esp-idf/components/freemodbus/port/portserial.c
aleks aaa1cb6eec freemodbus: change critical sections to semaphore mutex
revert changes made in mbrtu.c, mbascii.c
change critical section type to semaphore mutex instead of spin lock

Closes: https://github.com/espressif/esp-idf/issues/3009
2019-03-07 09:59:40 +01:00

285 lines
11 KiB
C

/*
* FreeModbus Libary: ESP32 Port Demo Application
* Copyright (C) 2010 Christian Walter <cwalter@embedded-solutions.at>
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* IF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* File: $Id: portother.c,v 1.1 2010/06/06 13:07:20 wolti Exp $
*/
#include "port.h"
#include "driver/uart.h"
#include "freertos/queue.h" // for queue support
#include "soc/uart_reg.h"
#include "driver/gpio.h"
#include "esp_log.h" // for esp_log
#include "esp_err.h" // for ESP_ERROR_CHECK macro
/* ----------------------- Modbus includes ----------------------------------*/
#include "mb.h"
#include "mbport.h"
#include "sdkconfig.h" // for KConfig options
// Definitions of UART default pin numbers
#define MB_UART_RXD (CONFIG_MB_UART_RXD)
#define MB_UART_TXD (CONFIG_MB_UART_TXD)
#define MB_UART_RTS (CONFIG_MB_UART_RTS)
#define MB_BAUD_RATE_DEFAULT (115200)
#define MB_QUEUE_LENGTH (CONFIG_MB_QUEUE_LENGTH)
#define MB_SERIAL_TASK_PRIO (CONFIG_MB_SERIAL_TASK_PRIO)
#define MB_SERIAL_TASK_STACK_SIZE (CONFIG_MB_SERIAL_TASK_STACK_SIZE)
#define MB_SERIAL_TOUT (3) // 3.5*8 = 28 ticks, TOUT=3 -> ~24..33 ticks
// Set buffer size for transmission
#define MB_SERIAL_BUF_SIZE (CONFIG_MB_SERIAL_BUF_SIZE)
// Note: This code uses mixed coding standard from legacy IDF code and used freemodbus stack
// A queue to handle UART event.
static QueueHandle_t xMbUartQueue;
static TaskHandle_t xMbTaskHandle;
static const CHAR *TAG = "MB_SERIAL";
// The UART hardware port number
static UCHAR ucUartNumber = UART_NUM_2;
static BOOL bRxStateEnabled = FALSE; // Receiver enabled flag
static BOOL bTxStateEnabled = FALSE; // Transmitter enabled flag
static UCHAR ucBuffer[MB_SERIAL_BUF_SIZE]; // Temporary buffer to transfer received data to modbus stack
static USHORT uiRxBufferPos = 0; // position in the receiver buffer
void vMBPortSerialEnable(BOOL bRxEnable, BOOL bTxEnable)
{
// This function can be called from xMBRTUTransmitFSM() of different task
if (bRxEnable) {
//uart_enable_rx_intr(ucUartNumber);
bRxStateEnabled = TRUE;
vTaskResume(xMbTaskHandle); // Resume receiver task
} else {
vTaskSuspend(xMbTaskHandle); // Block receiver task
bRxStateEnabled = FALSE;
}
if (bTxEnable) {
bTxStateEnabled = TRUE;
} else {
bTxStateEnabled = FALSE;
}
}
static void vMBPortSerialRxPoll(size_t xEventSize)
{
USHORT usLength;
if (bRxStateEnabled) {
if (xEventSize > 0) {
xEventSize = (xEventSize > MB_SERIAL_BUF_SIZE) ? MB_SERIAL_BUF_SIZE : xEventSize;
uiRxBufferPos = ((uiRxBufferPos + xEventSize) >= MB_SERIAL_BUF_SIZE) ? 0 : uiRxBufferPos;
// Get received packet into Rx buffer
usLength = uart_read_bytes(ucUartNumber, &ucBuffer[uiRxBufferPos], xEventSize, portMAX_DELAY);
for(USHORT usCnt = 0; usCnt < usLength; usCnt++ ) {
// Call the Modbus stack callback function and let it fill the buffers.
( void )pxMBFrameCBByteReceived(); // calls callback xMBRTUReceiveFSM() to execute MB state machine
}
// The buffer is transferred into Modbus stack and is not needed here any more
uart_flush_input(ucUartNumber);
// Send event EV_FRAME_RECEIVED to allow stack process packet
#ifndef MB_TIMER_PORT_ENABLED
// Let the stack know that T3.5 time is expired and data is received
(void)pxMBPortCBTimerExpired(); // calls callback xMBRTUTimerT35Expired();
#endif
ESP_LOGD(TAG, "RX_T35_timeout: %d(bytes in buffer)\n", (uint32_t)usLength);
}
}
}
BOOL xMBPortSerialTxPoll()
{
BOOL bStatus = FALSE;
USHORT usCount = 0;
BOOL bNeedPoll = FALSE;
if( bTxStateEnabled ) {
// Continue while all response bytes put in buffer or out of buffer
while((bNeedPoll == FALSE) && (usCount++ < MB_SERIAL_BUF_SIZE)) {
// Calls the modbus stack callback function to let it fill the UART transmit buffer.
bNeedPoll = pxMBFrameCBTransmitterEmpty( ); // calls callback xMBRTUTransmitFSM();
}
ESP_LOGD(TAG, "MB_TX_buffer sent: (%d) bytes\n", (uint16_t)usCount);
bStatus = TRUE;
}
return bStatus;
}
static void vUartTask(void *pvParameters)
{
uart_event_t xEvent;
for(;;) {
if (xQueueReceive(xMbUartQueue, (void*)&xEvent, portMAX_DELAY) == pdTRUE) {
ESP_LOGD(TAG, "MB_uart[%d] event:", ucUartNumber);
//vMBPortTimersEnable();
switch(xEvent.type) {
//Event of UART receving data
case UART_DATA:
ESP_LOGD(TAG,"Receive data, len: %d", xEvent.size);
// Read received data and send it to modbus stack
vMBPortSerialRxPoll(xEvent.size);
break;
//Event of HW FIFO overflow detected
case UART_FIFO_OVF:
ESP_LOGD(TAG, "hw fifo overflow\n");
xQueueReset(xMbUartQueue);
break;
//Event of UART ring buffer full
case UART_BUFFER_FULL:
ESP_LOGD(TAG, "ring buffer full\n");
xQueueReset(xMbUartQueue);
uart_flush_input(ucUartNumber);
break;
//Event of UART RX break detected
case UART_BREAK:
ESP_LOGD(TAG, "uart rx break\n");
break;
//Event of UART parity check error
case UART_PARITY_ERR:
ESP_LOGD(TAG, "uart parity error\n");
break;
//Event of UART frame error
case UART_FRAME_ERR:
ESP_LOGD(TAG, "uart frame error\n");
break;
default:
ESP_LOGD(TAG, "uart event type: %d\n", xEvent.type);
break;
}
}
}
vTaskDelete(NULL);
}
BOOL xMBPortSerialInit(UCHAR ucPORT, ULONG ulBaudRate,
UCHAR ucDataBits, eMBParity eParity)
{
esp_err_t xErr = ESP_OK;
MB_PORT_CHECK((eParity <= MB_PAR_EVEN), FALSE, "mb serial set parity failure.");
// Set communication port number
ucUartNumber = ucPORT;
// Configure serial communication parameters
UCHAR ucParity = UART_PARITY_DISABLE;
UCHAR ucData = UART_DATA_8_BITS;
switch(eParity){
case MB_PAR_NONE:
ucParity = UART_PARITY_DISABLE;
break;
case MB_PAR_ODD:
ucParity = UART_PARITY_ODD;
break;
case MB_PAR_EVEN:
ucParity = UART_PARITY_EVEN;
break;
}
switch(ucDataBits){
case 5:
ucData = UART_DATA_5_BITS;
break;
case 6:
ucData = UART_DATA_6_BITS;
break;
case 7:
ucData = UART_DATA_7_BITS;
break;
case 8:
ucData = UART_DATA_8_BITS;
break;
default:
ucData = UART_DATA_8_BITS;
break;
}
uart_config_t xUartConfig = {
.baud_rate = ulBaudRate,
.data_bits = ucData,
.parity = ucParity,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 2,
};
// Set UART config
xErr = uart_param_config(ucUartNumber, &xUartConfig);
MB_PORT_CHECK((xErr == ESP_OK),
FALSE, "mb config failure, uart_param_config() returned (0x%x).", (uint32_t)xErr);
// Install UART driver, and get the queue.
xErr = uart_driver_install(ucUartNumber, MB_SERIAL_BUF_SIZE, MB_SERIAL_BUF_SIZE,
MB_QUEUE_LENGTH, &xMbUartQueue, ESP_INTR_FLAG_LOWMED);
MB_PORT_CHECK((xErr == ESP_OK), FALSE,
"mb serial driver failure, uart_driver_install() returned (0x%x).", (uint32_t)xErr);
#ifndef MB_TIMER_PORT_ENABLED
// Set timeout for TOUT interrupt (T3.5 modbus time)
xErr = uart_set_rx_timeout(ucUartNumber, MB_SERIAL_TOUT);
MB_PORT_CHECK((xErr == ESP_OK), FALSE,
"mb serial set rx timeout failure, uart_set_rx_timeout() returned (0x%x).", (uint32_t)xErr);
#endif
// Create a task to handle UART events
BaseType_t xStatus = xTaskCreate(vUartTask, "uart_queue_task", MB_SERIAL_TASK_STACK_SIZE,
NULL, MB_SERIAL_TASK_PRIO, &xMbTaskHandle);
if (xStatus != pdPASS) {
vTaskDelete(xMbTaskHandle);
// Force exit from function with failure
MB_PORT_CHECK(FALSE, FALSE,
"mb stack serial task creation error. xTaskCreate() returned (0x%x).",
(uint32_t)xStatus);
} else {
vTaskSuspend(xMbTaskHandle); // Suspend serial task while stack is not started
}
uiRxBufferPos = 0;
return TRUE;
}
void vMBPortSerialClose()
{
(void)vTaskSuspend(xMbTaskHandle);
(void)vTaskDelete(xMbTaskHandle);
ESP_ERROR_CHECK(uart_driver_delete(ucUartNumber));
}
BOOL xMBPortSerialPutByte(CHAR ucByte)
{
// Send one byte to UART transmission buffer
// This function is called by Modbus stack
UCHAR ucLength = uart_write_bytes(ucUartNumber, &ucByte, 1);
return (ucLength == 1);
}
// Get one byte from intermediate RX buffer
BOOL xMBPortSerialGetByte(CHAR* pucByte)
{
assert(pucByte != NULL);
MB_PORT_CHECK((uiRxBufferPos < MB_SERIAL_BUF_SIZE),
FALSE, "mb stack serial get byte failure.");
*pucByte = ucBuffer[uiRxBufferPos];
uiRxBufferPos++;
return TRUE;
}