esp-idf/docs/zh_CN/api-reference/storage/nvs_flash.rst

391 lines
25 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

非易失性存储库
============================
:link_to_translation:`en:[English]`
简介
------------
非易失性存储 (NVS) 库主要用于在 flash 中存储键值格式的数据。本文档将详细介绍 NVS 常用的一些概念。
底层存储
^^^^^^^^^^^^^^^^^^
NVS 库通过调用 :ref:`esp_partition <flash-partition-apis>` API 使用主 flash 的部分空间,即类型为 ``data`` 且子类型为 ``nvs`` 的所有分区。应用程序可调用 :cpp:func:`nvs_open` API 选择使用带有 ``nvs`` 标签的分区,也可以通过调用 :cpp:func:`nvs_open_from_partition` API 选择使用指定名称的任意分区。
NVS 库后续版本可能会增加其他存储器后端,来将数据保存至其他 flash 芯片SPI 或 I2C 接口、RTC 或 FRAM 中。
.. note:: 如果 NVS 分区被截断(例如,更改分区表布局时),则应擦除分区内容。可以使用 ESP-IDF 构建系统中的 ``idf.py erase-flash`` 命令擦除 flash 上的所有内容。
.. note:: NVS 最适合存储一些较小的数据,而非字符串或二进制大对象 (BLOB) 等较大的数据。如需存储较大的 BLOB 或者字符串,请考虑使用基于磨损均衡库的 FAT 文件系统。
键值对
^^^^^^^^^^^^^^^
NVS 的操作对象为键值对,其中键是 ASCII 字符串,当前支持的最大键长为 15 个字符。值可以为以下几种类型:
- 整数型:``uint8_t````int8_t````uint16_t````int16_t````uint32_t````int32_t````uint64_t````int64_t``
- 以 0 结尾的字符串;
- 可变长度的二进制数据 (BLOB)
.. note::
字符串值当前上限为 4000 字节其中包括空终止符。BLOB 值上限为 508,000 字节或分区大小的 97.6% 减去 4000 字节,以较低值为准。
后续可能会增加对 ``float````double`` 等其他类型数据的支持。
键必须唯一。为现有的键写入新的值可能产生如下结果:
- 如果新旧值数据类型相同,则更新值;
- 如果新旧值数据类型不同,则返回错误。
读取值时也会执行数据类型检查。如果读取操作的数据类型与该值的数据类型不匹配,则返回错误。
命名空间
^^^^^^^^^^
为了减少不同组件之间键名的潜在冲突NVS 将每个键值对分配给一个命名空间。命名空间的命名规则遵循键名的命名规则,例如,最多可占 15 个字符。此外,单个 NVS 分区最多只能容纳 254 个不同的命名空间。命名空间的名称在调用 :cpp:func:`nvs_open`:cpp:type:`nvs_open_from_partition` 中指定,调用后将返回一个不透明句柄,用于后续调用 ``nvs_get_*````nvs_set_*````nvs_commit`` 函数。这样,一个句柄关联一个命名空间,键名便不会与其他命名空间中相同键名冲突。请注意,不同 NVS 分区中具有相同名称的命名空间将被视为不同的命名空间。
NVS 迭代器
^^^^^^^^^^^^^
迭代器允许根据指定的分区名称、命名空间和数据类型轮询 NVS 中存储的键值对。
您可以使用以下函数,执行相关操作:
- ``nvs_entry_find``:创建一个不透明句柄,用于后续调用 ``nvs_entry_next````nvs_entry_info`` 函数;
- ``nvs_entry_next``:让迭代器指向下一个键值对;
- ``nvs_entry_info``:返回每个键值对的信息。
总的来说,所有通过 :cpp:func:`nvs_entry_find` 获得的迭代器(包括 ``NULL`` 迭代器)都必须使用 :cpp:func:`nvs_release_iterator` 释放。
一般情况下,:cpp:func:`nvs_entry_find`:cpp:func:`nvs_entry_next` 会将给定的迭代器设置为 ``NULL`` 或为一个有效的迭代器。但如果出现参数错误(如返回 ``ESP_ERR_NVS_NOT_FOUND``),给定的迭代器不会被修改。因此,在调用 :cpp:func:`nvs_entry_find` 之前最好将迭代器初始化为 ``NULL``,这样可以避免在释放迭代器之前进行复杂的错误检查。
安全性、篡改性及鲁棒性
^^^^^^^^^^^^^^^^^^^^^^^^^^
NVS 与 {IDF_TARGET_NAME} flash 加密系统不直接兼容。但如果 NVS 加密与 {IDF_TARGET_NAME} flash 加密一起使用时,数据仍可以加密形式存储。详情请参阅 :ref:`nvs_encryption`
如果未启用 NVS 加密,任何对 flash 芯片有物理访问权限的用户都可以修改、擦除或添加键值对。NVS 加密启用后,如果不知道相应的 NVS 加密密钥,则无法修改或添加键值对并将其识别为有效键值对。但是,针对擦除操作没有相应的防篡改功能。
当 flash 处于不一致状态时NVS 库会尝试恢复。在任何时间点关闭设备电源,然后重新打开电源,不会导致数据丢失;但如果关闭设备电源时正在写入新的键值对,这一键值对可能会丢失。该库还应该能够在 flash 中存在任何随机数据的情况下正常初始化。
.. _nvs_encryption:
NVS 加密
--------------
NVS 分区内存储的数据可使用 AES-XTS 进行加密,类似于 IEEE P1619 磁盘加密标准中提到的加密方式。为了实现加密,每个条目被均视为一个扇区,并将条目相对地址(相对于分区开头)传递给加密算法,用作扇区号。可通过 :ref:`CONFIG_NVS_ENCRYPTION` 启用 NVS 加密。NVS 加密所需的密钥存储于其他分区,并且被 :doc:`Flash 加密 <../../security/flash-encryption>` 保护。因此,在使用 NVS 加密前应先启用 :doc:`Flash 加密 <../../security/flash-encryption>`
启用 :doc:`Flash 加密 <../../security/flash-encryption>` 时,默认启用 NVS 加密。这是因为 Wi-Fi 驱动在默认的 NVS 分区中存储了凭证(如 SSID 和密码)。如已启用平台级加密,那么同时默认启用 NVS 加密有其必要性。
使用 NVS 加密,分区表必须包含 :ref:`nvs_key_partition`。在分区表选项 (``menuconfig`` > ``Partition Table``) 下,为 NVS 加密提供了两个包含 :ref:`nvs_key_partition` 的分区表,您可以通过工程配置菜单 (``idf.py menuconfig``) 进行选择。请参考 :example:`security/flash_encryption` 中的例子,了解如何配置和使用 NVS 加密功能。
.. _nvs_key_partition:
NVS 密钥分区
^^^^^^^^^^^^^^^^^
应用程序如果想使用 NVS 加密,则需要编译进一个类型为 `data`,子类型为 `key` 的密钥分区。该分区应标记为 `已加密` 且最小为 4096 字节。如需了解更多详细信息,请参考 :doc:`分区表 <../../api-guides/partition-tables>`。在分区表选项 (``menuconfig`` > ``Partition Table``) 下提供了两个包含 :ref:`nvs_key_partition` 的额外分区表,可以直接用于 :ref:`nvs_encryption`。这些分区的具体结构见下表:
.. highlight:: none
::
+-----------+--------------+-------------+----+
| XTS encryption key (32) |
+---------------------------------------------+
| XTS tweak key (32) |
+---------------------------------------------+
| CRC32 (4) |
+---------------------------------------------+
可以通过以下两种方式生成 :ref:`nvs_key_partition` 中的 XTS 加密密钥:
1. 在 ESP 芯片上生成密钥:
启用 NVS 加密时,可用 :cpp:func:`nvs_flash_init` API 函数来初始化加密的默认 NVS 分区,在内部生成 ESP 芯片上的 XTS 加密密钥。在找到 :ref:`nvs_key_partition`API 函数利用 :component_file:`nvs_flash/include/nvs_flash.h` 提供的 :cpp:func:`nvs_flash_generate_keys` 函数,自动生成并存储该分区中的 NVS 密钥。只有当各自的密钥分区为空时,才会生成并存储新的密钥。可以借助 :cpp:func:`nvs_flash_secure_init_partition` 用同一个密钥分区来读取安全配置,以初始化一个定制的加密 NVS 分区。
API 函数 :cpp:func:`nvs_flash_secure_init`:cpp:func:`nvs_flash_secure_init_partition` 不在内部产生密钥。当这些 API 函数用于初始化加密的 NVS 分区时,可以在启动后使用 `nvs_flash.h` 提供的 :cpp:func:`nvs_flash_generate_keys` API 函数生成密钥,以加密的形式把密钥写到密钥分区上。
.. note:: 请注意,使用该方法启动应用前,必须先完全擦除 `nvs_keys` 分区,否则该应用可能会认为 `nvs_keys` 分区不为空,并且包含数据格式错误,从而导致 :c:macro:`ESP_ERR_NVS_CORRUPT_KEY_PART` 报错。如果遇到这种情况,可以使用以下命令:
::
parttool.py --port PORT --partition-table-file=PARTITION_TABLE_FILE --partition-table-offset PARTITION_TABLE_OFFSET erase_partition --partition-type=data --partition-subtype=nvs_keys
2. 使用预先生成的密钥分区:
:ref:`nvs_key_partition` 中的密钥不是由应用程序生成,则需要使用预先生成的密钥分区。可以使用 :doc:`NVS 分区生成工具 </api-reference/storage/nvs_partition_gen>` 生成包含 XTS 加密密钥的 :ref:`nvs_key_partition`。用户可以借助以下两个命令,将预先生成的密钥分区储存在 flash 上:
i) 建立并烧录分区表
::
idf.py partition-table partition-table-flash
ii) 调用 :component_file:`parttool.py<partition_table/parttool.py>`,将密钥存储在 flash 上的 :ref:`nvs_key_partition` 中。详见 :doc:` 分区表 </api-guides/partition-tables>` 的分区工具部分。
::
parttool.py --port PORT --partition-table-offset PARTITION_TABLE_OFFSET write_partition --partition-name="name of nvs_key partition" --input NVS_KEY_PARTITION_FILE
.. note:: 如需在设备处于 flash 加密开发模式时更新 NVS 密钥分区,请调用 :component_file:`parttool.py <partition_table/parttool.py>` 对 NVS 密钥分区进行加密。同时由于设备上的分区表也已加密您还需要在构建目录build/partition_table中提供一个指向未加密分区表的指针。您可以使用如下命令
::
parttool.py --esptool-write-args encrypt --port PORT --partition-table-file=PARTITION_TABLE_FILE --partition-table-offset PARTITION_TABLE_OFFSET write_partition --partition-name="name of nvs_key partition" --input NVS_KEY_PARTITION_FILE
由于分区已标记为 `已加密`,而且启用了 :doc:`Flash 加密 <../../security/flash-encryption>`,引导程序在首次启动时将使用 flash 加密对密钥分区进行加密。
应用程序可以使用不同的密钥对不同的 NVS 分区进行加密,这样就会需要多个加密密钥分区。应用程序应为加解密操作提供正确的密钥或密钥分区。
加密读取/写入
^^^^^^^^^^^^^^^^^^^^
``nvs_get_*````nvs_set_*`` 等 NVS API 函数同样可以对 NVS 加密分区执行读写操作。
**加密默认的 NVS 分区:**
无需额外步骤即可启用默认 NVS 分区的加密。启用 :ref:`CONFIG_NVS_ENCRYPTION` 时, :cpp:func:`nvs_flash_init` API 函数会在内部使用找到的第一个 :ref:`nvs_key_partition` 执行额外步骤,以启用默认 NVS 分区的加密(详情请参考 API 文档)。另外,:cpp:func:`nvs_flash_secure_init` API 函数也可以用来启用默认 NVS 分区的加密。
**加密一个自定义的 NVS 分区:**
使用 :cpp:func:`nvs_flash_secure_init_partition` API 函数启用自定义 NVS 分区的加密,而非 :cpp:func:`nvs_flash_init_partition`
使用 :cpp:func:`nvs_flash_secure_init`:cpp:func:`nvs_flash_secure_init_partition` API 函数时,应用程序如需在加密状态下执行 NVS 读写操作,应遵循以下步骤:
1. 使用 ``esp_partition_find*`` API 查找密钥分区和 NVS 数据分区;
2. 使用 ``nvs_flash_read_security_cfg````nvs_flash_generate_keys`` API 填充 ``nvs_sec_cfg_t`` 结构;
3. 使用 ``nvs_flash_secure_init````nvs_flash_secure_init_partition`` API 初始化 NVS flash 分区;
4. 使用 ``nvs_open````nvs_open_from_partition`` API 打开命名空间;
5. 使用 ``nvs_get_*````nvs_set_*`` API 执行 NVS 读取/写入操作;
6. 使用 ``nvs_flash_deinit`` API 释放已初始化的 NVS 分区。
NVS 分区生成程序
------------------
NVS 分区生成程序帮助生成 NVS 分区二进制文件,可使用烧录程序将二进制文件单独烧录至特定分区。烧录至分区上的键值对由 CSV 文件提供,详情请参考 :doc:`NVS 分区生成程序 <nvs_partition_gen>`
应用示例
-------------------
ESP-IDF :example:`storage` 目录下提供了数个代码示例:
:example:`storage/nvs_rw_value`
演示如何读取及写入 NVS 单个整数值。
此示例中的值表示 {IDF_TARGET_NAME} 模组重启次数。NVS 中数据不会因为模组重启而丢失,因此只有将这一值存储于 NVS 中,才能起到重启次数计数器的作用。
该示例也演示了如何检测读取/写入操作是否成功,以及某个特定值是否在 NVS 中尚未初始化。诊断程序以纯文本形式提供,帮助您追踪程序流程,及时发现问题。
:example:`storage/nvs_rw_blob` 
演示如何读取及写入 NVS 单个整数值和 BLOB二进制大对象并在 NVS 中存储这一数值,即便 {IDF_TARGET_NAME} 模组重启也不会消失。
* value - 记录 {IDF_TARGET_NAME} 模组软重启次数和硬重启次数。
* blob - 内含记录模组运行次数的表格。此表格将被从 NVS 读取至动态分配的 RAM 上。每次手动软重启后,表格内运行次数即增加一次,新加的运行次数被写入 NVS。下拉 GPIO0 即可手动软重启。
该示例也演示了如何执行诊断程序以检测读取/写入操作是否成功。
:example:`storage/nvs_rw_value_cxx`
这个例子与 :example:`storage/nvs_rw_value` 完全一样,只是使用了 C++ 的 NVS 句柄类。
内部实现
---------
键值对日志
^^^^^^^^^^^^^^^^^^^^^^
NVS 按顺序存储键值对,新的键值对添加在最后。因此,如需更新某一键值对,实际是在日志最后增加一对新的键值对,同时将旧的键值对标记为已擦除。
页面和条目
^^^^^^^^^^^^^^^^^
NVS 库在其操作中主要使用两个实体:页面和条目。页面是一个逻辑结构,用于存储部分的整体日志。逻辑页面对应 flash 的一个物理扇区,正在使用中的页面具有与之相关联的 *序列号*。序列号赋予了页面顺序,较高的序列号对应较晚创建的页面。页面有以下几种状态:
空或未初始化
页面对应的 flash 扇区为空白状态(所有字节均为 ``0xff``)。此时,页面未存储任何数据且没有关联的序列号。
活跃状态
此时 flash 已完成初始化,页头部写入 flash页面已具备有效序列号。页面中存在一些空条目可写入数据。任意时刻至多有一个页面处于活跃状态。
写满状态
Flash 已写满键值对,状态不再改变。
用户无法向写满状态下的页面写入新键值对,但仍可将一些键值对标记为已擦除。
擦除状态
未擦除的键值对将移至其他页面,以便擦除当前页面。这一状态仅为暂时性状态,即 API 调用返回时,页面应脱离这一状态。如果设备突然断电,下次开机时,设备将继续把未擦除的键值对移至其他页面,并继续擦除当前页面。
损坏状态
页头部包含无效数据,无法进一步解析该页面中的数据,因此之前写入该页面的所有条目均无法访问。相应的 flash 扇区并不会被立即擦除,而是与其他处于未初始化状态的扇区一起等待后续使用。这一状态可能对调试有用。
Flash 扇区映射至逻辑页面并没有特定的顺序NVS 库会检查存储在 flash 扇区的页面序列号,并根据序列号组织页面。
::
+--------+ +--------+ +--------+ +--------+
| Page 1 | | Page 2 | | Page 3 | | Page 4 |
| Full +---> | Full +---> | Active | | Empty | <- 状态
| #11 | | #12 | | #14 | | | <- 序列号
+---+----+ +----+---+ +----+---+ +---+----+
| | | |
| | | |
| | | |
+---v------+ +-----v----+ +------v---+ +------v---+
| Sector 3 | | Sector 0 | | Sector 2 | | Sector 1 | <- 物理扇区
+----------+ +----------+ +----------+ +----------+
页面结构
^^^^^^^^^^^^^^^^^^^
当前,我们假设 flash 扇区大小为 4096 字节,并且 {IDF_TARGET_NAME} flash 加密硬件在 32 字节块上运行。未来有可能引入一些编译时可配置项(可通过 menuconfig 进行配置),以适配具有不同扇区大小的 flash 芯片。但目前尚不清楚 SPI flash 驱动和 SPI flash cache 之类的系统组件是否支持其他扇区大小。
页面由头部、条目状态位图和条目三部分组成。为了实现与 {IDF_TARGET_NAME} flash 加密功能兼容,条目大小设置为 32 字节。如果键值为整数型,条目则保存一个键值对;如果键值为字符串或 BLOB 类型,则条目仅保存一个键值对的部分内容(更多信息详见条目结构描述)。
页面结构如下图所示,括号内数字表示该部分的大小(以字节为单位)。
::
+-----------+--------------+-------------+-------------------------+
| State (4) | Seq. no. (4) | version (1) | Unused (19) | CRC32 (4) | 页头部 (32)
+-----------+--------------+-------------+-------------------------+
| Entry state bitmap (32) |
+------------------------------------------------------------------+
| Entry 0 (32) |
+------------------------------------------------------------------+
| Entry 1 (32) |
+------------------------------------------------------------------+
/ /
/ /
+------------------------------------------------------------------+
| Entry 125 (32) |
+------------------------------------------------------------------+
头部和条目状态位图写入 flash 时不加密。如果启用了 {IDF_TARGET_NAME} flash 加密功能,则条目写入 flash 时将会加密。
通过将 0 写入某些位可以定义页面状态值,表示状态改变。因此,如果需要变更页面状态,并不一定要擦除页面,除非要将其变更为 *擦除* 状态。
头部中的 ``version`` 字段反映了所用的 NVS 格式版本。为实现向后兼容,版本升级从 0xff 开始依次递减例如version-1 为 0xffversion-2 为 0xfe以此类推
头部中 CRC32 值是由不包含状态值的条目计算所得4 到 28 字节)。当前未使用的条目用 ``0xff`` 字节填充。
条目结构和条目状态位图的详细信息见下文描述。
条目和条目状态位图
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
每个条目可处于以下三种状态之一,每个状态在条目状态位图中用两位表示。位图中的最后四位 (256 - 2 * 126) 未使用。
空 (2'b11)
条目还未写入任何内容,处于未初始化状态(全部字节为 ``0xff``)。
写入2'b10
一个键值对(或跨多个条目的键值对的部分内容)已写入条目中。
擦除2'b00
条目中的键值对已丢弃,条目内容不再解析。
.. _structure_of_entry:
条目结构
^^^^^^^^^^^^^^^^^^
如果键值类型为基础类型,即 1 - 8 个字节长度的整数型,条目将保存一个键值对;如果键值类型为字符串或 BLOB 类型条目将保存整个键值对的部分内容。另外如果键值为字符串类型且跨多个条目则键值所跨的所有条目均保存在同一页面。BLOB 则可以切分为多个块实现跨多个页面。BLOB 索引是一个附加的固定长度元数据条目,用于追踪 BLOB 块。目前条目仍支持早期 BLOB 格式(可读取可修改),但这些 BLOB 一经修改,即以新格式储存至条目。
::
+--------+----------+----------+----------------+-----------+---------------+----------+
| NS (1) | Type (1) | Span (1) | ChunkIndex (1) | CRC32 (4) | Key (16) | Data (8) |
+--------+----------+----------+----------------+-----------+---------------+----------+
Primitive +--------------------------------+
+--------> | Data (8) |
| Types +--------------------------------+
+-> Fixed length --
| | +---------+--------------+---------------+-------+
| +--------> | Size(4) | ChunkCount(1)| ChunkStart(1) | Rsv(2)|
Data format ---+ BLOB Index +---------+--------------+---------------+-------+
|
| +----------+---------+-----------+
+-> Variable length --> | Size (2) | Rsv (2) | CRC32 (4) |
(Strings, BLOB Data) +----------+---------+-----------+
条目结构中各个字段含义如下:
命名空间 (NS, NameSpace)
该条目的命名空间索引,详细信息参见命名空间实现章节。
类型 (Type)
一个字节表示的值的数据类型,:component_file:`nvs_flash/include/nvs_handle.hpp` 下的 :cpp:type:`ItemType` 枚举了可能的类型。
跨度 (Span)
该键值对所用的条目数量。如果键值为整数型,条目数量即为 1。如果键值为字符串或 BLOB则条目数量取决于值的长度。
块索引 (ChunkIndex)
用于存储 BLOB 类型数据块的索引。如果键值为其他数据类型,则此处索引应写入 ``0xff``
CRC32
对条目下所有字节进行校验后所得的校验和CRC32 字段不计算在内)。
键 (Key)
即以零结尾的 ASCII 字符串,字符串最长为 15 字节,不包含最后一个字节的零终止符。
数据 (Data)
如果键值类型为整数型,则数据字段仅包含键值。如果键值小于八个字节,使用 ``0xff`` 填充未使用的部分(右侧)。
如果键值类型为 BLOB 索引条目,则该字段的八个字节将保存以下数据块信息:
- 块大小
整个 BLOB 数据的大小(以字节为单位)。该字段仅用于 BLOB 索引类型条目。
- ChunkCount
存储过程中 BLOB 分成的数据块总量。该字段仅用于 BLOB 索引类型条目。
- ChunkStart
BLOB 第一个数据块的块索引,后续数据块索引依次递增,步长为 1。该字段仅用于 BLOB 索引类型条目。
如果键值类型为字符串或 BLOB 数据块,数据字段的这八个字节将保存该键值的一些附加信息,如下所示:
- 数据大小
实际数据的大小(以字节为单位)。如果键值类型为字符串,此字段也应将零终止符包含在内。此字段仅用于字符串和 BLOB 类型条目。
- CRC32
数据所有字节的校验和,该字段仅用于字符串和 BLOB 类型条目。
可变长度值(字符串和 BLOB写入后续条目每个条目 32 字节。第一个条目的 `Span` 字段将指明使用了多少条目。
命名空间
^^^^^^^^^^
如上所述,每个键值对属于一个命名空间。命名空间标识符(字符串)也作为键值对的键,存储在索引为 0 的命名空间中。与这些键对应的值就是这些命名空间的索引。
::
+-------------------------------------------+
| NS=0 Type=uint8_t Key="wifi" Value=1 | Entry describing namespace "wifi"
+-------------------------------------------+
| NS=1 Type=uint32_t Key="channel" Value=6 | Key "channel" in namespace "wifi"
+-------------------------------------------+
| NS=0 Type=uint8_t Key="pwm" Value=2 | Entry describing namespace "pwm"
+-------------------------------------------+
| NS=2 Type=uint16_t Key="channel" Value=20 | Key "channel" in namespace "pwm"
+-------------------------------------------+
条目哈希列表
^^^^^^^^^^^^^^
为了减少对 flash 执行的读操作次数Page 类对象均设有一个列表,包含一对数据:条目索引和条目哈希值。该列表可大大提高检索速度,而无需迭代所有条目并逐个从 flash 中读取。``Page::findItem`` 首先从哈希列表中检索条目哈希值,如果条目存在,则在页面内给出条目索引。由于哈希冲突,在哈希列表中检索条目哈希值可能会得到不同的条目,对 flash 中条目再次迭代可解决这一冲突。
哈希列表中每个节点均包含一个 24 位哈希值和 8 位条目索引。哈希值根据条目命名空间、键名和块索引由 CRC32 计算所得,计算结果保留 24 位。为减少将 32 位条目存储在链表中的开销,链表采用了数组的双向链表。每个数组占用 128 个字节,包含 29 个条目、两个链表指针和一个 32 位计数字段。因此,每页额外需要的 RAM 最少为 128 字节,最多为 640 字节。
API 参考
-------------
.. include-build-file:: inc/nvs_flash.inc
.. include-build-file:: inc/nvs.inc