType_t ret;
if (in_isr) {
ret = xRingbufferReceiveSplitFromISR(handle, (void**)&item1, (void **)&item2, &item_size1, &item_size2);
} else {
ret = xRingbufferReceiveSplit(handle, (void**)&item1, (void **)&item2, &item_size1, &item_size2, ticks_to_wait);
}
//= xRingbufferReceiveSplit(handle, (void**)&item1, (void **)&item2, &item_size1, &item_size2, ticks_to_wait);
TEST_ASSERT_MESSAGE(ret == pdTRUE, "Failed to receive item");
TEST_ASSERT_MESSAGE(item1 != NULL, "Failed to receive item");
//Check data of received item(s) and return them
if (item2 == NULL) {
TEST_ASSERT_MESSAGE(item_size1 == expected_size, "Item size is incorrect");
for (int i = 0; i < item_size1; i++) {
TEST_ASSERT_MESSAGE(item1[i] == expected_data[i], "Item data is invalid");
}
//Return item
if (in_isr) {
vRingbufferReturnItemFromISR(handle, (void *)item1, NULL);
} else {
vRingbufferReturnItem(handle, (void *)item1);
}
} else {
//Item was split
TEST_ASSERT_MESSAGE(item_size1 + item_size2 == expected_size, "Total item size is incorrect");
for (int i = 0; i < item_size1; i++) {
TEST_ASSERT_MESSAGE(item1[i] == expected_data[i], "Head item data is invalid");
}
for (int i = 0; i < item_size2; i++) {
TEST_ASSERT_MESSAGE(item2[i] == expected_data[item_size1 + i], "Head item data is invalid");
}
//Return Items
if (in_isr) {
vRingbufferReturnItemFromISR(handle, (void *)item1, NULL);
vRingbufferReturnItemFromISR(handle, (void *)item2, NULL);
} else {
vRingbufferReturnItem(handle, (void *)item1);
vRingbufferReturnItem(handle, (void *)item2);
}
}
}
static void receive_check_and_return_item_byte_buffer(RingbufHandle_t handle, const uint8_t *expected_data, size_t expected_size, TickType_t ticks_to_wait, bool in_isr)
{
//Receive item
size_t item_size;
uint8_t *item;
if (in_isr) {
item = (uint8_t *)xRingbufferReceiveUpToFromISR(handle, &item_size, expected_size);
} else {
item = (uint8_t *)xRingbufferReceiveUpTo(handle, &item_size, ticks_to_wait, expected_size); //Limit amount of bytes returned to the size of one item
}
TEST_ASSERT_MESSAGE(item != NULL, "Failed to receive item");
//Check data of received item
for (int i = 0; i < item_size; i++) {
TEST_ASSERT_MESSAGE(item[i] == expected_data[i], "Item data is invalid");
}
//Return item
if (in_isr) {
vRingbufferReturnItemFromISR(handle, (void *)item, NULL);
} else {
vRingbufferReturnItem(handle, (void *)item);
}
//Check if item wrapped around
if (item_size < expected_size) {
//Item is wrapped, receive second portion
size_t item_size2;
uint8_t *item2;
if (in_isr) {
item2 = (uint8_t *)xRingbufferReceiveUpToFromISR(handle, &item_size2, expected_size - item_size);
} else {
item2 = (uint8_t *)xRingbufferReceiveUpTo(handle, &item_size2, ticks_to_wait, expected_size - item_size);
}
//= (uint8_t *)xRingbufferReceiveUpTo(handle, &item_size2, ticks_to_wait, expected_size - item_size);
TEST_ASSERT_MESSAGE(item2 != NULL, "Failed to receive item");
TEST_ASSERT_MESSAGE(item_size + item_size2 == expected_size, "Total item size is incorrect");
for (int i = 0; i < item_size2; i++) {
TEST_ASSERT_MESSAGE(item2[i] == expected_data[item_size + i], "Item data is invalid");
}
if (in_isr) {
vRingbufferReturnItemFromISR(handle, (void *)item2, NULL);
} else {
vRingbufferReturnItem(handle, (void *)item2);
}
} else {
TEST_ASSERT_MESSAGE(item_size == expected_size, "Item size is incorrect");
}
}
/* ----------------- Basic ring buffer behavior tests cases --------------------
* The following test cases will test basic send, receive, and wrap around
* behavior of each type of ring buffer. Each test case will do the following
* 1) Send multiple items (nearly fill the buffer)
* 2) Receive and check the sent items (also prepares the buffer for a wrap around
* 3) Send a final item that causes a wrap around
* 4) Receive and check the wrapped item
*/
TEST_CASE("Test ring buffer No-Split", "[esp_ringbuf]")
{
//Create buffer
RingbufHandle_t buffer_handle = xRingbufferCreate(BUFFER_SIZE, RINGBUF_TYPE_NOSPLIT);
TEST_ASSERT_MESSAGE(buffer_handle != NULL, "Failed to create ring buffer");
//Calculate number of items to send. Aim to almost fill buffer to setup for wrap around
int no_of_items = (BUFFER_SIZE - (ITEM_HDR_SIZE + SMALL_ITEM_SIZE)) / (ITEM_HDR_SIZE + SMALL_ITEM_SIZE);
//Test sending items
for (int i = 0; i < no_of_items; i++) {
send_item_and_check(buffer_handle, small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
//Test receiving items
for (int i = 0; i < no_of_items; i++) {
receive_check_and_return_item_no_split(buffer_handle, small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
//Write pointer should be near the end, test wrap around
uint32_t write_pos_before, write_pos_after;
vRingbufferGetInfo(buffer_handle, NULL, NULL, &write_pos_before, NULL, NULL);
//Send large item that causes wrap around
send_item_and_check(buffer_handle, large_item, LARGE_ITEM_SIZE, TIMEOUT_TICKS, false);
//Receive wrapped item
receive_check_and_return_item_no_split(buffer_handle, large_item, LARGE_ITEM_SIZE, TIMEOUT_TICKS, false);
vRingbufferGetInfo(buffer_handle, NULL, NULL, &write_pos_after, NULL, NULL);
TEST_ASSERT_MESSAGE(write_pos_after < write_pos_before, "Failed to wrap around");
//Cleanup
vRingbufferDelete(buffer_handle);
}
TEST_CASE("Test ring buffer Allow-Split", "[esp_ringbuf]")
{
//Create buffer
RingbufHandle_t buffer_handle = xRingbufferCreate(BUFFER_SIZE, RINGBUF_TYPE_ALLOWSPLIT);
TEST_ASSERT_MESSAGE(buffer_handle != NULL, "Failed to create ring buffer");
//Calculate number of items to send. Aim to almost fill buffer to setup for wrap around
int no_of_items = (BUFFER_SIZE - (ITEM_HDR_SIZE + SMALL_ITEM_SIZE)) / (ITEM_HDR_SIZE + SMALL_ITEM_SIZE);
//Test sending items
for (int i = 0; i < no_of_items; i++) {
send_item_and_check(buffer_handle, small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
//Test receiving items
for (int i = 0; i < no_of_items; i++) {
receive_check_and_return_item_allow_split(buffer_handle, small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
//Write pointer should be near the end, test wrap around
uint32_t write_pos_before, write_pos_after;
vRingbufferGetInfo(buffer_handle, NULL, NULL, &write_pos_before, NULL, NULL);
//Send large item that causes wrap around
send_item_and_check(buffer_handle, large_item, LARGE_ITEM_SIZE, TIMEOUT_TICKS, false);
//Receive wrapped item
receive_check_and_return_item_allow_split(buffer_handle, large_item, LARGE_ITEM_SIZE, TIMEOUT_TICKS, false);
vRingbufferGetInfo(buffer_handle, NULL, NULL, &write_pos_after, NULL, NULL);
TEST_ASSERT_MESSAGE(write_pos_after < write_pos_before, "Failed to wrap around");
//Cleanup
vRingbufferDelete(buffer_handle);
}
TEST_CASE("Test ring buffer Byte Buffer", "[esp_ringbuf]")
{
//Create buffer
RingbufHandle_t buffer_handle = xRingbufferCreate(BUFFER_SIZE, RINGBUF_TYPE_BYTEBUF);
TEST_ASSERT_MESSAGE(buffer_handle != NULL, "Failed to create ring buffer");
//Calculate number of items to send. Aim to almost fill buffer to setup for wrap around
int no_of_items = (BUFFER_SIZE - SMALL_ITEM_SIZE) / SMALL_ITEM_SIZE;
//Test sending items
for (int i = 0; i < no_of_items; i++) {
send_item_and_check(buffer_handle, small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
//Test receiving items
for (int i = 0; i < no_of_items; i++) {
receive_check_and_return_item_byte_buffer(buffer_handle, small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
//Write pointer should be near the end, test wrap around
uint32_t write_pos_before, write_pos_after;
vRingbufferGetInfo(buffer_handle, NULL, NULL, &write_pos_before, NULL, NULL);
//Send large item that causes wrap around
send_item_and_check(buffer_handle, large_item, LARGE_ITEM_SIZE, TIMEOUT_TICKS, false);
//Receive wrapped item
receive_check_and_return_item_byte_buffer(buffer_handle, large_item, LARGE_ITEM_SIZE, TIMEOUT_TICKS, false);
vRingbufferGetInfo(buffer_handle, NULL, NULL, &write_pos_after, NULL, NULL);
TEST_ASSERT_MESSAGE(write_pos_after < write_pos_before, "Failed to wrap around");
//Cleanup
vRingbufferDelete(buffer_handle);
}
/* ----------------------- Ring buffer queue sets test ------------------------
* The following test case will test receiving from ring buffers that have been
* added to a queue set. The test case will do the following...
* 1) Ring buffer of each type is created and added to the queue set
* 2) A receiving task is created to select from the queue set and read from the appropriate ring buffer
*/
static void queue_set_receiving_task(void *queue_set_handle)
{
QueueSetHandle_t queue_set = (QueueSetHandle_t)queue_set_handle;
//Receive multiple items via queue set
BaseType_t done = pdFALSE;
int no_of_items = BUFFER_SIZE / SMALL_ITEM_SIZE;
int items_rec_count[NO_OF_RB_TYPES] = {0};
while (done != pdTRUE) {
xQueueSetMemberHandle member = xQueueSelectFromSet(queue_set, TIMEOUT_TICKS);
//Read from selected ring buffer
if (xRingbufferCanRead(buffer_handles[0], member) == pdTRUE) {
//No-split buffer
receive_check_and_return_item_no_split(buffer_handles[0], small_item, SMALL_ITEM_SIZE, 0, false);
items_rec_count[0] ++;
} else if (xRingbufferCanRead(buffer_handles[1], member) == pdTRUE) {
//Allow-split buffer
receive_check_and_return_item_allow_split(buffer_handles[1], small_item, SMALL_ITEM_SIZE, 0, false);
items_rec_count[1] ++;
} else if (xRingbufferCanRead(buffer_handles[2], member) == pdTRUE){
//Byte buffer
receive_check_and_return_item_byte_buffer(buffer_handles[2], small_item, SMALL_ITEM_SIZE, 0, false);
items_rec_count[2] ++;
} else {
TEST_ASSERT_MESSAGE( false, "Error with queue set member");
}
//Check for completion
if (items_rec_count[0] == no_of_items &&
items_rec_count[1] == no_of_items &&
items_rec_count[2] == no_of_items) {
done = pdTRUE;
}
}
xSemaphoreGive(done_sem);
vTaskDelete(NULL);
}
TEST_CASE("Test ring buffer with queue sets", "[esp_ringbuf]")
{
QueueSetHandle_t queue_set = xQueueCreateSet(NO_OF_RB_TYPES);
done_sem = xSemaphoreCreateBinary();
//Create ring buffer of each type, then add them to a queue set
for (int i = 0; i < NO_OF_RB_TYPES; i++) {
buffer_handles[i] = xRingbufferCreate(BUFFER_SIZE, i);
TEST_ASSERT_MESSAGE(buffer_handles[i] != NULL, "Failed to create ring buffer");
TEST_ASSERT_MESSAGE(xRingbufferAddToQueueSetRead(buffer_handles[i], queue_set) == pdPASS, "Failed to add to read queue set");
}
//Create a task to send items to each ring buffer
int no_of_items = BUFFER_SIZE / SMALL_ITEM_SIZE;
xTaskCreatePinnedToCore(queue_set_receiving_task, "rec tsk", 2048, (void *)queue_set, UNITY_FREERTOS_PRIORITY + 1 , NULL, 0);
//Send multiple items to each type of ring buffer
for (int i = 0; i < no_of_items; i++) {
for (int j = 0; j < NO_OF_RB_TYPES; j++) {
send_item_and_check(buffer_handles[j], small_item, SMALL_ITEM_SIZE, TIMEOUT_TICKS, false);
}
}
xSemaphoreTake(done_sem, portMAX_DELAY);
vSemaphoreDelete(done_sem);
//Remove and delete ring buffers from queue sets
for (int i = 0; i < NO_OF_RB_TYPES; i++) {
TEST_ASSERT_MESSAGE(xRingbufferRemoveFromQueueSetRead(buffer_handles[i], queue_set) == pdTRUE, "Failed to remove from read queue set");
vRingbufferDelete(buffer_handles[i]);
}
vQueueDelete(queue_set);
}
/* -------------------------- Test ring buffer ISR -----------------------------
* The following test case tests ring buffer ISR API. A timer is used to trigger
* the ISR. The test case will do the following
* 1) ISR will be triggered periodically by timer
* 2) The ISR will iterate through all ring buffer types where each iteration
* will send then receive an item to a ring buffer.
*/
#define TIMER_GROUP 0
#define TIMER_NUMBER 0
#define ISR_ITERATIONS ((BUFFER_SIZE / SMALL_ITEM_SIZE) * 2)
intr_handle_t ringbuffer_isr_handle;
static int buf_type;
static int iterations;
static void ringbuffer_isr(void *arg)
{
//Clear timer interrupt
TIMERG0.int_clr_timers.t0 = 1;
TIMERG0.hw_timer[xPortGetCoreID()].config.alarm_en = 1;
//Test sending to buffer from ISR from ISR
if (buf_type < NO_OF_RB_TYPES) {
send_item_and_check(buffer_handles[buf_type], (void *)small_item, SMALL_ITEM_SIZE, 0, true);
}
//Receive item from ISR
if (buf_type == RINGBUF_TYPE_NOSPLIT) {
//Test receive from ISR for no-split buffer
receive_check_and_return_item_no_split(buffer_handles[buf_type], (void *)small_item, SMALL_ITEM_SIZE, 0, true);
buf_type++;
} else if (buf_type == RINGBUF_TYPE_ALLOWSPLIT) {
//Test send from ISR to allow-split buffer
receive_check_and_return_item_allow_split(buffer_handles[buf_type], (void *)small_item, SMALL_ITEM_SIZE, 0, true);
buf_type++;
} else if (buf_type == RINGBUF_TYPE_BYTEBUF) {
//Test receive from ISR for byte buffer
receive_check_and_return_item_byte_buffer(buffer_handles[buf_type], (void *)small_item, SMALL_ITEM_SIZE, 0, true);
buf_type++;
} else if (buf_type == NO_OF_RB_TYPES) {
//Check if all iterations complete
if (iterations < ISR_ITERATIONS) {
iterations++;
buf_type = 0; //Reset and iterate through each buffer type again
return;
} else {
//Signal complete
BaseType_t task_woken = pdFALSE;
xSemaphoreGiveFromISR(done_sem, &task_woken);
if (task_woken == pdTRUE) {
buf_type++;
portYIELD_FROM_ISR();
}
}
}
}
static void setup_timer(void)
{
//Setup timer for ISR
int timer_group = TIMER_GROUP;
int timer_idx = TIMER_NUMBER;
timer_config_t config;
config.alarm_en = 1;
config.auto_reload = 1;
config.counter_dir = TIMER_COUNT_UP;
config.divider = 10000;
config.intr_type = TIMER_INTR_LEVEL;
config.counter_en = TIMER_PAUSE;
timer_init(timer_group, timer_idx, &config); //Configure timer
timer_pause(timer_group, timer_idx); //Stop timer counter
timer_set_counter_value(timer_group, timer_idx, 0x00000000ULL); //Load counter value
timer_set_alarm_value(timer_group, timer_idx, 20); //Set alarm value
timer_enable_intr(timer_group, timer_idx); //Enable timer interrupt
timer_set_auto_reload(timer_group, timer_idx, 1); //Auto Reload
timer_isr_register(timer_group, timer_idx, ringbuffer_isr, NULL, 0, &ringbuffer_isr_handle); //Set ISR handler
}
static void cleanup_timer(void)
{
timer_disable_intr(TIMER_GROUP, TIMER_NUMBER);
esp_intr_free(ringbuffer_isr_handle);
}
TEST_CASE("Test ring buffer ISR", "[esp_ringbuf]")
{
for (int i = 0; i < NO_OF_RB_TYPES; i++) {
buffer_handles[i] = xRingbufferCreate(BUFFER_SIZE, i);
}
done_sem = xSemaphoreCreateBinary();
buf_type = 0;
iterations = 0;
setup_timer();
//Start timer to trigger ISR
timer_start(TIMER_GROUP, TIMER_NUMBER);
//Wait for ISR to complete multiple iterations
xSemaphoreTake(done_sem, portMAX_DELAY);
//Cleanup
cleanup_timer();
vSemaphoreDelete(done_sem);
for (int i = 0; i < NO_OF_RB_TYPES; i++) {
vRingbufferDelete(buffer_handles[i]);
}
}
/* ---------------------------- Test ring buffer SMP ---------------------------
* The following test case tests each type of ring buffer in an SMP fashion. A
* sending task and a receiving task is created. The sending task will split
* a continuous piece of data into items of random length and send it to a ring
* buffer. The receiving task will receive and check those items.
* Every permutation of core pinning of the sending and receiving task will be
* tested.
*/
#define SRAND_SEED 3 //Arbitrarily chosen srand() seed
#define SMP_TEST_ITERATIONS 4
static const char continuous_data[] = {"A_very_long_string_that_will_be_split_into_"
"items_of_random_lengths_and_sent_to_the_ring_"
"buffer._The_maximum_random_length_will_also_"
"be_increased_over_multiple_iterations_in_this"
"_test"};
#define CONT_DATA_LEN sizeof(continuous_data)
//32-bit aligned size that guarantees a wrap around at some point
#define CONT_DATA_TEST_BUFF_LEN (((CONT_DATA_LEN/2) + 0x03) & ~0x3)
typedef struct {
RingbufHandle_t buffer;
RingbufferType_t type;
} task_args_t;
static SemaphoreHandle_t tasks_done;
static SemaphoreHandle_t tx_done;
static SemaphoreHandle_t rx_done;
static void send_to_buffer(RingbufHandle_t buffer, size_t max_item_size)
{
for (int iter = 0; iter < SMP_TEST_ITERATIONS; iter++) {
size_t bytes_sent = 0; //Number of data bytes sent in this iteration
size_t next_item_size; //Size of next item to send
while (bytes_sent < CONT_DATA_LEN) {
//Get size of next item
next_item_size = rand() % (max_item_size + 1);
if (next_item_size + bytes_sent > CONT_DATA_LEN) {
next_item_size = CONT_DATA_LEN - bytes_sent;
}
//Send item
TEST_ASSERT_MESSAGE(xRingbufferSend(buffer, (void *)&(continuous_data[bytes_sent]), next_item_size, TIMEOUT_TICKS) == pdTRUE, "Failed to send an item");
bytes_sent += next_item_size;
}
xSemaphoreGive(tx_done);
xSemaphoreTake(rx_done, portMAX_DELAY);
}
}
static void read_from_buffer(RingbufHandle_t buffer, RingbufferType_t buf_type, size_t max_rec_size)
{
for (int iter = 0; iter < SMP_TEST_ITERATIONS; iter++) {
size_t bytes_rec = 0; //Number of data bytes received in this iteration
while (bytes_rec < CONT_DATA_LEN) {
size_t item_size, item_size2; //Possible for allow split buffers to receive two items
char *item_data, *item_data2;
//Select appropriate receive function for type of ring buffer
if (buf_type == RINGBUF_TYPE_NOSPLIT) {
item_data = (char *)xRingbufferReceive(buffer, &item_size, TIMEOUT_TICKS);
} else if (buf_type == RINGBUF_TYPE_ALLOWSPLIT) {
BaseType_t ret = xRingbufferReceiveSplit(buffer, (void **)&item_data, (void **)&item_data2, &item_size, &item_size2, TIMEOUT_TICKS);
TEST_ASSERT_MESSAGE(ret == pdTRUE, "Failed to receive any item");
} else {
item_data = (char *)xRingbufferReceiveUpTo(buffer, &item_size, TIMEOUT_TICKS, max_rec_size);
}
//Check received item and return it
TEST_ASSERT_MESSAGE(item_data != NULL, "Failed to receive an item");
if (buf_type == RINGBUF_TYPE_BYTEBUF) {
TEST_ASSERT_MESSAGE(item_size <= max_rec_size, "Received data exceeds max size");
}
for (int i = 0; i < item_size; i++) {
//Check item_data is valid
TEST_ASSERT_MESSAGE(item_data[i] == continuous_data[bytes_rec + i], "Received data is corrupted");
}
bytes_rec += item_size;
vRingbufferReturnItem(buffer, item_data);
if (buf_type == RINGBUF_TYPE_ALLOWSPLIT && item_data2 != NULL) {
//Check item_data2 is valid
for (int i = 0; i < item_size2; i++) {
TEST_ASSERT_MESSAGE(item_data2[i] == continuous_data[bytes_rec + i], "Received split data is corrupted");
}
bytes_rec += item_size2;
vRingbufferReturnItem(buffer, item_data2);
}
}
TEST_ASSERT_MESSAGE(bytes_rec == CONT_DATA_LEN, "Total length of received data is incorrect");
xSemaphoreGive(rx_done);
xSemaphoreTake(tx_done, portMAX_DELAY);
}
}
static void send_task(void *args)
{
RingbufHandle_t buffer = ((task_args_t *)args)->buffer;
size_t max_item_len = xRingbufferGetMaxItemSize(buffer);
//Test sending short length items
send_to_buffer(buffer, 1);
//Test sending mid length items
send_to_buffer(buffer, max_item_len/2);
//Test sending long length items
send_to_buffer(buffer, max_item_len);
vTaskDelete(NULL);
}
static void rec_task(void *args)
{
RingbufHandle_t buffer = ((task_args_t *)args)->buffer;
size_t max_rec_len = xRingbufferGetMaxItemSize(buffer);
//Test receiving short length items
read_from_buffer(buffer, ((task_args_t *)args)->type, 1);
//Test receiving mid length items
read_from_buffer(buffer, ((task_args_t *)args)->type, max_rec_len/2);
//Test receiving long length items
read_from_buffer(buffer, ((task_args_t *)args)->type, max_rec_len);
xSemaphoreGive(tasks_done);
vTaskDelete(NULL);
}
static void setup(void)
{
ets_printf("Size of test data: %d\n", CONT_DATA_LEN);
tx_done = xSemaphoreCreateBinary(); //Semaphore to indicate send is done for a particular iteration
rx_done = xSemaphoreCreateBinary(); //Semaphore to indicate receive is done for a particular iteration
tasks_done = xSemaphoreCreateBinary(); //Semaphore used to to indicate send and receive tasks completed running
srand(SRAND_SEED); //Seed RNG
}
static void cleanup(void)
{
//Cleanup
vSemaphoreDelete(tx_done);
vSemaphoreDelete(rx_done);
vSemaphoreDelete(tasks_done);
}
TEST_CASE("Test ring buffer SMP", "[esp_ringbuf]")
{
setup();
//Iterate through buffer types (No split, split, then byte buff)
for (RingbufferType_t buf_type = 0; buf_type < RINGBUF_TYPE_MAX; buf_type++) {
//Create buffer
task_args_t task_args;
task_args.buffer = xRingbufferCreate(CONT_DATA_TEST_BUFF_LEN, buf_type); //Create buffer of selected type
task_args.type = buf_type;
TEST_ASSERT_MESSAGE(task_args.buffer != NULL, "Failed to create ring buffer");
for (int prior_mod = -1; prior_mod < 2; prior_mod++) { //Test different relative priorities
//Test every permutation of core affinity
for (int send_core = 0; send_core < portNUM_PROCESSORS; send_core++) {
for (int rec_core = 0; rec_core < portNUM_PROCESSORS; rec_core ++) {
ets_printf("Type: %d, PM: %d, SC: %d, RC: %d\n", buf_type, prior_mod, send_core, rec_core);
xTaskCreatePinnedToCore(send_task, "send tsk", 2048, (void *)&task_args, 10 + prior_mod, NULL, send_core);
xTaskCreatePinnedToCore(rec_task, "rec tsk", 2048, (void *)&task_args, 10, NULL, rec_core);
xSemaphoreTake(tasks_done, portMAX_DELAY);
vTaskDelay(5); //Allow idle to clean up
}
}
}
//Delete ring buffer
vRingbufferDelete(task_args.buffer);
vTaskDelay(10);
}
cleanup();
}
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
TEST_CASE("Test static ring buffer SMP", "[esp_ringbuf]")
{
setup();
//Iterate through buffer types (No split, split, then byte buff)
for (RingbufferType_t buf_type = 0; buf_type < RINGBUF_TYPE_MAX; buf_type++) {
StaticRingbuffer_t *buffer_struct;
uint8_t *buffer_storage;
//Allocate memory and create semaphores
#if CONFIG_SPIRAM_USE_CAPS_ALLOC //When SPIRAM can only be allocated using heap_caps_malloc()
buffer_struct = (StaticRingbuffer_t *)heap_caps_malloc(sizeof(StaticRingbuffer_t), MALLOC_CAP_SPIRAM);
buffer_storage = (uint8_t *)heap_caps_malloc(sizeof(uint8_t)*CONT_DATA_TEST_BUFF_LEN, MALLOC_CAP_SPIRAM);
#else //Case where SPIRAM is disabled or when SPIRAM is allocatable through malloc()
buffer_struct = (StaticRingbuffer_t *)malloc(sizeof(StaticRingbuffer_t));
buffer_storage = (uint8_t *)malloc(sizeof(uint8_t)*CONT_DATA_TEST_BUFF_LEN);
#endif
TEST_ASSERT(buffer_struct != NULL && buffer_storage != NULL);
//Create buffer
task_args_t task_args;
task_args.buffer = xRingbufferCreateStatic(CONT_DATA_TEST_BUFF_LEN, buf_type, buffer_storage, buffer_struct); //Create buffer of selected type
task_args.type = buf_type;
TEST_ASSERT_MESSAGE(task_args.buffer != NULL, "Failed to create ring buffer");
for (int prior_mod = -1; prior_mod < 2; prior_mod++) { //Test different relative priorities
//Test every permutation of core affinity
for (int send_core = 0; send_core < portNUM_PROCESSORS; send_core++) {
for (int rec_core = 0; rec_core < portNUM_PROCESSORS; rec_core ++) {
ets_printf("Type: %d, PM: %d, SC: %d, RC: %d\n", buf_type, prior_mod, send_core, rec_core);
xTaskCreatePinnedToCore(send_task, "send tsk", 2048, (void *)&task_args, 10 + prior_mod, NULL, send_core);
xTaskCreatePinnedToCore(rec_task, "rec tsk", 2048, (void *)&task_args, 10, NULL, rec_core);
xSemaphoreTake(tasks_done, portMAX_DELAY);
vTaskDelay(5); //Allow idle to clean up
}
}
}
//Delete ring buffer
vRingbufferDelete(task_args.buffer);
//Deallocate memory
free(buffer_storage);
free(buffer_struct);
vTaskDelay(10);
}
cleanup();
}
#endif
/* -------------------------- Test ring buffer IRAM ------------------------- */
static IRAM_ATTR __attribute__((noinline)) bool iram_ringbuf_test(void)
{
bool result = true;
spi_flash_guard_get()->start(); // Disables flash cache
RingbufHandle_t handle = xRingbufferCreate(CONT_DATA_TEST_BUFF_LEN, RINGBUF_TYPE_NOSPLIT);
result = result && (handle != NULL);
xRingbufferGetMaxItemSize(handle);
vRingbufferDelete(handle);
spi_flash_guard_get()->end(); // Re-enables flash cache
return result;
}
TEST_CASE("Test ringbuffer functions work with flash cache disabled", "[esp_ringbuf]")
{
TEST_ASSERT( iram_ringbuf_test() );
}