esp-idf/components/esp_psram/esp_psram.c

459 lines
19 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*----------------------------------------------------------------------------------------------------
* Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be
* abstracted to lower layers.
*
* When we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
*----------------------------------------------------------------------------------------------------*/
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "esp_heap_caps_init.h"
#include "hal/mmu_hal.h"
#include "hal/mmu_ll.h"
#include "hal/cache_ll.h"
#include "esp_private/esp_psram_io.h"
#include "esp_private/esp_psram_extram.h"
#include "esp_private/mmu_psram_flash.h"
#include "esp_psram_impl.h"
#include "esp_psram.h"
#include "esp_private/esp_mmu_map_private.h"
#include "esp_mmu_map.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/himem.h"
#include "esp32/rom/cache.h"
#include "esp_private/esp_cache_esp32_private.h"
#endif
/**
* Two types of PSRAM memory regions for now:
* - 8bit aligned
* - 32bit aligned
*/
#define PSRAM_MEM_TYPE_NUM 2
#define PSRAM_MEM_8BIT_ALIGNED 0
#define PSRAM_MEM_32BIT_ALIGNED 1
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
extern uint8_t _ext_ram_bss_start;
extern uint8_t _ext_ram_bss_end;
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
extern uint8_t _ext_ram_noinit_start;
extern uint8_t _ext_ram_noinit_end;
#endif //#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
typedef struct {
intptr_t vaddr_start;
intptr_t vaddr_end;
size_t size; //in bytes
} psram_mem_t;
typedef struct {
bool is_initialised;
/**
* @note 1
* As we can't use heap allocator during this stage, we need to statically declare these regions.
* Luckily only S2 has two different types of memory regions:
* - byte-aligned memory
* - word-aligned memory
* On the other hand, the type number usually won't be very big
*
* On other chips, only one region is needed.
* So for chips other than S2, size of `regions_to_heap[1]` and `mapped_regions[1]`will always be zero.
*
* If in the future, this condition is worse (dbus memory isn't consecutive), we need to delegate this context
* to chip-specific files, and only keep a (void *) pointer here pointing to those chip-specific contexts
*/
psram_mem_t regions_to_heap[PSRAM_MEM_TYPE_NUM]; //memory regions that are available to be added to the heap allocator
psram_mem_t mapped_regions[PSRAM_MEM_TYPE_NUM]; //mapped memory regions
} psram_ctx_t;
static psram_ctx_t s_psram_ctx;
static const char* TAG = "esp_psram";
#if CONFIG_IDF_TARGET_ESP32
//If no function in esp_himem.c is used, this function will be linked into the
//binary instead of the one in esp_himem.c, automatically making sure no memory
//is reserved if no himem function is used.
size_t __attribute__((weak)) esp_himem_reserved_area_size(void)
{
return 0;
}
static void IRAM_ATTR s_mapping(int v_start, int size)
{
//Enable external RAM in MMU
cache_sram_mmu_set(0, 0, v_start, 0, 32, (size / 1024 / 32));
//Flush and enable icache for APP CPU
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1);
cache_sram_mmu_set(1, 0, v_start, 0, 32, (size / 1024 / 32));
#endif
}
#endif //CONFIG_IDF_TARGET_ESP32
esp_err_t esp_psram_init(void)
{
if (s_psram_ctx.is_initialised) {
return ESP_ERR_INVALID_STATE;
}
esp_err_t ret = ESP_FAIL;
ret = esp_psram_impl_enable();
if (ret != ESP_OK) {
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
ESP_EARLY_LOGE(TAG, "PSRAM enabled but initialization failed. Bailing out.");
#endif
return ret;
}
s_psram_ctx.is_initialised = true;
uint32_t psram_physical_size = 0;
ret = esp_psram_impl_get_physical_size(&psram_physical_size);
assert(ret == ESP_OK);
ESP_EARLY_LOGI(TAG, "Found %dMB PSRAM device", psram_physical_size / (1024 * 1024));
ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED);
#if CONFIG_IDF_TARGET_ESP32
#if CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in normal (1-core) mode.");
#else
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in low/high (2-core) mode.");
#endif
#endif
uint32_t psram_available_size = 0;
ret = esp_psram_impl_get_available_size(&psram_available_size);
assert(ret == ESP_OK);
__attribute__((unused)) uint32_t total_available_size = psram_available_size;
/**
* `start_page` is the psram physical address in MMU page size.
* MMU page size on ESP32S2 is 64KB
* e.g.: psram physical address 16 is in page 0
*
* Here we plan to copy FLASH instructions to psram physical address 0, which is the No.0 page.
*/
__attribute__((unused)) uint32_t start_page = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
uint32_t used_page = 0;
#endif
//------------------------------------Copy Flash .text to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
ret = mmu_config_psram_text_segment(start_page, total_available_size, &used_page);
if (ret != ESP_OK) {
ESP_EARLY_LOGE(TAG, "No enough psram memory for instructon!");
abort();
}
start_page += used_page;
psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
ESP_EARLY_LOGV(TAG, "after copy .text, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
//------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_RODATA
ret = mmu_config_psram_rodata_segment(start_page, total_available_size, &used_page);
if (ret != ESP_OK) {
ESP_EARLY_LOGE(TAG, "No enough psram memory for rodata!");
abort();
}
start_page += used_page;
psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
ESP_EARLY_LOGV(TAG, "after copy .rodata, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
#endif //#if CONFIG_SPIRAM_RODATA
//----------------------------------Map the PSRAM physical range to MMU-----------------------------//
/**
* @note 2
* Similarly to @note 1, we expect HW DBUS memory to be consecutive.
*
* If situation is worse in the future (memory region isn't consecutive), we need to put these logics into chip-specific files
*/
size_t total_mapped_size = 0;
size_t size_to_map = 0;
size_t byte_aligned_size = 0;
ret = esp_mmu_map_get_max_consecutive_free_block_size(MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_8BIT | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &byte_aligned_size);
assert(ret == ESP_OK);
size_to_map = MIN(byte_aligned_size, psram_available_size);
const void *v_start_8bit_aligned = NULL;
ret = esp_mmu_map_reserve_block_with_caps(size_to_map, MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_8BIT | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &v_start_8bit_aligned);
assert(ret == ESP_OK);
#if CONFIG_IDF_TARGET_ESP32
s_mapping((int)v_start_8bit_aligned, size_to_map);
#else
uint32_t actual_mapped_len = 0;
#if MMU_LL_MMU_PER_TARGET
mmu_hal_map_region(1, MMU_TARGET_PSRAM0, (intptr_t)v_start_8bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
#else
mmu_hal_map_region(0, MMU_TARGET_PSRAM0, (intptr_t)v_start_8bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
#endif
start_page += BYTES_TO_MMU_PAGE(actual_mapped_len);
ESP_EARLY_LOGV(TAG, "8bit-aligned-region: actual_mapped_len is 0x%x bytes", actual_mapped_len);
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)v_start_8bit_aligned, actual_mapped_len);
cache_ll_l1_enable_bus(0, bus_mask);
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
bus_mask = cache_ll_l1_get_bus(1, (uint32_t)v_start_8bit_aligned, actual_mapped_len);
cache_ll_l1_enable_bus(1, bus_mask);
#endif
#endif //#if CONFIG_IDF_TARGET_ESP32
s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size = size_to_map;
s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start = (intptr_t)v_start_8bit_aligned;
s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_end = (intptr_t)v_start_8bit_aligned + size_to_map;
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size = size_to_map;
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start = (intptr_t)v_start_8bit_aligned;
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end = (intptr_t)v_start_8bit_aligned + size_to_map;
ESP_EARLY_LOGV(TAG, "8bit-aligned-range: 0x%x B, starting from: 0x%x", s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size, v_start_8bit_aligned);
total_mapped_size += size_to_map;
#if CONFIG_IDF_TARGET_ESP32S2
/**
* On ESP32S2, there are 2 types of DBUS memory:
* - byte-aligned-memory
* - word-aligned-memory
*
* If byte-aligned-memory isn't enough, we search for word-aligned-memory to do mapping
*/
if (total_mapped_size < psram_available_size) {
size_to_map = psram_available_size - total_mapped_size;
size_t word_aligned_size = 0;
ret = esp_mmu_map_get_max_consecutive_free_block_size(MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &word_aligned_size);
assert(ret == ESP_OK);
size_to_map = MIN(word_aligned_size, size_to_map);
const void *v_start_32bit_aligned = NULL;
ret = esp_mmu_map_reserve_block_with_caps(size_to_map, MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &v_start_32bit_aligned);
assert(ret == ESP_OK);
mmu_hal_map_region(0, MMU_TARGET_PSRAM0, (intptr_t)v_start_32bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
ESP_EARLY_LOGV(TAG, "32bit-aligned-region: actual_mapped_len is 0x%x bytes", actual_mapped_len);
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)v_start_32bit_aligned, actual_mapped_len);
cache_ll_l1_enable_bus(0, bus_mask);
s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size = size_to_map;
s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start = (intptr_t)v_start_32bit_aligned;
s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_end = (intptr_t)v_start_32bit_aligned + size_to_map;
s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size = size_to_map;
s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start = (intptr_t)v_start_32bit_aligned;
s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_end = (intptr_t)v_start_32bit_aligned + size_to_map;
ESP_EARLY_LOGV(TAG, "32bit-aligned-range: 0x%x B, starting from: 0x%x", s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size, v_start_32bit_aligned);
total_mapped_size += size_to_map;
}
#endif // #if CONFIG_IDF_TARGET_ESP32S2
if (total_mapped_size < psram_available_size) {
ESP_EARLY_LOGW(TAG, "Virtual address not enough for PSRAM, map as much as we can. %dMB is mapped", total_mapped_size / 1024 / 1024);
}
/*------------------------------------------------------------------------------
* After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE!
*----------------------------------------------------------------------------*/
//------------------------------------Configure .bss in PSRAM-------------------------------------//
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
//should never be negative number
uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start);
ESP_EARLY_LOGV(TAG, "ext_bss_size is %d", ext_bss_size);
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start += ext_bss_size;
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= ext_bss_size;
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
uint32_t ext_noinit_size = ((intptr_t)&_ext_ram_noinit_end - (intptr_t)&_ext_ram_noinit_start);
ESP_EARLY_LOGV(TAG, "ext_noinit_size is %d", ext_noinit_size);
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start += ext_noinit_size;
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= ext_noinit_size;
#endif
#if CONFIG_IDF_TARGET_ESP32
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= esp_himem_reserved_area_size() - 1;
#endif
//will be removed, TODO: IDF-6944
#if CONFIG_IDF_TARGET_ESP32
cache_driver_t drv = {
NULL,
esp_psram_extram_writeback_cache,
};
cache_register_writeback(&drv);
#endif
return ESP_OK;
}
esp_err_t esp_psram_extram_add_to_heap_allocator(void)
{
esp_err_t ret = ESP_FAIL;
uint32_t byte_aligned_caps[] = {MALLOC_CAP_SPIRAM | MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
ret = heap_caps_add_region_with_caps(byte_aligned_caps,
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start,
s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end);
if (ret != ESP_OK) {
return ret;
}
if (s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size) {
assert(s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start);
uint32_t word_aligned_caps[] = {MALLOC_CAP_SPIRAM | MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_32BIT};
ret = heap_caps_add_region_with_caps(word_aligned_caps,
s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start,
s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_end);
if (ret != ESP_OK) {
return ret;
}
}
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of PSRAM memory to heap allocator",
(s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size + s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size) / 1024);
return ESP_OK;
}
bool IRAM_ATTR esp_psram_check_ptr_addr(const void *p)
{
if (!s_psram_ctx.is_initialised) {
return false;
}
return ((intptr_t)p >= s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start && (intptr_t)p < s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_end) ||
((intptr_t)p >= s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start && (intptr_t)p < s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_end);
}
esp_err_t esp_psram_extram_reserve_dma_pool(size_t size)
{
if (size == 0) {
return ESP_OK; //no-op
}
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024);
/* Pool may be allocated in multiple non-contiguous chunks, depending on available RAM */
while (size > 0) {
size_t next_size = heap_caps_get_largest_free_block(MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
next_size = MIN(next_size, size);
ESP_EARLY_LOGD(TAG, "Allocating block of size %d bytes", next_size);
uint8_t *dma_heap = heap_caps_malloc(next_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
if (!dma_heap || next_size == 0) {
return ESP_ERR_NO_MEM;
}
uint32_t caps[] = {0, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
esp_err_t e = heap_caps_add_region_with_caps(caps, (intptr_t)dma_heap, (intptr_t)dma_heap + next_size - 1);
if (e != ESP_OK) {
return e;
}
size -= next_size;
}
return ESP_OK;
}
bool IRAM_ATTR __attribute__((pure)) esp_psram_is_initialized(void)
{
return s_psram_ctx.is_initialised;
}
size_t esp_psram_get_size(void)
{
uint32_t available_size = 0;
esp_err_t ret = esp_psram_impl_get_available_size(&available_size);
if (ret != ESP_OK) {
//This means PSRAM isn't initialised, to keep back-compatibility, set size to 0.
available_size = 0;
}
return (size_t)available_size;
}
uint8_t esp_psram_io_get_cs_io(void)
{
return esp_psram_impl_get_cs_io();
}
/*
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
*/
static bool s_test_psram(intptr_t v_start, size_t size, intptr_t reserved_start, intptr_t reserved_end)
{
volatile int *spiram = (volatile int *)v_start;
size_t p;
int errct = 0;
int initial_err = -1;
for (p = 0; p < (size / sizeof(int)); p += 8) {
intptr_t addr = (intptr_t)&spiram[p];
if ((reserved_start <= addr) && (addr < reserved_end)) {
continue;
}
spiram[p] = p ^ 0xAAAAAAAA;
}
for (p = 0; p < (size / sizeof(int)); p += 8) {
intptr_t addr = (intptr_t)&spiram[p];
if ((reserved_start <= addr) && (addr < reserved_end)) {
continue;
}
if (spiram[p] != (p ^ 0xAAAAAAAA)) {
errct++;
if (errct == 1) {
initial_err = p * 4;
}
}
}
if (errct) {
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, size / 32, initial_err + v_start);
return false;
} else {
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
return true;
}
}
bool esp_psram_extram_test(void)
{
bool test_success = false;
#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
intptr_t noinit_vstart = (intptr_t)&_ext_ram_noinit_start;
intptr_t noinit_vend = (intptr_t)&_ext_ram_noinit_end;
#else
intptr_t noinit_vstart = 0;
intptr_t noinit_vend = 0;
#endif
test_success = s_test_psram(s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start,
s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size,
noinit_vstart,
noinit_vend);
if (!test_success) {
return false;
}
if (s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size) {
test_success = s_test_psram(s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start,
s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size,
0,
0);
}
if (!test_success) {
return false;
}
return true;
}