esp-idf/components/newlib/time.c
Ivan Grokhotkov 6353bc40d7 Add support for 32k XTAL as RTC_SLOW_CLK source
- RTC_CNTL_SLOWCLK_FREQ define is removed; rtc_clk_slow_freq_get_hz
  function can be used instead to get an approximate RTC_SLOW_CLK
  frequency

- Clock calibration is performed at startup. The value is saved and used
  for timekeeping and when entering deep sleep.

- When using the 32k XTAL, startup code will wait for the oscillator to
  start up. This can be possibly optimized by starting a separate task
  to wait for oscillator startup, and performing clock switch in that
  task.

- Fix a bug that 32k XTAL would be disabled in rtc_clk_init.

- Fix a rounding error in rtc_clk_cal, which caused systematic frequency
  error.

- Fix an overflow bug which caused rtc_clk_cal to timeout early if the
  slow_clk_cycles argument would exceed certain value

- Improve 32k XTAL oscillator startup time by introducing bootstrapping
  code, which uses internal pullup/pulldown resistors on 32K_N/32K_P
  pins to set better initial conditions for the oscillator.
2017-04-26 12:43:22 +08:00

231 lines
6.6 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <reent.h>
#include <sys/types.h>
#include <sys/reent.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/lock.h>
#include <rom/rtc.h>
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_clk.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/frc_timer_reg.h"
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "sdkconfig.h"
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_RTC 1
#endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_FRC1 1
#endif
#ifdef WITH_RTC
static uint64_t get_rtc_time_us()
{
uint64_t ticks = rtc_time_get();
return (uint32_t) ((ticks * esp_clk_slowclk_cal_get()) >> RTC_CLK_CAL_FRACT);
}
#endif // WITH_RTC
// s_boot_time: time from Epoch to the first boot time
#ifdef WITH_RTC
// when RTC is used to persist time, two RTC_STORE registers are used to store boot time
#elif defined(WITH_FRC1)
static uint64_t s_boot_time;
#endif
#if defined(WITH_RTC) || defined(WITH_FRC1)
static _lock_t s_boot_time_lock;
#endif
#ifdef WITH_FRC1
#define FRC1_PRESCALER 16
#define FRC1_PRESCALER_CTL 2
#define FRC1_TICK_FREQ (APB_CLK_FREQ / FRC1_PRESCALER)
#define FRC1_TICKS_PER_US (FRC1_TICK_FREQ / 1000000)
#define FRC1_ISR_PERIOD_US (FRC_TIMER_LOAD_VALUE(0) / FRC1_TICKS_PER_US)
// Counter frequency will be APB_CLK_FREQ / 16 = 5 MHz
// 1 tick = 0.2 us
// Timer has 23 bit counter, so interrupt will fire each 1677721.6 microseconds.
// This is not a whole number, so timer will drift by 0.3 ppm due to rounding error.
static volatile uint64_t s_microseconds = 0;
static void IRAM_ATTR frc_timer_isr()
{
// Write to FRC_TIMER_INT_REG may not take effect in some cases (root cause TBD)
// This extra write works around this issue.
// FRC_TIMER_LOAD_REG(0) is used here, but any other DPORT register address can also be used.
WRITE_PERI_REG(FRC_TIMER_LOAD_REG(0), FRC_TIMER_LOAD_VALUE(0));
WRITE_PERI_REG(FRC_TIMER_INT_REG(0), FRC_TIMER_INT_CLR);
s_microseconds += FRC1_ISR_PERIOD_US;
}
#endif // WITH_FRC1
#if defined(WITH_RTC) || defined(WITH_FRC1)
static void set_boot_time(uint64_t time_us)
{
_lock_acquire(&s_boot_time_lock);
#ifdef WITH_RTC
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
#else
s_boot_time = time_us;
#endif
_lock_release(&s_boot_time_lock);
}
static uint64_t get_boot_time()
{
uint64_t result;
_lock_acquire(&s_boot_time_lock);
#ifdef WITH_RTC
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
#else
result = s_boot_time;
#endif
_lock_release(&s_boot_time_lock);
return result;
}
#endif //defined(WITH_RTC) || defined(WITH_FRC1)
void esp_setup_time_syscalls()
{
#if defined( WITH_FRC1 )
#if defined( WITH_RTC )
// initialize time from RTC clock
s_microseconds = get_rtc_time_us();
#endif //WITH_RTC
// set up timer
WRITE_PERI_REG(FRC_TIMER_CTRL_REG(0), \
FRC_TIMER_AUTOLOAD | \
(FRC1_PRESCALER_CTL << FRC_TIMER_PRESCALER_S) | \
FRC_TIMER_EDGE_INT);
WRITE_PERI_REG(FRC_TIMER_LOAD_REG(0), FRC_TIMER_LOAD_VALUE(0));
SET_PERI_REG_MASK(FRC_TIMER_CTRL_REG(0),
FRC_TIMER_ENABLE | \
FRC_TIMER_INT_ENABLE);
esp_intr_alloc(ETS_TIMER1_INTR_SOURCE, 0, &frc_timer_isr, NULL, NULL);
#endif // WITH_FRC1
}
clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
{
clock_t t = xTaskGetTickCount() * (portTICK_PERIOD_MS * CLK_TCK / 1000);
ptms->tms_cstime = 0;
ptms->tms_cutime = 0;
ptms->tms_stime = t;
ptms->tms_utime = 0;
struct timeval tv = {0, 0};
_gettimeofday_r(r, &tv, NULL);
return (clock_t) tv.tv_sec;
}
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
static uint64_t get_time_since_boot()
{
uint64_t microseconds = 0;
#ifdef WITH_FRC1
uint32_t timer_ticks_before = READ_PERI_REG(FRC_TIMER_COUNT_REG(0));
microseconds = s_microseconds;
uint32_t timer_ticks_after = READ_PERI_REG(FRC_TIMER_COUNT_REG(0));
if (timer_ticks_after > timer_ticks_before) {
// overflow happened at some point between getting
// timer_ticks_before and timer_ticks_after
// microseconds value is ambiguous, get a new one
microseconds = s_microseconds;
}
microseconds += (FRC_TIMER_LOAD_VALUE(0) - timer_ticks_after) / FRC1_TICKS_PER_US;
#elif defined(WITH_RTC)
microseconds = get_rtc_time_us();
#endif
return microseconds;
}
#endif // defined( WITH_FRC1 ) || defined( WITH_RTC )
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
{
(void) tz;
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
if (tv) {
uint64_t microseconds = get_boot_time() + get_time_since_boot();
tv->tv_sec = microseconds / 1000000;
tv->tv_usec = microseconds % 1000000;
}
return 0;
#else
__errno_r(r) = ENOSYS;
return -1;
#endif // defined( WITH_FRC1 ) || defined( WITH_RTC )
}
int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
(void) tz;
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
if (tv) {
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
uint64_t since_boot = get_time_since_boot();
set_boot_time(now - since_boot);
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
uint32_t system_get_time(void)
{
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
return get_time_since_boot();
#else
return 0;
#endif
}
uint32_t system_get_current_time(void) __attribute__((alias("system_get_time")));
uint32_t system_relative_time(uint32_t current_time)
{
return system_get_time() - current_time;
}
uint64_t system_get_rtc_time(void)
{
#ifdef WITH_RTC
return get_rtc_time_us();
#else
return 0;
#endif
}