mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
163 lines
5.7 KiB
C
163 lines
5.7 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
// HAL for SPI Flash (non-IRAM part)
|
|
// The IRAM part is in spi_flash_hal_iram.c, spi_flash_hal_gpspi.c, spi_flash_hal_common.inc.
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/gpio_ll.h" //for GPIO_LL_MATRIX_DELAY_NS
|
|
#include "hal/spi_flash_hal.h"
|
|
#include "hal/assert.h"
|
|
#include "hal/log.h"
|
|
#include "hal/spi_flash_types.h"
|
|
|
|
#define APB_CYCLE_NS (1000*1000*1000LL/APB_CLK_FREQ)
|
|
|
|
static const char *TAG = "flash_hal";
|
|
|
|
static uint32_t get_flash_clock_divider(const spi_flash_hal_config_t *cfg)
|
|
{
|
|
const int clk_source = cfg->clock_src_freq;
|
|
const int clk_freq_mhz = cfg->freq_mhz;
|
|
// On ESP32, ESP32-S2, ESP32-C3, we allow specific frequency 26.666MHz
|
|
// If user passes freq_mhz like 26 or 27, it's allowed to use integer divider 3.
|
|
// However on other chips or on other frequency, we only allow user pass frequency which
|
|
// can be integer divided. If no, the following strategy is round up the division and
|
|
// round down flash frequency to keep it safe.
|
|
int best_div = 0;
|
|
if (clk_source < clk_freq_mhz) {
|
|
HAL_LOGE(TAG, "Target frequency %dMHz higher than supported.", clk_freq_mhz);
|
|
abort();
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3
|
|
if (clk_freq_mhz == 26 || clk_freq_mhz == 27) {
|
|
best_div = 3;
|
|
} else
|
|
#endif
|
|
{
|
|
/* Do not use float/double as the FPU may not have been initialized yet on startup.
|
|
* The values are in MHz, so for sure we won't have an overflow by adding them. */
|
|
best_div = (clk_source + clk_freq_mhz - 1) / clk_freq_mhz;
|
|
/* Perform a division that returns both quotient and remainder */
|
|
const div_t res = div(clk_source, clk_freq_mhz);
|
|
if (res.rem != 0) {
|
|
HAL_LOGW(TAG, "Flash clock frequency round down to %d", res.quot);
|
|
}
|
|
}
|
|
|
|
return best_div;
|
|
}
|
|
|
|
static uint32_t spi_flash_cal_clock(const spi_flash_hal_config_t *cfg)
|
|
{
|
|
uint32_t div_parameter = spi_flash_ll_calculate_clock_reg(cfg->host_id, get_flash_clock_divider(cfg));
|
|
return div_parameter;
|
|
}
|
|
|
|
static inline int get_dummy_n(bool gpio_is_used, int input_delay_ns, int eff_clk)
|
|
{
|
|
const int apbclk_kHz = APB_CLK_FREQ / 1000;
|
|
//calculate how many apb clocks a period has
|
|
const int apbclk_n = APB_CLK_FREQ / eff_clk;
|
|
int gpio_delay_ns = 0;
|
|
#if GPIO_LL_MATRIX_DELAY_NS
|
|
gpio_delay_ns = gpio_is_used ? GPIO_LL_MATRIX_DELAY_NS : 0;
|
|
#endif
|
|
|
|
//calculate how many apb clocks the delay is, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
|
|
int apb_period_n = (1 + input_delay_ns + gpio_delay_ns) * apbclk_kHz / 1000 / 1000;
|
|
if (apb_period_n < 0) {
|
|
apb_period_n = 0;
|
|
}
|
|
|
|
return apb_period_n / apbclk_n;
|
|
}
|
|
|
|
#if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
|
|
static inline int extra_dummy_under_timing_tuning(const spi_flash_hal_config_t *cfg)
|
|
{
|
|
bool main_flash = (cfg->host_id == SPI1_HOST && cfg->cs_num == 0);
|
|
int extra_dummy = 0;
|
|
if (main_flash) {
|
|
/**
|
|
* For Octal Flash, the dummy is `usr_dummy` + `extra_dummy`, they are in two different regs, we don't touch `extra_dummy` here, so set extra_dummy 0.
|
|
* Instead, for both Quad and Octal Flash, we use `usr_dummy` and set the whole dummy length (usr_dummy + extra_dummy) to this register.
|
|
*/
|
|
extra_dummy = cfg->extra_dummy;
|
|
} else {
|
|
// TODO: for other flash chips, dummy get logic implement here. Currently, still calculate extra dummy by itself.
|
|
abort();
|
|
}
|
|
|
|
return extra_dummy;
|
|
}
|
|
#endif //SOC_SPI_MEM_SUPPORT_TIMING_TUNING
|
|
|
|
esp_err_t spi_flash_hal_init(spi_flash_hal_context_t *data_out, const spi_flash_hal_config_t *cfg)
|
|
{
|
|
if (cfg->cs_num >= SOC_SPI_PERIPH_CS_NUM(cfg->host_id)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
*data_out = (spi_flash_hal_context_t) {
|
|
.inst = data_out->inst, // Keeps the function pointer table
|
|
.spi = spi_flash_ll_get_hw(cfg->host_id),
|
|
.cs_num = cfg->cs_num,
|
|
.cs_hold = cfg->cs_hold,
|
|
.cs_setup = cfg->cs_setup,
|
|
.base_io_mode = cfg->default_io_mode,
|
|
.freq_mhz = cfg->freq_mhz,
|
|
};
|
|
#if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
|
|
if (cfg->using_timing_tuning) {
|
|
data_out->extra_dummy = extra_dummy_under_timing_tuning(cfg);
|
|
data_out->clock_conf = cfg->clock_config;
|
|
} else
|
|
#endif // SOC_SPI_MEM_SUPPORT_TIMING_TUNING
|
|
{
|
|
data_out->extra_dummy = get_dummy_n(!cfg->iomux, cfg->input_delay_ns, APB_CLK_FREQ/get_flash_clock_divider(cfg));
|
|
data_out->clock_conf = (spi_flash_ll_clock_reg_t)spi_flash_cal_clock(cfg);
|
|
}
|
|
|
|
|
|
if (cfg->auto_sus_en) {
|
|
data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_SUSPEND;
|
|
data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_RESUME;
|
|
data_out->tsus_val = cfg->tsus_val;
|
|
}
|
|
|
|
#if SOC_SPI_MEM_SUPPORT_OPI_MODE
|
|
if (cfg->octal_mode_en) {
|
|
data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_OCTAL_MODE;
|
|
}
|
|
|
|
if (cfg->default_io_mode == SPI_FLASH_OPI_DTR) {
|
|
data_out->slicer_flags |= SPI_FLASH_HOST_CONTEXT_SLICER_FLAG_DTR;
|
|
}
|
|
#endif
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
bool spi_flash_hal_supports_direct_write(spi_flash_host_inst_t *host, const void *p)
|
|
{
|
|
(void)p;
|
|
bool direct_write = (((spi_flash_hal_context_t *)host)->spi != spi_flash_ll_get_hw(SPI1_HOST));
|
|
return direct_write;
|
|
}
|
|
|
|
|
|
bool spi_flash_hal_supports_direct_read(spi_flash_host_inst_t *host, const void *p)
|
|
{
|
|
(void)p;
|
|
//currently the host doesn't support to read through dma, no word-aligned requirements
|
|
bool direct_read = ( ((spi_flash_hal_context_t *)host)->spi != spi_flash_ll_get_hw(SPI1_HOST));
|
|
return direct_read;
|
|
}
|