mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
367 lines
9.8 KiB
C
367 lines
9.8 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Unlicense OR CC0-1.0
|
|
*/
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "esp_partition.h"
|
|
#include "esp_flash.h"
|
|
#include "esp_system.h"
|
|
#include "spi_flash_mmap.h"
|
|
#include "esp_core_dump.h"
|
|
|
|
#include "esp_private/cache_utils.h"
|
|
#include "esp_memory_utils.h"
|
|
#include "esp_heap_caps.h"
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
|
|
#include "hal/mpu_hal.h"
|
|
#include "rom/cache.h"
|
|
|
|
/* Test utility function */
|
|
|
|
extern void esp_restart_noos(void) __attribute__ ((noreturn));
|
|
|
|
void die(const char* msg)
|
|
{
|
|
printf("Test error: %s\n\n", msg);
|
|
fflush(stdout);
|
|
fsync(fileno(stdout));
|
|
usleep(1000);
|
|
/* Don't use abort here as it would enter the panic handler */
|
|
esp_restart_noos();
|
|
}
|
|
|
|
/* implementations of the test functions */
|
|
|
|
void test_abort(void)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
void IRAM_ATTR test_abort_cache_disabled(void)
|
|
{
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
abort();
|
|
}
|
|
|
|
void test_int_wdt(void)
|
|
{
|
|
portDISABLE_INTERRUPTS();
|
|
while (true) {
|
|
;
|
|
}
|
|
}
|
|
|
|
void test_task_wdt_cpu0(void)
|
|
{
|
|
while (true) {
|
|
;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
|
|
|
|
__attribute__((optimize("-O0")))
|
|
static void test_hw_stack_guard_cpu(void* arg)
|
|
{
|
|
uint32_t buf[256];
|
|
test_hw_stack_guard_cpu(arg);
|
|
}
|
|
|
|
void test_hw_stack_guard_cpu0(void)
|
|
{
|
|
xTaskCreatePinnedToCore(test_hw_stack_guard_cpu, "HWSG0", 512, NULL, 1, NULL, 0);
|
|
while (true) {
|
|
vTaskDelay(100);
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
void test_hw_stack_guard_cpu1(void)
|
|
{
|
|
xTaskCreatePinnedToCore(test_hw_stack_guard_cpu, "HWSG1", 512, NULL, 1, NULL, 1);
|
|
while (true) {
|
|
vTaskDelay(100);
|
|
}
|
|
}
|
|
|
|
#endif // CONFIG_FREERTOS_UNICORE
|
|
#endif // CONFIG_ESP_SYSTEM_HW_STACK_GUARD
|
|
|
|
#if CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH && CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
|
|
|
|
static void stack_in_extram(void* arg) {
|
|
(void) arg;
|
|
/* Abort instead of using a load/store prohibited to prevent a sanitize error */
|
|
abort();
|
|
}
|
|
|
|
void test_panic_extram_stack(void) {
|
|
/* Start by initializing a Task which has a stack in external RAM */
|
|
StaticTask_t handle;
|
|
const uint32_t stack_size = 8192;
|
|
void* stack = heap_caps_malloc(stack_size, MALLOC_CAP_SPIRAM);
|
|
|
|
/* Make sure the stack is in external RAM */
|
|
if (!esp_ptr_external_ram(stack)) {
|
|
die("Allocated stack is not in external RAM!\n");
|
|
}
|
|
|
|
xTaskCreateStatic(stack_in_extram, "Task_stack_extram", stack_size, NULL, 4, (StackType_t*) stack, &handle);
|
|
|
|
vTaskDelay(1000);
|
|
}
|
|
|
|
|
|
#endif // ESP_COREDUMP_ENABLE_TO_FLASH && SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
|
|
|
|
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
static void infinite_loop(void* arg) {
|
|
(void) arg;
|
|
while(1) {
|
|
;
|
|
}
|
|
}
|
|
|
|
void test_task_wdt_cpu1(void)
|
|
{
|
|
xTaskCreatePinnedToCore(infinite_loop, "Infinite loop", 1024, NULL, 1, NULL, 1);
|
|
while (true) {
|
|
vTaskDelay(1);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void __attribute__((no_sanitize_undefined)) test_storeprohibited(void)
|
|
{
|
|
*(int*) 0x4 = 0;
|
|
test_task_wdt_cpu0(); /* Trap for unhandled asynchronous bus errors */
|
|
}
|
|
|
|
void __attribute__((no_sanitize_undefined)) test_loadprohibited(void)
|
|
{
|
|
static int __attribute__((used)) var;
|
|
var = *(int*) 0x4;
|
|
test_task_wdt_cpu0(); /* Trap for unhandled asynchronous bus errors */
|
|
}
|
|
|
|
void IRAM_ATTR test_cache_error(void)
|
|
{
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
die("this should not be printed");
|
|
}
|
|
|
|
void IRAM_ATTR test_int_wdt_cache_disabled(void)
|
|
{
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
portDISABLE_INTERRUPTS();
|
|
while (true) {
|
|
;
|
|
}
|
|
}
|
|
|
|
void test_assert(void)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void IRAM_ATTR test_assert_cache_disabled(void)
|
|
{
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
assert(0);
|
|
}
|
|
|
|
const char TEST_STR[] = "my_tag";
|
|
void test_assert_cache_write_back_error_can_print_backtrace(void)
|
|
{
|
|
printf("1) %p\n", TEST_STR);
|
|
*(uint32_t*)TEST_STR = 3; // We changed the rodata string.
|
|
// All chips except ESP32S3 stop execution here and raise a LoadStore error on the line above.
|
|
#if CONFIG_IDF_TARGET_ESP32S3
|
|
// On the ESP32S3, the error occurs later when the cache writeback is triggered
|
|
// (in this test, a direct call to Cache_WriteBack_All).
|
|
Cache_WriteBack_All(); // Cache writeback triggers the invalid cache access interrupt.
|
|
#endif
|
|
// We are testing that the backtrace is printed instead of TG1WDT.
|
|
printf("2) %p\n", TEST_STR); // never get to this place.
|
|
}
|
|
|
|
void test_assert_cache_write_back_error_can_print_backtrace2(void)
|
|
{
|
|
printf("1) %p\n", TEST_STR);
|
|
*(uint32_t*)TEST_STR = 3; // We changed the rodata string.
|
|
// All chips except ESP32S3 stop execution here and raise a LoadStore error on the line above.
|
|
// On the ESP32S3, the error occurs later when the cache writeback is triggered
|
|
// (in this test, a large range of DRAM is mapped and read, causing an error).
|
|
uint8_t temp = 0;
|
|
size_t map_size = SPI_FLASH_SEC_SIZE * 512;
|
|
const void *map;
|
|
spi_flash_mmap_handle_t out_handle;
|
|
esp_err_t err = spi_flash_mmap(0, map_size, SPI_FLASH_MMAP_DATA, &map, &out_handle);
|
|
if (err != ESP_OK) {
|
|
printf("spi_flash_mmap failed %x\n", err);
|
|
return;
|
|
}
|
|
const uint8_t *rodata = map;
|
|
for (size_t i = 0; i < map_size; i++) {
|
|
temp = rodata[i];
|
|
}
|
|
// Cache writeback triggers the invalid cache access interrupt.
|
|
// We are testing that the backtrace is printed instead of TG1WDT.
|
|
printf("2) %p 0x%" PRIx8 " \n", TEST_STR, temp); // never get to this place.
|
|
}
|
|
|
|
/**
|
|
* This function overwrites the stack beginning from the valid area continuously towards and beyond
|
|
* the end of the stack (stack base) of the current task.
|
|
* This is to test stack protection measures like a watchpoint at the end of the stack.
|
|
*
|
|
* @note: This test DOES NOT write beyond the stack limit. It only writes up to exactly the limit itself.
|
|
* The FreeRTOS stack protection mechanisms all trigger shortly before the end of the stack.
|
|
*/
|
|
void test_stack_overflow(void)
|
|
{
|
|
register uint32_t* sp asm("sp");
|
|
TaskStatus_t pxTaskStatus;
|
|
vTaskGetInfo(NULL, &pxTaskStatus, pdFALSE, pdFALSE);
|
|
uint32_t *end = (uint32_t*) pxTaskStatus.pxStackBase;
|
|
|
|
// offset - 20 bytes from SP in order to not corrupt the current frame.
|
|
// Need to write from higher to lower addresses since the stack grows downwards and the watchpoint/canary is near
|
|
// the end of the stack (lowest address).
|
|
for (uint32_t* ptr = sp - 5; ptr != end; --ptr) {
|
|
*ptr = 0;
|
|
}
|
|
|
|
// trigger a context switch to initiate checking the FreeRTOS stack canary
|
|
vTaskDelay(pdMS_TO_TICKS(0));
|
|
}
|
|
|
|
void test_illegal_instruction(void)
|
|
{
|
|
#if __XTENSA__
|
|
__asm__ __volatile__("ill");
|
|
#elif __riscv
|
|
__asm__ __volatile__("unimp");
|
|
#endif
|
|
}
|
|
|
|
void test_instr_fetch_prohibited(void)
|
|
{
|
|
typedef void (*fptr_t)(void);
|
|
volatile fptr_t fptr = (fptr_t) 0x4;
|
|
fptr();
|
|
}
|
|
|
|
void test_ub(void)
|
|
{
|
|
uint8_t stuff[1] = {rand()};
|
|
printf("%d\n", stuff[rand()]);
|
|
}
|
|
|
|
#if CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH && CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF
|
|
void test_setup_coredump_summary(void)
|
|
{
|
|
if (esp_core_dump_image_erase() != ESP_OK)
|
|
die("Coredump image can not be erased!");
|
|
assert(0);
|
|
}
|
|
|
|
void test_coredump_summary(void)
|
|
{
|
|
esp_core_dump_summary_t *summary = malloc(sizeof(esp_core_dump_summary_t));
|
|
if (summary) {
|
|
esp_err_t err = esp_core_dump_get_summary(summary);
|
|
if (err == ESP_OK) {
|
|
printf("App ELF file SHA256: %s\n", (char *)summary->app_elf_sha256);
|
|
printf("Crashed task: %s\n", summary->exc_task);
|
|
#if __XTENSA__
|
|
printf("Exception cause: %ld\n", summary->ex_info.exc_cause);
|
|
#else
|
|
printf("Exception cause: %ld\n", summary->ex_info.mcause);
|
|
#endif
|
|
char panic_reason[200];
|
|
err = esp_core_dump_get_panic_reason(panic_reason, sizeof(panic_reason));
|
|
if (err == ESP_OK) {
|
|
printf("Panic reason: %s\n", panic_reason);
|
|
}
|
|
}
|
|
free(summary);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void test_tcb_corrupted(void)
|
|
{
|
|
uint32_t *tcb_ptr = (uint32_t *)xTaskGetIdleTaskHandleForCore(0);
|
|
for (size_t i = 0; i < sizeof(StaticTask_t) / sizeof(uint32_t); ++i) {
|
|
tcb_ptr[i] = 0xDEADBEE0;
|
|
}
|
|
vTaskDelay(2);
|
|
}
|
|
|
|
/* NOTE: The following test verifies the behaviour for the
|
|
* Xtensa-specific MPU instructions (Refer WDTLB, DSYNC, WDTIB, ISYNC)
|
|
* used for memory protection.
|
|
*
|
|
* However, this test is not valid for S2 and S3, because they have PMS
|
|
* enabled on top of this, giving unpredictable results.
|
|
*/
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
void test_illegal_access(void)
|
|
{
|
|
intptr_t addr = 0x80000000; // MPU region 4
|
|
volatile int __attribute__((unused)) val = INT16_MAX;
|
|
|
|
// Marked as an illegal access region at startup in ESP32, ESP32S2.
|
|
// Make accessible temporarily.
|
|
mpu_hal_set_region_access(4, MPU_REGION_RW);
|
|
|
|
val = *((int*) addr);
|
|
printf("[1] val: %d at %p\n", val, (void *)addr);
|
|
|
|
// Make access to region illegal again.
|
|
mpu_hal_set_region_access(4, MPU_REGION_ILLEGAL);
|
|
val = *((int*) addr);
|
|
// Does not reach here as device resets due to illegal access
|
|
printf("[2] val: %d at %p\n", val, (void *)addr);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_ESP_COREDUMP_CAPTURE_DRAM
|
|
int g_data_var = 42;
|
|
int g_bss_var;
|
|
char *g_heap_ptr;
|
|
COREDUMP_IRAM_DATA_ATTR uint32_t g_cd_iram = 0x4242;
|
|
COREDUMP_DRAM_ATTR uint32_t g_cd_dram = 0x4343;
|
|
#if SOC_RTC_MEM_SUPPORTED
|
|
COREDUMP_RTC_FAST_ATTR uint32_t g_rtc_fast_var;
|
|
COREDUMP_RTC_DATA_ATTR uint32_t g_rtc_data_var = 0x55A9;
|
|
#endif
|
|
|
|
void test_capture_dram(void)
|
|
{
|
|
g_data_var++;
|
|
g_bss_var = 55;
|
|
g_heap_ptr = strdup("Coredump Test");
|
|
assert(g_heap_ptr);
|
|
g_cd_iram++;
|
|
g_cd_dram++;
|
|
#if SOC_RTC_MEM_SUPPORTED
|
|
g_rtc_fast_var = 0xAABBCCDD;
|
|
g_rtc_data_var++;
|
|
#endif
|
|
assert(0);
|
|
}
|
|
#endif
|