esp-idf/components/esp32/system_api.c

401 lines
12 KiB
C

// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_system.h"
#include "esp_attr.h"
#include "esp_wifi.h"
#include "esp_private/wifi.h"
#include "esp_log.h"
#include "sdkconfig.h"
#include "esp32/rom/efuse.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/uart.h"
#include "soc/dport_reg.h"
#include "soc/gpio_periph.h"
#include "soc/efuse_periph.h"
#include "soc/rtc_periph.h"
#include "soc/timer_periph.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/rtc_wdt.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/xtensa_api.h"
#include "esp_heap_caps.h"
#include "esp_private/system_internal.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
static const char* TAG = "system_api";
static uint8_t base_mac_addr[6] = { 0 };
#define SHUTDOWN_HANDLERS_NO 2
static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
void system_init(void)
{
}
esp_err_t esp_base_mac_addr_set(uint8_t *mac)
{
if (mac == NULL) {
ESP_LOGE(TAG, "Base MAC address is NULL");
abort();
}
memcpy(base_mac_addr, mac, 6);
return ESP_OK;
}
esp_err_t esp_base_mac_addr_get(uint8_t *mac)
{
uint8_t null_mac[6] = {0};
if (memcmp(base_mac_addr, null_mac, 6) == 0) {
ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
return ESP_ERR_INVALID_MAC;
}
memcpy(mac, base_mac_addr, 6);
return ESP_OK;
}
esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
{
uint8_t version;
esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_VER, &version, 8);
if (version != 1) {
ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
return ESP_ERR_INVALID_VERSION;
}
uint8_t efuse_crc;
esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_CRC, &efuse_crc, 8);
uint8_t calc_crc = esp_crc8(mac, 6);
if (efuse_crc != calc_crc) {
ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
return ESP_ERR_INVALID_CRC;
}
return ESP_OK;
}
esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
{
uint8_t efuse_crc;
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &efuse_crc, 8);
uint8_t calc_crc = esp_crc8(mac, 6);
if (efuse_crc != calc_crc) {
// Small range of MAC addresses are accepted even if CRC is invalid.
// These addresses are reserved for Espressif internal use.
uint32_t mac_high = ((uint32_t)mac[0] << 8) | mac[1];
if ((mac_high & 0xFFFF) == 0x18fe) {
uint32_t mac_low = ((uint32_t)mac[2] << 24) | ((uint32_t)mac[3] << 16) | ((uint32_t)mac[4] << 8) | mac[5];
if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
return ESP_OK;
}
} else {
ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
abort();
}
}
return ESP_OK;
}
esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac)
{
uint8_t idx;
if (local_mac == NULL || universal_mac == NULL) {
ESP_LOGE(TAG, "mac address param is NULL");
return ESP_ERR_INVALID_ARG;
}
memcpy(local_mac, universal_mac, 6);
for (idx = 0; idx < 64; idx++) {
local_mac[0] = universal_mac[0] | 0x02;
local_mac[0] ^= idx << 2;
if (memcmp(local_mac, universal_mac, 6)) {
break;
}
}
return ESP_OK;
}
esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
{
uint8_t efuse_mac[6];
if (mac == NULL) {
ESP_LOGE(TAG, "mac address param is NULL");
return ESP_ERR_INVALID_ARG;
}
if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
ESP_LOGE(TAG, "mac type is incorrect");
return ESP_ERR_INVALID_ARG;
}
_Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
|| UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
"incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
esp_efuse_mac_get_default(efuse_mac);
}
switch (type) {
case ESP_MAC_WIFI_STA:
memcpy(mac, efuse_mac, 6);
break;
case ESP_MAC_WIFI_SOFTAP:
if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
memcpy(mac, efuse_mac, 6);
mac[5] += 1;
}
else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
esp_derive_local_mac(mac, efuse_mac);
}
break;
case ESP_MAC_BT:
memcpy(mac, efuse_mac, 6);
if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
mac[5] += 2;
}
else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
mac[5] += 1;
}
break;
case ESP_MAC_ETH:
if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
memcpy(mac, efuse_mac, 6);
mac[5] += 3;
}
else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
efuse_mac[5] += 1;
esp_derive_local_mac(mac, efuse_mac);
}
break;
default:
ESP_LOGW(TAG, "incorrect mac type");
break;
}
return ESP_OK;
}
esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
{
for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
if (shutdown_handlers[i] == handler) {
return ESP_ERR_INVALID_STATE;
} else if (shutdown_handlers[i] == NULL) {
shutdown_handlers[i] = handler;
return ESP_OK;
}
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handler)
{
for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
if (shutdown_handlers[i] == handler) {
shutdown_handlers[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
void esp_restart_noos(void) __attribute__ ((noreturn));
void IRAM_ATTR esp_restart(void)
{
int i;
for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
if (shutdown_handlers[i]) {
shutdown_handlers[i]();
}
}
// Disable scheduler on this core.
vTaskSuspendAll();
esp_restart_noos();
}
/* "inner" restart function for after RTOS, interrupts & anything else on this
* core are already stopped. Stalls other core, resets hardware,
* triggers restart.
*/
void IRAM_ATTR esp_restart_noos(void)
{
// Disable interrupts
xt_ints_off(0xFFFFFFFF);
// Enable RTC watchdog for 1 second
rtc_wdt_protect_off();
rtc_wdt_disable();
rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns);
rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns);
rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
rtc_wdt_flashboot_mode_enable();
// Reset and stall the other CPU.
// CPU must be reset before stalling, in case it was running a s32c1i
// instruction. This would cause memory pool to be locked by arbiter
// to the stalled CPU, preventing current CPU from accessing this pool.
const uint32_t core_id = xPortGetCoreID();
const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
esp_cpu_reset(other_core_id);
esp_cpu_stall(other_core_id);
// Other core is now stalled, can access DPORT registers directly
esp_dport_access_int_abort();
// Disable TG0/TG1 watchdogs
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG0.wdt_config0.en = 0;
TIMERG0.wdt_wprotect=0;
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config0.en = 0;
TIMERG1.wdt_wprotect=0;
// Flush any data left in UART FIFOs
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
uart_tx_wait_idle(2);
// Disable cache
Cache_Read_Disable(0);
Cache_Read_Disable(1);
// 2nd stage bootloader reconfigures SPI flash signals.
// Reset them to the defaults expected by ROM.
WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
// Reset wifi/bluetooth/ethernet/sdio (bb/mac)
DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
// Reset timer/spi/uart
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST);
DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
// Set CPU back to XTAL source, no PLL, same as hard reset
rtc_clk_cpu_freq_set_xtal();
// Clear entry point for APP CPU
DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
// Reset CPUs
if (core_id == 0) {
// Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
esp_cpu_reset(1);
esp_cpu_reset(0);
} else {
// Running on APP CPU: need to reset PRO CPU and unstall it,
// then reset APP CPU
esp_cpu_reset(0);
esp_cpu_unstall(0);
esp_cpu_reset(1);
}
while(true) {
;
}
}
void system_restart(void) __attribute__((alias("esp_restart")));
uint32_t esp_get_free_heap_size( void )
{
return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
}
uint32_t esp_get_minimum_free_heap_size( void )
{
return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
}
uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
const char* system_get_sdk_version(void)
{
return "master";
}
const char* esp_get_idf_version(void)
{
return IDF_VER;
}
static void get_chip_info_esp32(esp_chip_info_t* out_info)
{
uint32_t reg = REG_READ(EFUSE_BLK0_RDATA3_REG);
memset(out_info, 0, sizeof(*out_info));
out_info->model = CHIP_ESP32;
if ((reg & EFUSE_RD_CHIP_VER_REV1_M) != 0) {
out_info->revision = 1;
}
if ((reg & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
out_info->cores = 2;
} else {
out_info->cores = 1;
}
out_info->features = CHIP_FEATURE_WIFI_BGN;
if ((reg & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
}
int package = (reg & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
out_info->features |= CHIP_FEATURE_EMB_FLASH;
}
}
void esp_chip_info(esp_chip_info_t* out_info)
{
// Only ESP32 is supported now, in the future call one of the
// chip-specific functions based on sdkconfig choice
return get_chip_info_esp32(out_info);
}