Angus Gratton c5a5b34ba4 driver: Avoid possible accidental mismatch between ledc_clk_src_t & ledc_clk_cfg_t enum
ledc.h includes two similar enums, ledc_clk_src_t & ledc_clk_cfg_t.

The two enums do different things but there are two similar names: LEDC_REF_TICK / LEDC_USE_REF_TICK
and LEDC_APB_CLK / LEDC_USE_APB_CLK.

Because C will accept any enum or integer value for an enum argument, there's no easy way to check
the correct enum is passed without using static analysis.

To avoid accidental errors, make the numeric values for the two similarly named enums the same.,

Noticed when looking into https://github.com/espressif/esp-idf/issues/4476
2020-03-09 11:32:18 +11:00

846 lines
37 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "soc/gpio_periph.h"
#include "driver/ledc.h"
#include "soc/ledc_periph.h"
#include "soc/rtc.h"
#include "esp_log.h"
static const char* LEDC_TAG = "ledc";
static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
#define LEDC_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(LEDC_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
#define LEDC_ARG_CHECK(a, param) LEDC_CHECK(a, param " argument is invalid", ESP_ERR_INVALID_ARG)
typedef struct {
uint16_t speed_mode;
uint16_t direction;
uint32_t target_duty;
int cycle_num;
int scale;
ledc_fade_mode_t mode;
xSemaphoreHandle ledc_fade_sem;
xSemaphoreHandle ledc_fade_mux;
#if CONFIG_SPIRAM_USE_MALLOC
StaticQueue_t ledc_fade_sem_storage;
#endif
} ledc_fade_t;
static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
#define LEDC_VAL_NO_CHANGE (-1)
#define LEDC_STEP_NUM_MAX (1023)
#define LEDC_DUTY_DECIMAL_BIT_NUM (4)
#define DELAY_CLK8M_CLK_SWITCH (5)
#define SLOW_CLK_CYC_CALIBRATE (13)
#define LEDC_HPOINT_VAL_MAX (LEDC_HPOINT_HSCH1_V)
#define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
#define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
static const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
static const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
//This value will be calibrated when in use.
static uint32_t s_ledc_slow_clk_8M = 0;
static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
{
if (speed_mode == LEDC_LOW_SPEED_MODE) {
LEDC.timer_group[speed_mode].timer[timer_sel].conf.low_speed_update = 1;
}
}
static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel_num)
{
if (speed_mode == LEDC_LOW_SPEED_MODE) {
LEDC.channel_group[speed_mode].channel[channel_num].conf0.low_speed_update = 1;
}
}
//We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
static bool ledc_slow_clk_calibrate(void)
{
//Enable CLK8M for LEDC
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
//Waiting for CLK8M to turn on
ets_delay_us(DELAY_CLK8M_CLK_SWITCH);
uint32_t cal_val = rtc_clk_cal(RTC_CAL_8MD256, SLOW_CLK_CYC_CALIBRATE);
if(cal_val == 0) {
ESP_LOGE(LEDC_TAG, "CLK8M_CLK calibration failed");
return false;
}
s_ledc_slow_clk_8M = 1000000ULL * (1 << RTC_CLK_CAL_FRACT) * 256 / cal_val;
ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %d Hz", s_ledc_slow_clk_8M);
return true;
}
static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, uint32_t channel, ledc_intr_type_t type)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
uint32_t value;
uint32_t intr_type = type;
portENTER_CRITICAL(&ledc_spinlock);
value = LEDC.int_ena.val;
uint8_t int_en_base = LEDC_DUTY_CHNG_END_HSCH0_INT_ENA_S;
if (speed_mode == LEDC_LOW_SPEED_MODE) {
int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
}
if (intr_type == LEDC_INTR_FADE_END) {
LEDC.int_ena.val = value | BIT(int_en_base + channel);
} else {
LEDC.int_ena.val = (value & (~(BIT(int_en_base + channel))));
}
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
}
}
static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreGive(fade->ledc_fade_sem);
}
}
static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
}
}
static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
{
ledc_fade_t* fade = s_ledc_fade_rec[mode][channel];
if (fade) {
xSemaphoreGive(fade->ledc_fade_mux);
}
}
static int ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
// The arguments are checked before internally calling this function.
int timer_sel = LEDC.channel_group[speed_mode].channel[channel].conf0.timer_sel;
int max_duty = (1 << (LEDC.timer_group[speed_mode].timer[timer_sel].conf.duty_resolution));
return max_duty;
}
esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
ledc_clk_src_t clk_src)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.clock_divider = clock_divider;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.tick_sel = (clk_src == LEDC_APB_CLK);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.duty_resolution = duty_resolution;
ledc_ls_timer_update(speed_mode, timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel_num, int hpoint_val, int duty_val,
uint32_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
{
portENTER_CRITICAL(&ledc_spinlock);
if (hpoint_val >= 0) {
LEDC.channel_group[speed_mode].channel[channel_num].hpoint.hpoint = hpoint_val & LEDC_HPOINT_HSCH1_V;
}
if (duty_val >= 0) {
LEDC.channel_group[speed_mode].channel[channel_num].duty.duty = duty_val;
}
LEDC.channel_group[speed_mode].channel[channel_num].conf1.val = ((duty_direction & LEDC_DUTY_INC_HSCH0_V) << LEDC_DUTY_INC_HSCH0_S) |
((duty_num & LEDC_DUTY_NUM_HSCH0_V) << LEDC_DUTY_NUM_HSCH0_S) |
((duty_cycle & LEDC_DUTY_CYCLE_HSCH0_V) << LEDC_DUTY_CYCLE_HSCH0_S) |
((duty_scale & LEDC_DUTY_SCALE_HSCH0_V) << LEDC_DUTY_SCALE_HSCH0_S);
ledc_ls_channel_update(speed_mode, channel_num);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t timer_idx)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_idx < LEDC_TIMER_MAX, "timer_select"); portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.timer_sel = timer_idx;
ledc_ls_channel_update(speed_mode, channel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, uint32_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.rst = 1;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.rst = 0;
ledc_ls_timer_update(speed_mode, timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, uint32_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.pause = 1;
ledc_ls_timer_update(speed_mode, timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, uint32_t timer_sel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.pause = 0;
ledc_ls_timer_update(speed_mode, timer_sel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
{
esp_err_t ret;
LEDC_ARG_CHECK(fn, "fn");
portENTER_CRITICAL(&ledc_spinlock);
ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
portEXIT_CRITICAL(&ledc_spinlock);
return ret;
}
// Setting the LEDC timer divisor with the given source clock, frequency and resolution.
static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
{
uint32_t div_param = 0;
uint32_t precision = ( 0x1 << duty_resolution );
ledc_clk_src_t timer_clk_src = LEDC_APB_CLK;
// Calculate the divisor
// User specified source clock(RTC8M_CLK) for low speed channel
if ((speed_mode == LEDC_LOW_SPEED_MODE) && (clk_cfg == LEDC_USE_RTC8M_CLK)) {
if(s_ledc_slow_clk_8M == 0) {
if (ledc_slow_clk_calibrate() == false) {
goto error;
}
}
div_param = ( (uint64_t) s_ledc_slow_clk_8M << 8 ) / freq_hz / precision;
} else {
// Automatically select APB or REF_TICK as the source clock.
if (clk_cfg == LEDC_AUTO_CLK) {
// Try calculating divisor based on LEDC_APB_CLK
div_param = ( (uint64_t) LEDC_APB_CLK_HZ << 8 ) / freq_hz / precision;
if (div_param > LEDC_DIV_NUM_HSTIMER0_V) {
// APB_CLK results in divisor which too high. Try using REF_TICK as clock source.
timer_clk_src = LEDC_REF_TICK;
div_param = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
} else if (div_param < 256) {
// divisor is too low
goto error;
}
// User specified source clock(LEDC_APB_CLK_HZ or LEDC_REF_TICK)
} else {
timer_clk_src = (clk_cfg == LEDC_USE_APB_CLK) ? LEDC_APB_CLK : LEDC_REF_TICK;
uint32_t sclk_freq = (clk_cfg == LEDC_USE_APB_CLK) ? LEDC_APB_CLK_HZ : LEDC_REF_CLK_HZ;
div_param = ( (uint64_t) sclk_freq << 8 ) / freq_hz / precision;
}
}
if (div_param < 256 || div_param > LEDC_DIV_NUM_LSTIMER0_V) {
goto error;
}
// For low speed channels, if RTC_8MCLK is used as the source clock, the `slow_clk_sel` register should be cleared, otherwise it should be set.
if (speed_mode == LEDC_LOW_SPEED_MODE) {
LEDC.conf.slow_clk_sel = (clk_cfg == LEDC_USE_RTC8M_CLK) ? 0 : 1;
}
//Set the divisor
ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
// reset the timer
ledc_timer_rst(speed_mode, timer_num);
return ESP_OK;
error:
ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%d",
(uint32_t ) div_param);
return ESP_FAIL;
}
esp_err_t ledc_timer_config(const ledc_timer_config_t* timer_conf)
{
LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
uint32_t freq_hz = timer_conf->freq_hz;
uint32_t duty_resolution = timer_conf->duty_resolution;
uint32_t timer_num = timer_conf->timer_num;
uint32_t speed_mode = timer_conf->speed_mode;
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
periph_module_enable(PERIPH_LEDC_MODULE);
if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
ESP_LOGE(LEDC_TAG, "freq_hz=%u duty_resolution=%u", freq_hz, duty_resolution);
return ESP_ERR_INVALID_ARG;
}
if (timer_num > LEDC_TIMER_3) {
ESP_LOGE(LEDC_TAG, "invalid timer #%u", timer_num);
return ESP_ERR_INVALID_ARG;
}
return ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
}
esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
{
LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
if (speed_mode == LEDC_HIGH_SPEED_MODE) {
gpio_matrix_out(gpio_num, LEDC_HS_SIG_OUT0_IDX + ledc_channel, 0, 0);
} else {
gpio_matrix_out(gpio_num, LEDC_LS_SIG_OUT0_IDX + ledc_channel, 0, 0);
}
return ESP_OK;
}
esp_err_t ledc_channel_config(const ledc_channel_config_t* ledc_conf)
{
LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
uint32_t speed_mode = ledc_conf->speed_mode;
uint32_t gpio_num = ledc_conf->gpio_num;
uint32_t ledc_channel = ledc_conf->channel;
uint32_t timer_select = ledc_conf->timer_sel;
uint32_t intr_type = ledc_conf->intr_type;
uint32_t duty = ledc_conf->duty;
uint32_t hpoint = ledc_conf->hpoint;
LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
periph_module_enable(PERIPH_LEDC_MODULE);
esp_err_t ret = ESP_OK;
/*set channel parameters*/
/* channel parameters decide how the waveform looks like in one period*/
/* set channel duty and hpoint value, duty range is (0 ~ ((2 ** duty_resolution) - 1)), max hpoint value is 0xfffff*/
ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
/*update duty settings*/
ledc_update_duty(speed_mode, ledc_channel);
/*bind the channel with the timer*/
ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
/*set interrupt type*/
ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u",
ledc_channel, gpio_num, duty, timer_select
);
/*set LEDC signal in gpio matrix*/
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
if (speed_mode == LEDC_HIGH_SPEED_MODE) {
gpio_matrix_out(gpio_num, LEDC_HS_SIG_OUT0_IDX + ledc_channel, 0, 0);
} else {
gpio_matrix_out(gpio_num, LEDC_LS_SIG_OUT0_IDX + ledc_channel, 0, 0);
}
return ret;
}
esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.sig_out_en = 1;
LEDC.channel_group[speed_mode].channel[channel].conf1.duty_start = 1;
ledc_ls_channel_update(speed_mode, channel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.idle_lv = idle_level & 0x1;
LEDC.channel_group[speed_mode].channel[channel].conf0.sig_out_en = 0;
LEDC.channel_group[speed_mode].channel[channel].conf1.duty_start = 0;
ledc_ls_channel_update(speed_mode, channel);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
LEDC_ARG_CHECK(step_num <= LEDC_DUTY_NUM_HSCH0_V, "step_num");
LEDC_ARG_CHECK(duty_cyle_num <= LEDC_DUTY_CYCLE_HSCH0_V, "duty_cycle_num");
LEDC_ARG_CHECK(duty_scale <= LEDC_DUTY_SCALE_HSCH0_V, "duty_scale");
_ledc_fade_hw_acquire(speed_mode, channel);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
LEDC_VAL_NO_CHANGE,
duty << 4, //uint32_t duty_val,the least 4 bits are decimal part
fade_direction, //uint32_t increase,
step_num, //uint32_t duty_num,
duty_cyle_num, //uint32_t duty_cycle,
duty_scale //uint32_t duty_scale
);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(hpoint <= LEDC_HPOINT_VAL_MAX, "hpoint");
/* The channel configuration should not be changed before the fade operation is done. */
_ledc_fade_hw_acquire(speed_mode, channel);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
hpoint, //uint32_t hpoint_val,
duty << 4, //uint32_t duty_val,the least 4 bits are decimal part
1, //uint32_t increase,
1, //uint32_t duty_num,
1, //uint32_t duty_cycle,
0 //uint32_t duty_scale
);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
/* The channel configuration should not be changed before the fade operation is done. */
_ledc_fade_hw_acquire(speed_mode, channel);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
LEDC_VAL_NO_CHANGE,
duty << 4, //uint32_t duty_val,the least 4 bits are decimal part
1, //uint32_t increase,
1, //uint32_t duty_num,
1, //uint32_t duty_cycle,
0 //uint32_t duty_scale
);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
uint32_t duty = (LEDC.channel_group[speed_mode].channel[channel].duty_rd.duty_read >> 4);
return duty;
}
int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
{
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
uint32_t hpoint = LEDC.channel_group[speed_mode].channel[channel].hpoint.hpoint;
return hpoint;
}
esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
portENTER_CRITICAL(&ledc_spinlock);
esp_err_t ret = ESP_OK;
uint32_t clock_divider = 0;
uint32_t duty_resolution = LEDC.timer_group[speed_mode].timer[timer_num].conf.duty_resolution;
ledc_clk_src_t timer_source_clk;
if (LEDC.timer_group[speed_mode].timer[timer_num].conf.tick_sel) {
timer_source_clk = LEDC_APB_CLK;
} else {
timer_source_clk = LEDC_REF_TICK;
}
uint32_t precision = (0x1 << duty_resolution);
if (timer_source_clk == LEDC_APB_CLK) {
clock_divider = ((uint64_t) LEDC_APB_CLK_HZ << 8) / freq_hz / precision;
} else {
clock_divider = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
}
if (clock_divider <= 256 || clock_divider > LEDC_DIV_NUM_HSTIMER0) {
ESP_LOGE(LEDC_TAG, "div param err,div_param=%u", clock_divider);
ret = ESP_FAIL;
}
LEDC.timer_group[speed_mode].timer[timer_num].conf.clock_divider = clock_divider;
ledc_ls_timer_update(speed_mode, timer_num);
portEXIT_CRITICAL(&ledc_spinlock);
return ret;
}
uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
portENTER_CRITICAL(&ledc_spinlock);
uint32_t freq = 0;
ledc_clk_src_t timer_source_clk;
if (LEDC.timer_group[speed_mode].timer[timer_num].conf.tick_sel) {
timer_source_clk = LEDC_APB_CLK;
} else {
timer_source_clk = LEDC_REF_TICK;
}
uint32_t duty_resolution = LEDC.timer_group[speed_mode].timer[timer_num].conf.duty_resolution;
uint32_t clock_divider = LEDC.timer_group[speed_mode].timer[timer_num].conf.clock_divider;
uint32_t precision = (0x1 << duty_resolution);
if (timer_source_clk == LEDC_APB_CLK) {
freq = ((uint64_t) LEDC_APB_CLK_HZ << 8) / precision / clock_divider;
} else {
freq = ((uint64_t) LEDC_REF_CLK_HZ << 8) / precision / clock_divider;
}
portEXIT_CRITICAL(&ledc_spinlock);
return freq;
}
void IRAM_ATTR ledc_fade_isr(void* arg)
{
int channel;
portBASE_TYPE HPTaskAwoken = pdFALSE;
uint32_t intr_status = LEDC.int_st.val; //read LEDC interrupt status.
LEDC.int_clr.val = intr_status; //clear LEDC interrupt status.
int speed_mode = LEDC_HIGH_SPEED_MODE;
for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
if (intr_status & (BIT(LEDC_DUTY_CHNG_END_HSCH0_INT_ST_S + channel) | BIT(LEDC_DUTY_CHNG_END_LSCH0_INT_ST_S + channel))) {
if (intr_status & BIT(LEDC_DUTY_CHNG_END_HSCH0_INT_ST_S + channel)) {
speed_mode = LEDC_HIGH_SPEED_MODE;
} else {
speed_mode = LEDC_LOW_SPEED_MODE;
}
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
//fade object not initialized yet.
continue;
}
uint32_t duty_cur = LEDC.channel_group[speed_mode].channel[channel].duty_rd.duty_read >> LEDC_DUTY_DECIMAL_BIT_NUM;
if (duty_cur == s_ledc_fade_rec[speed_mode][channel]->target_duty) {
xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
continue;
}
uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
if (scale == 0) {
xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
continue;
}
int cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
int delta = s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE ? duty_cur - duty_tar : duty_tar - duty_cur;
int step = delta / scale > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : delta / scale;
if (delta > scale) {
ledc_duty_config(
speed_mode,
channel,
LEDC_VAL_NO_CHANGE,
duty_cur << LEDC_DUTY_DECIMAL_BIT_NUM,
s_ledc_fade_rec[speed_mode][channel]->direction,
step,
cycle,
scale);
} else {
ledc_duty_config(
speed_mode,
channel,
LEDC_VAL_NO_CHANGE,
duty_tar << LEDC_DUTY_DECIMAL_BIT_NUM,
s_ledc_fade_rec[speed_mode][channel]->direction,
1,
1,
0);
}
LEDC.channel_group[speed_mode].channel[channel].conf1.duty_start = 1;
}
}
LEDC.int_clr.val = intr_status; //clear LEDC interrupt status.
}
static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if (s_ledc_fade_rec[speed_mode][channel]) {
if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
}
if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
}
free(s_ledc_fade_rec[speed_mode][channel]);
s_ledc_fade_rec[speed_mode][channel] = NULL;
}
return ESP_OK;
}
static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if (s_ledc_fade_isr_handle == NULL) {
ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
return ESP_FAIL;
}
if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
#if CONFIG_SPIRAM_USE_MALLOC
s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
if (!s_ledc_fade_rec[speed_mode][channel]) {
ledc_fade_channel_deinit(speed_mode, channel);
return ESP_FAIL;
}
memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
#else
s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
#endif
s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
}
if (s_ledc_fade_rec[speed_mode][channel]
&& s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
&& s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
return ESP_OK;
} else {
ledc_fade_channel_deinit(speed_mode, channel);
return ESP_FAIL;
}
}
static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
{
portENTER_CRITICAL(&ledc_spinlock);
uint32_t duty_cur = LEDC.channel_group[speed_mode].channel[channel].duty_rd.duty_read >> LEDC_DUTY_DECIMAL_BIT_NUM;
// When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
duty_cur -= 1;
}
s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
s_ledc_fade_rec[speed_mode][channel]->scale = scale;
int step_num = 0;
int dir = LEDC_DUTY_DIR_DECREASE;
if (scale > 0) {
if (duty_cur > target_duty) {
s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
step_num = (duty_cur - target_duty) / scale;
step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
} else {
s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
dir = LEDC_DUTY_DIR_INCREASE;
step_num = (target_duty - duty_cur) / scale;
step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
}
}
portEXIT_CRITICAL(&ledc_spinlock);
if (scale > 0 && step_num > 0) {
ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur << 4, dir, step_num, cycle_num, scale);
ESP_LOGD(LEDC_TAG, "cur duty: %d; target: %d, step: %d, cycle: %d; scale: %d; dir: %d\n",
duty_cur, target_duty, step_num, cycle_num, scale, dir);
} else {
ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty << 4, dir, 0, 1, 0);
ESP_LOGD(LEDC_TAG, "Set to target duty: %d", target_duty);
}
return ESP_OK;
}
static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
{
int timer_sel = LEDC.channel_group[speed_mode].channel[channel].conf0.timer_sel;
uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
uint32_t duty_cur = LEDC.channel_group[speed_mode].channel[channel].duty_rd.duty_read >> LEDC_DUTY_DECIMAL_BIT_NUM;
uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
if (duty_delta == 0) {
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
}
int total_cycles = max_fade_time_ms * freq / 1000;
if (total_cycles == 0) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
}
int scale, cycle_num;
if (total_cycles > duty_delta) {
scale = 1;
cycle_num = total_cycles / duty_delta;
if (cycle_num > LEDC_DUTY_NUM_HSCH0_V) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
cycle_num = LEDC_DUTY_NUM_HSCH0_V;
}
} else {
cycle_num = 1;
scale = duty_delta / total_cycles;
if (scale > LEDC_DUTY_SCALE_HSCH0_V) {
ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
scale = LEDC_DUTY_SCALE_HSCH0_V;
}
}
return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
}
static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
{
s_ledc_fade_rec[speed_mode][channel]->mode = fade_mode;
// Clear interrupt status of channel
int duty_resolution_ch0 = (speed_mode == LEDC_HIGH_SPEED_MODE) ? LEDC_DUTY_CHNG_END_HSCH0_INT_ENA_S : LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
LEDC.int_clr.val |= BIT(duty_resolution_ch0 + channel);
// Enable interrupt for channel
ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
ledc_update_duty(speed_mode, channel);
if (fade_mode == LEDC_FADE_WAIT_DONE) {
xSemaphoreTake(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, portMAX_DELAY);
}
}
esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_HSCH0_V), "fade scale");
LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_HSCH0_V), "cycle_num");
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
{
LEDC_CHECK(s_ledc_fade_rec != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_fade_start(speed_mode, channel, fade_mode);
_ledc_fade_hw_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_fade_func_install(int intr_alloc_flags)
{
//OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
}
void ledc_fade_func_uninstall()
{
if (s_ledc_fade_rec == NULL) {
return;
}
if (s_ledc_fade_isr_handle) {
esp_intr_free(s_ledc_fade_isr_handle);
s_ledc_fade_isr_handle = NULL;
}
int channel, mode;
for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
ledc_fade_channel_deinit(mode, channel);
}
}
return;
}
/*
* The functions below are thread-safe version of APIs for duty and fade control.
* These APIs can be called from different tasks.
*/
esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
_ledc_op_lock_acquire(speed_mode, channel);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_step(speed_mode, channel, duty, 0, 1);
_ledc_fade_start(speed_mode, channel, LEDC_FADE_WAIT_DONE);
_ledc_fade_hw_release(speed_mode, channel);
_ledc_op_lock_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
_ledc_op_lock_acquire(speed_mode, channel);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
_ledc_fade_start(speed_mode, channel, fade_mode);
if (fade_mode == LEDC_FADE_WAIT_DONE) {
_ledc_fade_hw_release(speed_mode, channel);
}
_ledc_op_lock_release(speed_mode, channel);
return ESP_OK;
}
esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
{
LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_HSCH0_V), "fade scale");
LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_HSCH0_V), "cycle_num");
LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
_ledc_op_lock_acquire(speed_mode, channel);
_ledc_fade_hw_acquire(speed_mode, channel);
_ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
_ledc_fade_start(speed_mode, channel, fade_mode);
if (fade_mode == LEDC_FADE_WAIT_DONE) {
_ledc_fade_hw_release(speed_mode, channel);
}
_ledc_op_lock_release(speed_mode, channel);
return ESP_OK;
}