Ivan Grokhotkov 2eabed161a Merge branch 'feature/merge_multiple_github_prs' into 'master'
Multiple Github PRs

See merge request idf/esp-idf!4146
2019-01-24 15:14:47 +08:00

780 lines
26 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "rom/ets_sys.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "rom/gpio.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/dport_reg.h"
#include "soc/efuse_reg.h"
#include "soc/apb_ctrl_reg.h"
#include "i2c_rtc_clk.h"
#include "soc_log.h"
#include "sdkconfig.h"
#include "xtensa/core-macros.h"
#include "rtc_clk_common.h"
/* Frequency of the 8M oscillator is 8.5MHz +/- 5%, at the default DCAP setting */
#define RTC_FAST_CLK_FREQ_8M 8500000
#define RTC_SLOW_CLK_FREQ_150K 150000
#define RTC_SLOW_CLK_FREQ_8MD256 (RTC_FAST_CLK_FREQ_8M / 256)
#define RTC_SLOW_CLK_FREQ_32K 32768
/* BBPLL configuration values */
#define BBPLL_ENDIV5_VAL_320M 0x43
#define BBPLL_BBADC_DSMP_VAL_320M 0x84
#define BBPLL_ENDIV5_VAL_480M 0xc3
#define BBPLL_BBADC_DSMP_VAL_480M 0x74
#define BBPLL_IR_CAL_DELAY_VAL 0x18
#define BBPLL_IR_CAL_EXT_CAP_VAL 0x20
#define BBPLL_OC_ENB_FCAL_VAL 0x9a
#define BBPLL_OC_ENB_VCON_VAL 0x00
#define BBPLL_BBADC_CAL_7_0_VAL 0x00
#define APLL_SDM_STOP_VAL_1 0x09
#define APLL_SDM_STOP_VAL_2_REV0 0x69
#define APLL_SDM_STOP_VAL_2_REV1 0x49
#define APLL_CAL_DELAY_1 0x0f
#define APLL_CAL_DELAY_2 0x3f
#define APLL_CAL_DELAY_3 0x1f
#define XTAL_32K_DAC_VAL 1
#define XTAL_32K_DRES_VAL 3
#define XTAL_32K_DBIAS_VAL 0
#define XTAL_32K_BOOTSTRAP_DAC_VAL 3
#define XTAL_32K_BOOTSTRAP_DRES_VAL 3
#define XTAL_32K_BOOTSTRAP_DBIAS_VAL 0
#define XTAL_32K_BOOTSTRAP_TIME_US 7
#define XTAL_32K_EXT_DAC_VAL 2
#define XTAL_32K_EXT_DRES_VAL 3
#define XTAL_32K_EXT_DBIAS_VAL 1
/* Delays for various clock sources to be enabled/switched.
* All values are in microseconds.
* TODO: some of these are excessive, and should be reduced.
*/
#define DELAY_PLL_DBIAS_RAISE 3
#define DELAY_PLL_ENABLE_WITH_150K 80
#define DELAY_PLL_ENABLE_WITH_32K 160
#define DELAY_FAST_CLK_SWITCH 3
#define DELAY_SLOW_CLK_SWITCH 300
#define DELAY_8M_ENABLE 50
/* Core voltage needs to be increased in two cases:
* 1. running at 240 MHz
* 2. running with 80MHz Flash frequency
*
* There is a record in efuse which indicates the proper voltage for these two cases.
*/
#define RTC_CNTL_DBIAS_HP_VOLT (RTC_CNTL_DBIAS_1V25 - (REG_GET_FIELD(EFUSE_BLK0_RDATA5_REG, EFUSE_RD_VOL_LEVEL_HP_INV)))
#ifdef CONFIG_ESPTOOLPY_FLASHFREQ_80M
#define DIG_DBIAS_80M_160M RTC_CNTL_DBIAS_HP_VOLT
#else
#define DIG_DBIAS_80M_160M RTC_CNTL_DBIAS_1V10
#endif
#define DIG_DBIAS_240M RTC_CNTL_DBIAS_HP_VOLT
#define DIG_DBIAS_XTAL RTC_CNTL_DBIAS_1V10
#define DIG_DBIAS_2M RTC_CNTL_DBIAS_1V00
#define RTC_PLL_FREQ_320M 320
#define RTC_PLL_FREQ_480M 480
static void rtc_clk_cpu_freq_to_8m();
static void rtc_clk_bbpll_disable();
static void rtc_clk_bbpll_enable();
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz);
static bool rtc_clk_cpu_freq_from_mhz_internal(int mhz, rtc_cpu_freq_t* out_val);
// Current PLL frequency, in MHZ (320 or 480). Zero if PLL is not enabled.
static int s_cur_pll_freq;
static const char* TAG = "rtc_clk";
static void rtc_clk_32k_enable_common(int dac, int dres, int dbias)
{
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG,
RTC_IO_X32P_RDE | RTC_IO_X32P_RUE | RTC_IO_X32N_RUE |
RTC_IO_X32N_RDE | RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DAC_XTAL_32K, dac);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DRES_XTAL_32K, dres);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DBIAS_XTAL_32K, dbias);
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
}
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
rtc_clk_32k_enable_common(XTAL_32K_DAC_VAL, XTAL_32K_DRES_VAL, XTAL_32K_DBIAS_VAL);
} else {
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
}
}
void rtc_clk_32k_enable_external()
{
rtc_clk_32k_enable_common(XTAL_32K_EXT_DAC_VAL, XTAL_32K_EXT_DRES_VAL, XTAL_32K_EXT_DBIAS_VAL);
}
/* Helping external 32kHz crystal to start up.
* External crystal connected to outputs GPIO32 GPIO33.
* Forms N pulses with a frequency of about 32KHz on the outputs of the crystal.
*/
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
if (cycle){
const uint32_t pin_32 = 32;
const uint32_t pin_33 = 33;
const uint32_t mask_32 = (1 << (pin_32 - 32));
const uint32_t mask_33 = (1 << (pin_33 - 32));
gpio_pad_select_gpio(pin_32);
gpio_pad_select_gpio(pin_33);
gpio_output_set_high(mask_32, mask_33, mask_32 | mask_33, 0);
const uint32_t delay_us = (1000000 / RTC_SLOW_CLK_FREQ_32K / 2);
while(cycle){
gpio_output_set_high(mask_32, mask_33, mask_32 | mask_33, 0);
ets_delay_us(delay_us);
gpio_output_set_high(mask_33, mask_32, mask_32 | mask_33, 0);
ets_delay_us(delay_us);
cycle--;
}
gpio_output_set_high(0, 0, 0, mask_32 | mask_33); // disable pins
}
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32P_RUE | RTC_IO_X32N_RDE);
ets_delay_us(XTAL_32K_BOOTSTRAP_TIME_US);
rtc_clk_32k_enable_common(XTAL_32K_BOOTSTRAP_DAC_VAL,
XTAL_32K_BOOTSTRAP_DRES_VAL, XTAL_32K_BOOTSTRAP_DBIAS_VAL);
}
bool rtc_clk_32k_enabled()
{
return GET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K) != 0;
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
/* no need to wait once enabled by software */
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, 1);
if (d256_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
ets_delay_us(DELAY_8M_ENABLE);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
}
bool rtc_clk_8m_enabled()
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
bool rtc_clk_8md256_enabled()
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
{
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
if (!enable &&
REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) != RTC_CNTL_SOC_CLK_SEL_PLL) {
REG_SET_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
} else {
REG_CLR_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
}
if (enable) {
uint8_t sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV1;
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
if (is_rev0) {
sdm0 = 0;
sdm1 = 0;
sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV0;
}
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM2, sdm2);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM0, sdm0);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM1, sdm1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, sdm_stop_val_2);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
/* calibration */
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
/* wait for calibration end */
while (!(I2C_READREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_CAL_END))) {
/* use ets_delay_us so the RTC bus doesn't get flooded */
ets_delay_us(1);
}
}
}
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN,
(slow_freq == RTC_SLOW_FREQ_32K_XTAL) ? 1 : 0);
ets_delay_us(DELAY_SLOW_CLK_SWITCH);
}
rtc_slow_freq_t rtc_clk_slow_freq_get()
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
}
uint32_t rtc_clk_slow_freq_get_hz()
{
switch(rtc_clk_slow_freq_get()) {
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_150K;
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
}
return 0;
}
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
ets_delay_us(DELAY_FAST_CLK_SWITCH);
}
rtc_fast_freq_t rtc_clk_fast_freq_get()
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
}
void rtc_clk_bbpll_configure(rtc_xtal_freq_t xtal_freq, int pll_freq)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t div10_8;
uint8_t lref;
uint8_t dcur;
uint8_t bw;
if (pll_freq == RTC_PLL_FREQ_320M) {
/* Raise the voltage, if needed */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
/* Configure 320M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 32;
div10_8 = 0;
lref = 0;
dcur = 6;
bw = 3;
break;
case RTC_XTAL_FREQ_26M:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
case RTC_XTAL_FREQ_24M:
div_ref = 11;
div7_0 = 224;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
default:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 0;
dcur = 0;
bw = 0;
break;
}
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_320M);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_320M);
} else {
/* Raise the voltage */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
ets_delay_us(DELAY_PLL_DBIAS_RAISE);
/* Configure 480M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 28;
div10_8 = 0;
lref = 0;
dcur = 6;
bw = 3;
break;
case RTC_XTAL_FREQ_26M:
div_ref = 12;
div7_0 = 144;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
case RTC_XTAL_FREQ_24M:
div_ref = 11;
div7_0 = 144;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
default:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 0;
dcur = 0;
bw = 0;
break;
}
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_480M);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_480M);
}
uint8_t i2c_bbpll_lref = (lref << 7) | (div10_8 << 4) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (bw << 6) | dcur;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_LREF, i2c_bbpll_lref);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
uint32_t delay_pll_en = (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_RTC) ?
DELAY_PLL_ENABLE_WITH_150K : DELAY_PLL_ENABLE_WITH_32K;
ets_delay_us(delay_pll_en);
s_cur_pll_freq = pll_freq;
}
/**
* Switch to XTAL frequency. Does not disable the PLL.
*/
void rtc_clk_cpu_freq_to_xtal(int freq, int div)
{
ets_update_cpu_frequency(freq);
/* set divider from XTAL to APB clock */
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, div - 1);
/* adjust ref_tick */
REG_WRITE(APB_CTRL_XTAL_TICK_CONF_REG, freq * MHZ / REF_CLK_FREQ - 1);
/* switch clock source */
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_XTL);
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, 0); /* clear DPORT_CPUPERIOD_SEL */
rtc_clk_apb_freq_update(freq * MHZ);
/* lower the voltage */
if (freq <= 2) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_2M);
} else {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
}
}
static void rtc_clk_cpu_freq_to_8m()
{
ets_update_cpu_frequency(8);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, 0);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_8M);
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, 0); // clear DPORT_CPUPERIOD_SEL
rtc_clk_apb_freq_update(RTC_FAST_CLK_FREQ_8M);
}
static void rtc_clk_bbpll_disable()
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD |
RTC_CNTL_BBPLL_I2C_FORCE_PD);
s_cur_pll_freq = 0;
/* is APLL under force power down? */
uint32_t apll_fpd = REG_GET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
if (apll_fpd) {
/* then also power down the internal I2C bus */
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
}
}
static void rtc_clk_bbpll_enable()
{
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BIAS_I2C_FORCE_PD | RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
/* reset BBPLL configuration */
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_DELAY, BBPLL_IR_CAL_DELAY_VAL);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_EXT_CAP, BBPLL_IR_CAL_EXT_CAP_VAL);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_ENB_FCAL, BBPLL_OC_ENB_FCAL_VAL);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_ENB_VCON, BBPLL_OC_ENB_VCON_VAL);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_CAL_7_0, BBPLL_BBADC_CAL_7_0_VAL);
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
{
int dbias = DIG_DBIAS_80M_160M;
int per_conf = 0;
if (cpu_freq_mhz == 80) {
/* nothing to do */
} else if (cpu_freq_mhz == 160) {
per_conf = 1;
} else if (cpu_freq_mhz == 240) {
dbias = DIG_DBIAS_240M;
per_conf = 2;
} else {
SOC_LOGE(TAG, "invalid frequency");
abort();
}
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, per_conf);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, dbias);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
ets_update_cpu_frequency(cpu_freq_mhz);
rtc_clk_wait_for_slow_cycle();
}
void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq)
{
rtc_cpu_freq_config_t config;
rtc_clk_cpu_freq_to_config(cpu_freq, &config);
rtc_clk_cpu_freq_set_config(&config);
}
void rtc_clk_cpu_freq_set_fast(rtc_cpu_freq_t cpu_freq)
{
rtc_cpu_freq_config_t config;
rtc_clk_cpu_freq_to_config(cpu_freq, &config);
rtc_clk_cpu_freq_set_config_fast(&config);
}
void rtc_clk_cpu_freq_set_xtal()
{
int freq_mhz = (int) rtc_clk_xtal_freq_get();
rtc_clk_cpu_freq_to_xtal(freq_mhz, 1);
rtc_clk_wait_for_slow_cycle();
rtc_clk_bbpll_disable();
}
rtc_cpu_freq_t rtc_clk_cpu_freq_get()
{
rtc_cpu_freq_config_t config;
rtc_clk_cpu_freq_get_config(&config);
rtc_cpu_freq_t freq = RTC_CPU_FREQ_XTAL;
rtc_clk_cpu_freq_from_mhz_internal(config.freq_mhz, &freq);
return freq;
}
uint32_t rtc_clk_cpu_freq_value(rtc_cpu_freq_t cpu_freq)
{
switch (cpu_freq) {
case RTC_CPU_FREQ_XTAL:
return ((uint32_t) rtc_clk_xtal_freq_get()) * MHZ;
case RTC_CPU_FREQ_2M:
return 2 * MHZ;
case RTC_CPU_FREQ_80M:
return 80 * MHZ;
case RTC_CPU_FREQ_160M:
return 160 * MHZ;
case RTC_CPU_FREQ_240M:
return 240 * MHZ;
default:
SOC_LOGE(TAG, "invalid rtc_cpu_freq_t value");
return 0;
}
}
static bool rtc_clk_cpu_freq_from_mhz_internal(int mhz, rtc_cpu_freq_t* out_val)
{
if (mhz == 240) {
*out_val = RTC_CPU_FREQ_240M;
} else if (mhz == 160) {
*out_val = RTC_CPU_FREQ_160M;
} else if (mhz == 80) {
*out_val = RTC_CPU_FREQ_80M;
} else if (mhz == (int) rtc_clk_xtal_freq_get()) {
*out_val = RTC_CPU_FREQ_XTAL;
} else if (mhz == 2) {
*out_val = RTC_CPU_FREQ_2M;
} else {
return false;
}
return true;
}
bool rtc_clk_cpu_freq_from_mhz(int mhz, rtc_cpu_freq_t* out_val)
{
return rtc_clk_cpu_freq_from_mhz_internal(mhz, out_val);
}
void rtc_clk_cpu_freq_to_config(rtc_cpu_freq_t cpu_freq, rtc_cpu_freq_config_t* out_config)
{
uint32_t source_freq_mhz;
rtc_cpu_freq_src_t source;
uint32_t freq_mhz;
uint32_t divider;
switch (cpu_freq) {
case RTC_CPU_FREQ_XTAL:
case RTC_CPU_FREQ_2M:
source_freq_mhz = rtc_clk_xtal_freq_get();
source = RTC_CPU_FREQ_SRC_XTAL;
if (cpu_freq == RTC_CPU_FREQ_2M) {
freq_mhz = 2;
divider = source_freq_mhz / 2;
} else {
freq_mhz = source_freq_mhz;
divider = 1;
}
break;
case RTC_CPU_FREQ_80M:
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 4;
freq_mhz = 80;
break;
case RTC_CPU_FREQ_160M:
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 2;
freq_mhz = 160;
break;
case RTC_CPU_FREQ_240M:
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 2;
freq_mhz = 240;
break;
default:
SOC_LOGE(TAG, "invalid rtc_cpu_freq_t value");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = divider,
.freq_mhz = freq_mhz
};
}
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t* out_config)
{
uint32_t source_freq_mhz;
rtc_cpu_freq_src_t source;
uint32_t divider;
uint32_t real_freq_mhz;
uint32_t xtal_freq = (uint32_t) rtc_clk_xtal_freq_get();
if (freq_mhz <= xtal_freq) {
divider = xtal_freq / freq_mhz;
real_freq_mhz = (xtal_freq + divider / 2) / divider; /* round */
if (real_freq_mhz != freq_mhz) {
// no suitable divider
return false;
}
source_freq_mhz = xtal_freq;
source = RTC_CPU_FREQ_SRC_XTAL;
} else if (freq_mhz == 80) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 4;
} else if (freq_mhz == 160) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_320M;
divider = 2;
} else if (freq_mhz == 240) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 2;
} else {
// unsupported frequency
return false;
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.div = divider,
.source_freq_mhz = source_freq_mhz,
.freq_mhz = real_freq_mhz
};
return true;
}
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t* config)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
if (soc_clk_sel != RTC_CNTL_SOC_CLK_SEL_XTL) {
rtc_clk_cpu_freq_to_xtal(xtal_freq, 1);
rtc_clk_wait_for_slow_cycle();
}
if (soc_clk_sel == RTC_CNTL_SOC_CLK_SEL_PLL) {
rtc_clk_bbpll_disable();
}
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
if (config->div > 1) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
}
} else if (config->source == RTC_CPU_FREQ_SRC_PLL) {
rtc_clk_bbpll_enable();
rtc_clk_wait_for_slow_cycle();
rtc_clk_bbpll_configure(rtc_clk_xtal_freq_get(), config->source_freq_mhz);
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else if (config->source == RTC_CPU_FREQ_SRC_8M) {
rtc_clk_cpu_freq_to_8m();
}
}
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t* out_config)
{
rtc_cpu_freq_src_t source;
uint32_t source_freq_mhz;
uint32_t div;
uint32_t freq_mhz;
uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
switch (soc_clk_sel) {
case RTC_CNTL_SOC_CLK_SEL_XTL: {
source = RTC_CPU_FREQ_SRC_XTAL;
div = REG_GET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT) + 1;
source_freq_mhz = (uint32_t) rtc_clk_xtal_freq_get();
freq_mhz = source_freq_mhz / div;
}
break;
case RTC_CNTL_SOC_CLK_SEL_PLL: {
source = RTC_CPU_FREQ_SRC_PLL;
uint32_t cpuperiod_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
if (cpuperiod_sel == 0) {
source_freq_mhz = RTC_PLL_FREQ_320M;
div = 4;
freq_mhz = 80;
} else if (cpuperiod_sel == 1) {
source_freq_mhz = RTC_PLL_FREQ_320M;
div = 2;
freq_mhz = 160;
} else if (cpuperiod_sel == 2) {
source_freq_mhz = RTC_PLL_FREQ_480M;
div = 2;
freq_mhz = 240;
} else {
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
break;
}
case RTC_CNTL_SOC_CLK_SEL_8M:
source = RTC_CPU_FREQ_SRC_8M;
source_freq_mhz = 8;
div = 1;
freq_mhz = source_freq_mhz;
break;
case RTC_CNTL_SOC_CLK_SEL_APLL:
default:
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = div,
.freq_mhz = freq_mhz
};
}
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t* config)
{
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
} else if (config->source == RTC_CPU_FREQ_SRC_PLL &&
s_cur_pll_freq == config->source_freq_mhz) {
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else {
/* fallback */
rtc_clk_cpu_freq_set_config(config);
}
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get()
{
/* We may have already written XTAL value into RTC_XTAL_FREQ_REG */
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if (!clk_val_is_valid(xtal_freq_reg)) {
return RTC_XTAL_FREQ_AUTO;
}
return reg_val_to_clk_val(xtal_freq_reg & ~RTC_DISABLE_ROM_LOG);
}
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
{
uint32_t reg = READ_PERI_REG(RTC_XTAL_FREQ_REG) & RTC_DISABLE_ROM_LOG;
if (reg == RTC_DISABLE_ROM_LOG) {
xtal_freq |= 1;
}
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
}
uint32_t rtc_clk_apb_freq_get()
{
uint32_t freq_hz = reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
// round to the nearest MHz
freq_hz += MHZ / 2;
uint32_t remainder = freq_hz % MHZ;
return freq_hz - remainder;
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal() __attribute__((alias("rtc_clk_xtal_freq_get")));