mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
f80d6f8c21
Closes IDF-1791
444 lines
15 KiB
C
444 lines
15 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include "unity.h"
|
|
|
|
#include "soc/soc_caps.h"
|
|
|
|
#if SOC_DIG_SIGN_SUPPORTED
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/efuse.h"
|
|
#include "esp32s2/rom/digital_signature.h"
|
|
#include "esp32s2/rom/aes.h"
|
|
#include "esp32s2/rom/sha.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/efuse.h"
|
|
#include "esp32c3/rom/digital_signature.h"
|
|
#include "esp32c3/rom/hmac.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/efuse.h"
|
|
#include "esp32s3/rom/digital_signature.h"
|
|
#include "esp32s3/rom/aes.h"
|
|
#include "esp32s3/rom/sha.h"
|
|
#endif
|
|
|
|
#include "esp_ds.h"
|
|
|
|
#define NUM_RESULTS 10
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
#define DS_MAX_BITS (4096)
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#define DS_MAX_BITS (ETS_DS_MAX_BITS)
|
|
#endif
|
|
|
|
typedef struct {
|
|
uint8_t iv[ETS_DS_IV_LEN];
|
|
ets_ds_p_data_t p_data;
|
|
uint8_t expected_c[ETS_DS_C_LEN];
|
|
uint8_t hmac_key_idx;
|
|
uint32_t expected_results[NUM_RESULTS][DS_MAX_BITS / 32];
|
|
} encrypt_testcase_t;
|
|
|
|
// Generated header digital_signature_test_cases_<bits>.h (by gen_digital_signature_tests.py) defines
|
|
// NUM_HMAC_KEYS, test_hmac_keys, NUM_MESSAGES, NUM_CASES, test_messages[], test_cases[]
|
|
// Some adaptations were made: removed the 512 bit case and changed RSA lengths to the enums from esp_ds.h
|
|
#if DS_MAX_BITS == 4096
|
|
#define RSA_LEN (ESP_DS_RSA_4096)
|
|
#include "digital_signature_test_cases_4096.h"
|
|
#elif DS_MAX_BITS == 3072
|
|
#define RSA_LEN (ESP_DS_RSA_3072)
|
|
#include "digital_signature_test_cases_3072.h"
|
|
#endif
|
|
|
|
_Static_assert(NUM_RESULTS == NUM_MESSAGES, "expected_results size should be the same as NUM_MESSAGES in generated header");
|
|
|
|
TEST_CASE("Digital Signature Parameter Encryption data NULL", "[hw_crypto] [ds]")
|
|
{
|
|
const char iv [32];
|
|
esp_ds_p_data_t p_data;
|
|
const char key [32];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(NULL, iv, &p_data, key));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Parameter Encryption iv NULL", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t data;
|
|
esp_ds_p_data_t p_data;
|
|
const char key [32];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, NULL, &p_data, key));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Parameter Encryption p_data NULL", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t data;
|
|
const char iv [32];
|
|
const char key [32];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, NULL, key));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Parameter Encryption key NULL", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t data;
|
|
const char iv [32];
|
|
esp_ds_p_data_t p_data;
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, &p_data, NULL));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Parameter Encryption", "[hw_crypto] [ds]")
|
|
{
|
|
for (int i = 0; i < NUM_CASES; i++) {
|
|
printf("Encrypting test case %d...\n", i);
|
|
const encrypt_testcase_t *t = &test_cases[i];
|
|
esp_ds_data_t result = { };
|
|
esp_ds_p_data_t p_data;
|
|
|
|
memcpy(p_data.Y, t->p_data.Y, DS_MAX_BITS / 8);
|
|
memcpy(p_data.M, t->p_data.M, DS_MAX_BITS / 8);
|
|
memcpy(p_data.Rb, t->p_data.Rb, DS_MAX_BITS / 8);
|
|
p_data.M_prime = t->p_data.M_prime;
|
|
p_data.length = t->p_data.length;
|
|
|
|
esp_err_t r = esp_ds_encrypt_params(&result, t->iv, &p_data,
|
|
test_hmac_keys[t->hmac_key_idx]);
|
|
printf("Encrypting test case %d done\n", i);
|
|
TEST_ASSERT_EQUAL(ESP_OK, r);
|
|
TEST_ASSERT_EQUAL(t->p_data.length, result.rsa_length);
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->iv, result.iv, ETS_DS_IV_LEN);
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_c, result.c, ETS_DS_C_LEN);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Digital Signature start Invalid message", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = { };
|
|
ds_data.rsa_length = RSA_LEN;
|
|
esp_ds_context_t *ctx;
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(NULL, &ds_data, HMAC_KEY1, &ctx));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature start Invalid data", "[hw_crypto] [ds]")
|
|
{
|
|
const char *message = "test";
|
|
esp_ds_context_t *ctx;
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, NULL, HMAC_KEY1, &ctx));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature start Invalid context", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = RSA_LEN;
|
|
const char *message = "test";
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature RSA length 0", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = 0;
|
|
const char *message = "test";
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature RSA length too long", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = 128;
|
|
const char *message = "test";
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature start HMAC key out of range", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = RSA_LEN;
|
|
esp_ds_context_t *ctx;
|
|
const char *message = "test";
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY5 + 1, &ctx));
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY0 - 1, &ctx));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature finish Invalid signature ptr", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_context_t *ctx = NULL;
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(NULL, ctx));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature finish Invalid context", "[hw_crypto] [ds]")
|
|
{
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(signature_data, NULL));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking Invalid message", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = { };
|
|
ds_data.rsa_length = RSA_LEN;
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(NULL, &ds_data, HMAC_KEY1, signature_data));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking Invalid data", "[hw_crypto] [ds]")
|
|
{
|
|
const char *message = "test";
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, NULL, HMAC_KEY1, signature_data));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking Invalid signature ptr", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = RSA_LEN;
|
|
const char *message = "test";
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, NULL));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking RSA length 0", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = 0;
|
|
const char *message = "test";
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking RSA length too long", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = 128;
|
|
const char *message = "test";
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking HMAC key out of range", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = 127;
|
|
const char *message = "test";
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY5 + 1, signature_data));
|
|
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY0 - 1, signature_data));
|
|
}
|
|
|
|
#if CONFIG_IDF_ENV_FPGA
|
|
|
|
static void burn_hmac_keys(void)
|
|
{
|
|
printf("Burning %d HMAC keys to efuse...\n", NUM_HMAC_KEYS);
|
|
for (int i = 0; i < NUM_HMAC_KEYS; i++) {
|
|
// TODO: vary the purpose across the keys
|
|
ets_efuse_purpose_t purpose = ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE;
|
|
|
|
// starting from block 1, block 0 occupied with HMAC upstream test key
|
|
int __attribute__((unused)) ets_status = ets_efuse_write_key(ETS_EFUSE_BLOCK_KEY1 + i,
|
|
purpose,
|
|
test_hmac_keys[i], 32);
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
if (ets_status == ESP_OK) {
|
|
printf("written DS test key to block [%d]!\n", ETS_EFUSE_BLOCK_KEY1 + i);
|
|
} else {
|
|
printf("writing DS test key to block [%d] failed, maybe written already\n", ETS_EFUSE_BLOCK_KEY1 + i);
|
|
}
|
|
#endif
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32C3
|
|
/* verify the keys are what we expect (possibly they're already burned, doesn't matter but they have to match) */
|
|
uint8_t block_compare[32];
|
|
for (int i = 0; i < NUM_HMAC_KEYS; i++) {
|
|
printf("Checking key %d...\n", i);
|
|
memcpy(block_compare, (void *)ets_efuse_get_read_register_address(ETS_EFUSE_BLOCK_KEY1 + i), 32);
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(test_hmac_keys[i], block_compare, 32);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// This test uses the HMAC_KEY0 eFuse key which hasn't been burned by burn_hmac_keys().
|
|
// HMAC_KEY0 is usually used for HMAC upstream (user access) tests.
|
|
TEST_CASE("Digital Signature wrong HMAC key purpose (FPGA only)", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = RSA_LEN;
|
|
esp_ds_context_t *ctx;
|
|
const char *message = "test";
|
|
|
|
// HMAC fails in that case because it checks for the correct purpose
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
|
|
#endif
|
|
}
|
|
|
|
// This test uses the HMAC_KEY0 eFuse key which hasn't been burned by burn_hmac_keys().
|
|
// HMAC_KEY0 is usually used for HMAC upstream (user access) tests.
|
|
TEST_CASE("Digital Signature Blocking wrong HMAC key purpose (FPGA only)", "[hw_crypto] [ds]")
|
|
{
|
|
esp_ds_data_t ds_data = {};
|
|
ds_data.rsa_length = RSA_LEN;
|
|
const char *message = "test";
|
|
uint8_t signature_data [128 * 4];
|
|
|
|
// HMAC fails in that case because it checks for the correct purpose
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
|
|
#endif
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Operation (FPGA only)", "[hw_crypto] [ds]")
|
|
{
|
|
burn_hmac_keys();
|
|
|
|
for (int i = 0; i < NUM_CASES; i++) {
|
|
printf("Running test case %d...\n", i);
|
|
const encrypt_testcase_t *t = &test_cases[i];
|
|
|
|
// copy encrypt parameter test case into ds_data structure
|
|
esp_ds_data_t ds_data = { };
|
|
memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
|
|
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
|
|
ds_data.rsa_length = t->p_data.length;
|
|
|
|
for (int j = 0; j < NUM_MESSAGES; j++) {
|
|
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
|
|
printf(" ... message %d\n", j);
|
|
|
|
esp_ds_context_t *esp_ds_ctx;
|
|
|
|
esp_err_t ds_r = esp_ds_start_sign(test_messages[j],
|
|
&ds_data,
|
|
t->hmac_key_idx + 1,
|
|
&esp_ds_ctx);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
|
|
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[j], signature, sizeof(signature));
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32C3
|
|
ets_hmac_invalidate_downstream(ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Blocking Operation (FPGA only)", "[hw_crypto] [ds]")
|
|
{
|
|
burn_hmac_keys();
|
|
|
|
for (int i = 0; i < NUM_CASES; i++) {
|
|
printf("Running test case %d...\n", i);
|
|
const encrypt_testcase_t *t = &test_cases[i];
|
|
|
|
// copy encrypt parameter test case into ds_data structure
|
|
esp_ds_data_t ds_data = { };
|
|
memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
|
|
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
|
|
ds_data.rsa_length = t->p_data.length;
|
|
|
|
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
esp_ds_context_t *esp_ds_ctx;
|
|
|
|
esp_err_t ds_r = esp_ds_start_sign(test_messages[0],
|
|
&ds_data,
|
|
t->hmac_key_idx + 1,
|
|
&esp_ds_ctx);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
|
|
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
esp_err_t ds_r = esp_ds_sign(test_messages[0],
|
|
&ds_data,
|
|
t->hmac_key_idx + 1,
|
|
signature);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
#endif
|
|
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[0], signature, sizeof(signature));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto] [ds]")
|
|
{
|
|
burn_hmac_keys();
|
|
|
|
// Set up a valid test case
|
|
const encrypt_testcase_t *t = &test_cases[0];
|
|
esp_ds_data_t ds_data = { };
|
|
memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
|
|
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
|
|
ds_data.rsa_length = t->p_data.length;
|
|
|
|
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
|
|
const uint8_t zero[DS_MAX_BITS / 8] = { 0 };
|
|
|
|
// Corrupt the IV one bit at a time, rerun and expect failure
|
|
for (int bit = 0; bit < 128; bit++) {
|
|
printf("Corrupting IV bit %d...\n", bit);
|
|
ds_data.iv[bit / 8] ^= 1 << (bit % 8);
|
|
esp_ds_context_t *esp_ds_ctx;
|
|
|
|
esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
|
|
#endif
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
|
|
|
|
ds_data.iv[bit / 8] ^= 1 << (bit % 8);
|
|
}
|
|
|
|
// Corrupt encrypted key data one bit at a time, rerun and expect failure
|
|
printf("Corrupting C...\n");
|
|
for (int bit = 0; bit < ETS_DS_C_LEN * 8; bit++) {
|
|
printf("Corrupting C bit %d...\n", bit);
|
|
ds_data.c[bit / 8] ^= 1 << (bit % 8);
|
|
esp_ds_context_t *esp_ds_ctx;
|
|
|
|
esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
|
|
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
|
|
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
|
|
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
|
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
|
|
#endif
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
|
|
|
|
ds_data.c[bit / 8] ^= 1 << (bit % 8);
|
|
}
|
|
}
|
|
|
|
#endif // CONFIG_IDF_ENV_FPGA
|
|
#endif // SOC_DIG_SIGN_SUPPORTED
|