mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
c782e57a0f
refactor(usb/host): Prerequisite Refactoring For Hub Collective backport (v5.3) See merge request espressif/esp-idf!30480
2679 lines
102 KiB
C
2679 lines
102 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "esp_dma_utils.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "soc/interrupts.h" // For interrupt index
|
|
#include "esp_err.h"
|
|
#include "esp_log.h"
|
|
#include "hal/usb_dwc_hal.h"
|
|
#include "hal/usb_dwc_types.h"
|
|
#include "hcd.h"
|
|
#include "usb_private.h"
|
|
#include "usb/usb_types_ch9.h"
|
|
|
|
#include "soc/soc_caps.h"
|
|
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
#include "esp_cache.h"
|
|
#include "esp_private/esp_cache_private.h"
|
|
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
|
|
// ----------------------------------------------------- Macros --------------------------------------------------------
|
|
|
|
// ------------------ Target specific ----------------------
|
|
// TODO: Remove target specific section after support for multiple USB peripherals is implemented
|
|
#include "sdkconfig.h"
|
|
#if (CONFIG_IDF_TARGET_ESP32P4)
|
|
#define USB_INTR ETS_USB_OTG_INTR_SOURCE
|
|
#else
|
|
#define USB_INTR ETS_USB_INTR_SOURCE
|
|
#endif
|
|
|
|
// --------------------- Constants -------------------------
|
|
|
|
#define INIT_DELAY_MS 30 // A delay of at least 25ms to enter Host mode. Make it 30ms to be safe
|
|
#define DEBOUNCE_DELAY_MS CONFIG_USB_HOST_DEBOUNCE_DELAY_MS
|
|
#define RESET_HOLD_MS CONFIG_USB_HOST_RESET_HOLD_MS
|
|
#define RESET_RECOVERY_MS CONFIG_USB_HOST_RESET_RECOVERY_MS
|
|
#define RESUME_HOLD_MS 30 // Spec requires at least 20ms, Make it 30ms to be safe
|
|
#define RESUME_RECOVERY_MS 20 // Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP
|
|
|
|
#define CTRL_EP_MAX_MPS_LS 8 // Largest Maximum Packet Size for Low Speed control endpoints
|
|
#define CTRL_EP_MAX_MPS_HSFS 64 // Largest Maximum Packet Size for High & Full Speed control endpoints
|
|
|
|
#define NUM_PORTS 1 // The controller only has one port.
|
|
|
|
// ----------------------- Configs -------------------------
|
|
|
|
#define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32
|
|
#define NUM_BUFFERS 2
|
|
|
|
#define XFER_LIST_LEN_CTRL 3 // One descriptor for each stage
|
|
#define XFER_LIST_LEN_BULK 2 // One descriptor for transfer, one to support an extra zero length packet
|
|
// Same length as the frame list makes it easier to schedule. Must be power of 2
|
|
// FS: Must be 2-64. HS: Must be 8-256. See USB-OTG databook Table 5-47
|
|
#define XFER_LIST_LEN_INTR FRAME_LIST_LEN
|
|
#define XFER_LIST_LEN_ISOC FRAME_LIST_LEN
|
|
|
|
// ------------------------ Flags --------------------------
|
|
|
|
/**
|
|
* @brief Bit masks for the HCD to use in the URBs reserved_flags field
|
|
*
|
|
* The URB object has a reserved_flags member for host stack's internal use. The following flags will be set in
|
|
* reserved_flags in order to keep track of state of an URB within the HCD.
|
|
*/
|
|
#define URB_HCD_STATE_IDLE 0 // The URB is not enqueued in an HCD pipe
|
|
#define URB_HCD_STATE_PENDING 1 // The URB is enqueued and pending execution
|
|
#define URB_HCD_STATE_INFLIGHT 2 // The URB is currently in flight
|
|
#define URB_HCD_STATE_DONE 3 // The URB has completed execution or is retired, and is waiting to be dequeued
|
|
|
|
#define URB_HCD_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~URB_HCD_STATE_MASK) | state)
|
|
#define URB_HCD_STATE_GET(reserved_flags) (reserved_flags & URB_HCD_STATE_MASK)
|
|
|
|
// -------------------- Convenience ------------------------
|
|
|
|
const char *HCD_DWC_TAG = "HCD DWC";
|
|
|
|
#define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock)
|
|
#define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock)
|
|
#define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock)
|
|
#define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock)
|
|
|
|
#define HCD_CHECK(cond, ret_val) ({ \
|
|
if (!(cond)) { \
|
|
return (ret_val); \
|
|
} \
|
|
})
|
|
#define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \
|
|
if (!(cond)) { \
|
|
HCD_EXIT_CRITICAL(); \
|
|
return ret_val; \
|
|
} \
|
|
})
|
|
|
|
// ----------------------- Cache sync ----------------------
|
|
|
|
/**
|
|
* @brief Cache sync macros
|
|
*
|
|
* This macros are relevant only for SOCs that have L1 cache for internal memory
|
|
* For other SOCs this is no-operation
|
|
*/
|
|
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
|
|
#define CACHE_SYNC_FRAME_LIST(frame_list) cache_sync_frame_list(frame_list)
|
|
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer) cache_sync_xfer_descriptor_list(buffer, true)
|
|
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer) cache_sync_xfer_descriptor_list(buffer, false)
|
|
#define CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb) cache_sync_data_buffer(pipe, urb, true)
|
|
#define CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb) cache_sync_data_buffer(pipe, urb, false)
|
|
#else // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
#define CACHE_SYNC_FRAME_LIST(frame_list)
|
|
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer)
|
|
#define CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer)
|
|
#define CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb)
|
|
#define CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb)
|
|
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
|
|
// ------------------------------------------------------ Types --------------------------------------------------------
|
|
|
|
typedef struct pipe_obj pipe_t;
|
|
typedef struct port_obj port_t;
|
|
|
|
/**
|
|
* @brief Object representing a single buffer of a pipe's multi buffer implementation
|
|
*/
|
|
typedef struct {
|
|
void *xfer_desc_list;
|
|
int xfer_desc_list_len_bytes; // Only for cache msync
|
|
urb_t *urb;
|
|
union {
|
|
struct {
|
|
uint32_t data_stg_in: 1; // Data stage of the control transfer is IN
|
|
uint32_t data_stg_skip: 1; // Control transfer has no data stage
|
|
uint32_t cur_stg: 2; // Index of the current stage (e.g., 0 is setup stage, 2 is status stage)
|
|
uint32_t reserved28: 28;
|
|
} ctrl; // Control transfer related
|
|
struct {
|
|
uint32_t zero_len_packet: 1; // Added a zero length packet, so transfer consists of 2 QTDs
|
|
uint32_t reserved31: 31;
|
|
} bulk; // Bulk transfer related
|
|
struct {
|
|
uint32_t num_qtds: 8; // Number of transfer descriptors filled (excluding zero length packet)
|
|
uint32_t zero_len_packet: 1; // Added a zero length packet, so true number descriptors is num_qtds + 1
|
|
uint32_t reserved23: 23;
|
|
} intr; // Interrupt transfer related
|
|
struct {
|
|
uint32_t num_qtds: 8; // Number of transfer descriptors filled (including NULL descriptors)
|
|
uint32_t interval: 8; // Interval (in number of SOF i.e., ms)
|
|
uint32_t start_idx: 8; // Index of the first transfer descriptor in the list
|
|
uint32_t next_start_idx: 8; // Index for the first descriptor of the next buffer
|
|
} isoc;
|
|
uint32_t val;
|
|
} flags;
|
|
union {
|
|
struct {
|
|
uint32_t executing: 1; // The buffer is currently executing
|
|
uint32_t was_canceled: 1; // Buffer was done due to a cancellation (i.e., a halt request)
|
|
uint32_t reserved6: 6;
|
|
uint32_t stop_idx: 8; // The descriptor index when the channel was halted
|
|
hcd_pipe_event_t pipe_event: 8; // The pipe event when the buffer was done
|
|
uint32_t reserved8: 8;
|
|
};
|
|
uint32_t val;
|
|
} status_flags; // Status flags for the buffer
|
|
} dma_buffer_block_t;
|
|
|
|
/**
|
|
* @brief Object representing a pipe in the HCD layer
|
|
*/
|
|
struct pipe_obj {
|
|
// URB queuing related
|
|
TAILQ_HEAD(tailhead_urb_pending, urb_s) pending_urb_tailq;
|
|
TAILQ_HEAD(tailhead_urb_done, urb_s) done_urb_tailq;
|
|
int num_urb_pending;
|
|
int num_urb_done;
|
|
// Multi-buffer control
|
|
dma_buffer_block_t *buffers[NUM_BUFFERS]; // Double buffering scheme
|
|
union {
|
|
struct {
|
|
uint32_t buffer_num_to_fill: 2; // Number of buffers that can be filled
|
|
uint32_t buffer_num_to_exec: 2; // Number of buffers that are filled and need to be executed
|
|
uint32_t buffer_num_to_parse: 2;// Number of buffers completed execution and waiting to be parsed
|
|
uint32_t reserved2: 2;
|
|
uint32_t wr_idx: 1; // Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically
|
|
uint32_t rd_idx: 1; // Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically
|
|
uint32_t fr_idx: 1; // Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically
|
|
uint32_t buffer_is_executing: 1;// One of the buffers is in flight
|
|
uint32_t reserved20: 20;
|
|
};
|
|
uint32_t val;
|
|
} multi_buffer_control;
|
|
// HAL related
|
|
usb_dwc_hal_chan_t *chan_obj;
|
|
usb_dwc_hal_ep_char_t ep_char;
|
|
// Port related
|
|
port_t *port; // The port to which this pipe is routed through
|
|
TAILQ_ENTRY(pipe_obj) tailq_entry; // TailQ entry for port's list of pipes
|
|
// Pipe status/state/events related
|
|
hcd_pipe_state_t state;
|
|
hcd_pipe_event_t last_event;
|
|
volatile TaskHandle_t task_waiting_pipe_notif; // Task handle used for internal pipe events. Set by waiter, cleared by notifier
|
|
union {
|
|
struct {
|
|
uint32_t waiting_halt: 1;
|
|
uint32_t pipe_cmd_processing: 1;
|
|
uint32_t has_urb: 1; // Indicates there is at least one URB either pending, in-flight, or done
|
|
uint32_t reserved29: 29;
|
|
};
|
|
uint32_t val;
|
|
} cs_flags;
|
|
// Pipe callback and context
|
|
hcd_pipe_callback_t callback;
|
|
void *callback_arg;
|
|
void *context;
|
|
};
|
|
|
|
/**
|
|
* @brief Object representing a port in the HCD layer
|
|
*/
|
|
struct port_obj {
|
|
usb_dwc_hal_context_t *hal;
|
|
void *frame_list;
|
|
// Pipes routed through this port
|
|
TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq;
|
|
TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq;
|
|
int num_pipes_idle;
|
|
int num_pipes_queued;
|
|
// Port status, state, and events
|
|
hcd_port_state_t state;
|
|
usb_speed_t speed;
|
|
hcd_port_event_t last_event;
|
|
volatile TaskHandle_t task_waiting_port_notif; // Task handle used for internal port events. Set by waiter, cleared by notifier
|
|
union {
|
|
struct {
|
|
uint32_t event_pending: 1; // The port has an event that needs to be handled
|
|
uint32_t event_processing: 1; // The port is current processing (handling) an event
|
|
uint32_t cmd_processing: 1; // Used to indicate command handling is ongoing
|
|
uint32_t disable_requested: 1;
|
|
uint32_t conn_dev_ena: 1; // Used to indicate the port is connected to a device that has been reset
|
|
uint32_t periodic_scheduling_enabled: 1;
|
|
uint32_t reserved26: 26;
|
|
};
|
|
uint32_t val;
|
|
} flags;
|
|
bool initialized;
|
|
// FIFO biasing related
|
|
usb_hal_fifo_bias_t fifo_bias; // Bias is saved so it can be reconfigured upon reset
|
|
// Port callback and context
|
|
hcd_port_callback_t callback;
|
|
void *callback_arg;
|
|
SemaphoreHandle_t port_mux;
|
|
void *context;
|
|
};
|
|
|
|
/**
|
|
* @brief Object representing the HCD
|
|
*/
|
|
typedef struct {
|
|
// Ports (Hardware only has one)
|
|
port_t *port_obj;
|
|
intr_handle_t isr_hdl;
|
|
} hcd_obj_t;
|
|
|
|
static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
static hcd_obj_t *s_hcd_obj = NULL; // Note: "s_" is for the static pointer
|
|
|
|
// ------------------------------------------------- Forward Declare ---------------------------------------------------
|
|
|
|
// --------------------- Cache sync ------------------------
|
|
|
|
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
/**
|
|
* @brief Sync Frame List from cache to memory
|
|
*/
|
|
static inline void cache_sync_frame_list(void *frame_list)
|
|
{
|
|
esp_err_t ret = esp_cache_msync(frame_list, FRAME_LIST_LEN * sizeof(uint32_t), 0);
|
|
assert(ret == ESP_OK);
|
|
}
|
|
|
|
/**
|
|
* @brief Sync Transfer Descriptor List
|
|
*
|
|
* @param[in] buffer Buffer that holds the Transfer Descriptor List
|
|
* @param[in] mem_to_cache Direction of cache sync
|
|
*/
|
|
static inline void cache_sync_xfer_descriptor_list(dma_buffer_block_t *buffer, bool mem_to_cache)
|
|
{
|
|
esp_err_t ret = esp_cache_msync(buffer->xfer_desc_list, buffer->xfer_desc_list_len_bytes, mem_to_cache ? ESP_CACHE_MSYNC_FLAG_DIR_M2C : 0);
|
|
assert(ret == ESP_OK);
|
|
}
|
|
|
|
/**
|
|
* @brief Sync Transfer data buffer
|
|
*
|
|
* This function must be called before a URB is enqueued or dequeued.
|
|
* Based on transfer direction (IN/OUT), this function will msync the data buffer associated with this URB.
|
|
*
|
|
* @note Here we also accept UNALIGNED data, for cases where the class drivers force overwrite the allocated data buffers
|
|
*
|
|
* @param[in] pipe Pipe belonging to this data buffer
|
|
* @param[in] urb URB belonging to this data buffer
|
|
* @param[in] done Whether data buffer was just processed or is about to be processed
|
|
*/
|
|
static inline void cache_sync_data_buffer(pipe_t *pipe, urb_t *urb, bool done)
|
|
{
|
|
const bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
|
|
const bool is_ctrl = (pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL);
|
|
if ((is_in == done) || is_ctrl) {
|
|
uint32_t flags = (done) ? ESP_CACHE_MSYNC_FLAG_DIR_M2C : ESP_CACHE_MSYNC_FLAG_UNALIGNED;
|
|
esp_err_t ret = esp_cache_msync(urb->transfer.data_buffer, urb->transfer.data_buffer_size, flags);
|
|
assert(ret == ESP_OK);
|
|
}
|
|
}
|
|
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
|
|
// --------------------- Allocation ------------------------
|
|
|
|
/**
|
|
* @brief Allocate Frame List
|
|
*
|
|
* - Frame list is allocated in DMA capable memory
|
|
* - Frame list is aligned to 512 and cache line size
|
|
*
|
|
* @note Free the memory with heap_caps_free() call
|
|
*
|
|
* @param[in] frame_list_len Length of the Frame List
|
|
* @return Pointer to allocated frame list
|
|
*/
|
|
static void *frame_list_alloc(size_t frame_list_len);
|
|
|
|
/**
|
|
* @brief Allocate Transfer Descriptor List
|
|
*
|
|
* - Frame list is allocated in DMA capable memory
|
|
* - Frame list is aligned to 512 and cache line size
|
|
*
|
|
* @note Free the memory with heap_caps_free() call
|
|
*
|
|
* @param[in] list_len Required length
|
|
* @param[out] list_len_bytes_out Allocated length in bytes (can be greater than required)
|
|
* @return Pointer to allocated transfer descriptor list
|
|
*/
|
|
static void *transfer_descriptor_list_alloc(size_t list_len, size_t *list_len_bytes_out);
|
|
|
|
// ------------------- Buffer Control ----------------------
|
|
|
|
/**
|
|
* @brief Check if an inactive buffer can be filled with a pending URB
|
|
*
|
|
* @param pipe Pipe object
|
|
* @return true There are one or more pending URBs, and the inactive buffer is yet to be filled
|
|
* @return false Otherwise
|
|
*/
|
|
static inline bool _buffer_can_fill(pipe_t *pipe)
|
|
{
|
|
// We can only fill if there are pending URBs and at least one unfilled buffer
|
|
if (pipe->num_urb_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Fill an empty buffer with
|
|
*
|
|
* This function will:
|
|
* - Remove an URB from the pending tailq
|
|
* - Fill that URB into the inactive buffer
|
|
*
|
|
* @note _buffer_can_fill() must return true before calling this function
|
|
*
|
|
* @param pipe Pipe object
|
|
*/
|
|
static void _buffer_fill(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Check if there are more filled buffers than can be executed
|
|
*
|
|
* @param pipe Pipe object
|
|
* @return true There are more filled buffers to be executed
|
|
* @return false No more buffers to execute
|
|
*/
|
|
static inline bool _buffer_can_exec(pipe_t *pipe)
|
|
{
|
|
// We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution
|
|
if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Execute the next filled buffer
|
|
*
|
|
* - Must have called _buffer_can_exec() before calling this function
|
|
* - Will start the execution of the buffer
|
|
*
|
|
* @param pipe Pipe object
|
|
*/
|
|
static void _buffer_exec(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Check if a buffer as completed execution
|
|
*
|
|
* This should only be called after receiving a USB_DWC_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually
|
|
* done.
|
|
*
|
|
* @param pipe Pipe object
|
|
* @return true Buffer complete
|
|
* @return false Buffer not complete
|
|
*/
|
|
static inline bool _buffer_check_done(pipe_t *pipe)
|
|
{
|
|
if (pipe->ep_char.type != USB_DWC_XFER_TYPE_CTRL) {
|
|
return true;
|
|
}
|
|
// Only control transfers need to be continued
|
|
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
|
|
return (buffer_inflight->flags.ctrl.cur_stg == 2);
|
|
}
|
|
|
|
/**
|
|
* @brief Continue execution of a buffer
|
|
*
|
|
* This should only be called after checking if a buffer has completed execution using _buffer_check_done()
|
|
*
|
|
* @param pipe Pipe object
|
|
*/
|
|
static void _buffer_exec_cont(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Marks the last executed buffer as complete
|
|
*
|
|
* This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done()
|
|
*
|
|
* @param pipe Pipe object
|
|
* @param stop_idx Descriptor index when the buffer stopped execution
|
|
* @param pipe_event Pipe event that caused the buffer to be complete. Use HCD_PIPE_EVENT_NONE for halt request of disconnections
|
|
* @param canceled Whether the buffer was done due to a canceled (i.e., halt request). Must set pipe_event to HCD_PIPE_EVENT_NONE
|
|
*/
|
|
static inline void _buffer_done(pipe_t *pipe, int stop_idx, hcd_pipe_event_t pipe_event, bool canceled)
|
|
{
|
|
// Store the stop_idx and pipe_event for later parsing
|
|
dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
|
|
buffer_done->status_flags.executing = 0;
|
|
buffer_done->status_flags.was_canceled = canceled;
|
|
buffer_done->status_flags.stop_idx = stop_idx;
|
|
buffer_done->status_flags.pipe_event = pipe_event;
|
|
pipe->multi_buffer_control.rd_idx++;
|
|
pipe->multi_buffer_control.buffer_num_to_exec--;
|
|
pipe->multi_buffer_control.buffer_num_to_parse++;
|
|
pipe->multi_buffer_control.buffer_is_executing = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Checks if a pipe has one or more completed buffers to parse
|
|
*
|
|
* @param pipe Pipe object
|
|
* @return true There are one or more buffers to parse
|
|
* @return false There are no more buffers to parse
|
|
*/
|
|
static inline bool _buffer_can_parse(pipe_t *pipe)
|
|
{
|
|
if (pipe->multi_buffer_control.buffer_num_to_parse > 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Parse a completed buffer
|
|
*
|
|
* This function will:
|
|
* - Parse the results of an URB from a completed buffer
|
|
* - Put the URB into the done tailq
|
|
*
|
|
* @note This function should only be called on the completion of a buffer
|
|
*
|
|
* @param pipe Pipe object
|
|
* @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the URB. Set to 0 otherwise
|
|
*/
|
|
static void _buffer_parse(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Marks all buffers pending execution as completed, then parses those buffers
|
|
*
|
|
* @note This should only be called on pipes do not have any currently executing buffers.
|
|
*
|
|
* @param pipe Pipe object
|
|
* @param canceled Whether this flush is due to cancellation
|
|
* @return true One or more buffers were flushed
|
|
* @return false There were no buffers that needed to be flushed
|
|
*/
|
|
static bool _buffer_flush_all(pipe_t *pipe, bool canceled);
|
|
|
|
// ------------------------ Pipe ---------------------------
|
|
|
|
/**
|
|
* @brief Decode a HAL channel error to the corresponding pipe event
|
|
*
|
|
* @param chan_error The HAL channel error
|
|
* @return hcd_pipe_event_t The corresponding pipe error event
|
|
*/
|
|
static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error);
|
|
|
|
/**
|
|
* @brief Halt a pipe
|
|
*
|
|
* - Attempts to halt a pipe. Pipe must be active in order to be halted
|
|
* - If the underlying channel has an ongoing transfer, a halt will be requested, then the function will block until the
|
|
* channel indicates it is halted
|
|
* - If the channel is no on-going transfer, the pipe will simply be marked has halted (thus preventing any further URBs
|
|
* from being enqueued)
|
|
*
|
|
* @note This function can block
|
|
* @param pipe Pipe object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _pipe_cmd_halt(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Flush a pipe
|
|
*
|
|
* - Flushing a pipe causes all of its pending URBs to be become done, thus allowing them to be dequeued
|
|
* - The pipe must be halted in order to be flushed
|
|
* - The pipe callback will be run if one or more URBs become done
|
|
*
|
|
* @param pipe Pipe object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _pipe_cmd_flush(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Clear a pipe from its halt
|
|
*
|
|
* - Pipe must be halted in order to be cleared
|
|
* - Clearing a pipe makes it active again
|
|
* - If there are any enqueued URBs, they will executed
|
|
*
|
|
* @param pipe Pipe object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _pipe_cmd_clear(pipe_t *pipe);
|
|
|
|
// ------------------------ Port ---------------------------
|
|
|
|
/**
|
|
* @brief Checks if all pipes are in the halted state
|
|
*
|
|
* @param port Port object
|
|
* @return true All pipes are halted
|
|
* @return false Not all pipes are halted
|
|
*/
|
|
static bool _port_check_all_pipes_halted(port_t *port);
|
|
|
|
/**
|
|
* @brief Debounce port after a connection or disconnection event
|
|
*
|
|
* This function should be called after a port connection or disconnect event. This function will execute a debounce
|
|
* delay then check the actual connection/disconnections state.
|
|
*
|
|
* @note This function can block
|
|
* @param port Port object
|
|
* @return true A device is connected
|
|
* @return false No device connected
|
|
*/
|
|
static bool _port_debounce(port_t *port);
|
|
|
|
/**
|
|
* @brief Power ON the port
|
|
*
|
|
* @param port Port object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _port_cmd_power_on(port_t *port);
|
|
|
|
/**
|
|
* @brief Power OFF the port
|
|
*
|
|
* - If a device is currently connected, this function will cause a disconnect event
|
|
*
|
|
* @param port Port object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _port_cmd_power_off(port_t *port);
|
|
|
|
/**
|
|
* @brief Reset the port
|
|
*
|
|
* - This function issues a reset signal using the timings specified by the USB2.0 spec
|
|
*
|
|
* @note This function can block
|
|
* @param port Port object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _port_cmd_reset(port_t *port);
|
|
|
|
/**
|
|
* @brief Suspend the port
|
|
*
|
|
* - Port must be enabled in order to to be suspended
|
|
* - All pipes must be halted for the port to be suspended
|
|
* - Suspending the port stops Keep Alive/SOF from being sent to the connected device
|
|
*
|
|
* @param port Port object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _port_cmd_bus_suspend(port_t *port);
|
|
|
|
/**
|
|
* @brief Resume the port
|
|
*
|
|
* - Port must be suspended in order to be resumed
|
|
*
|
|
* @note This function can block
|
|
* @param port Port object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _port_cmd_bus_resume(port_t *port);
|
|
|
|
/**
|
|
* @brief Disable the port
|
|
*
|
|
* - All pipes must be halted for the port to be disabled
|
|
* - The port must be enabled or suspended in order to be disabled
|
|
*
|
|
* @note This function can block
|
|
* @param port Port object
|
|
* @return esp_err_t
|
|
*/
|
|
static esp_err_t _port_cmd_disable(port_t *port);
|
|
|
|
// ----------------------- Events --------------------------
|
|
|
|
/**
|
|
* @brief Wait for an internal event from a port
|
|
*
|
|
* @note For each port, there can only be one thread/task waiting for an internal port event
|
|
* @note This function is blocking (will exit and re-enter the critical section to do so)
|
|
*
|
|
* @param port Port object
|
|
*/
|
|
static void _internal_port_event_wait(port_t *port);
|
|
|
|
/**
|
|
* @brief Notify (from an ISR context) the thread/task waiting for the internal port event
|
|
*
|
|
* @param port Port object
|
|
* @return true A yield is required
|
|
* @return false Whether a yield is required or not
|
|
*/
|
|
static bool _internal_port_event_notify_from_isr(port_t *port);
|
|
|
|
/**
|
|
* @brief Wait for an internal event from a particular pipe
|
|
*
|
|
* @note For each pipe, there can only be one thread/task waiting for an internal port event
|
|
* @note This function is blocking (will exit and re-enter the critical section to do so)
|
|
*
|
|
* @param pipe Pipe object
|
|
*/
|
|
static void _internal_pipe_event_wait(pipe_t *pipe);
|
|
|
|
/**
|
|
* @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event
|
|
*
|
|
* @param pipe Pipe object
|
|
* @param from_isr Whether this is called from an ISR or not
|
|
* @return true A yield is required
|
|
* @return false Whether a yield is required or not. Always false when from_isr is also false
|
|
*/
|
|
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr);
|
|
|
|
// ----------------------------------------------- Interrupt Handling --------------------------------------------------
|
|
|
|
// ------------------- Internal Event ----------------------
|
|
|
|
static void _internal_port_event_wait(port_t *port)
|
|
{
|
|
// There must NOT be another thread/task already waiting for an internal event
|
|
assert(port->task_waiting_port_notif == NULL);
|
|
port->task_waiting_port_notif = xTaskGetCurrentTaskHandle();
|
|
/* We need to loop as task notifications can come from anywhere. If we this
|
|
was a port event notification, task_waiting_port_notif will have been cleared
|
|
by the notifier. */
|
|
while (port->task_waiting_port_notif != NULL) {
|
|
HCD_EXIT_CRITICAL();
|
|
// Wait to be notified from ISR
|
|
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
|
|
HCD_ENTER_CRITICAL();
|
|
}
|
|
}
|
|
|
|
static bool _internal_port_event_notify_from_isr(port_t *port)
|
|
{
|
|
// There must be a thread/task waiting for an internal event
|
|
assert(port->task_waiting_port_notif != NULL);
|
|
TaskHandle_t task_to_unblock = port->task_waiting_port_notif;
|
|
// Clear task_waiting_port_notif to indicate to the waiter that the unblock was indeed an port event notification
|
|
port->task_waiting_port_notif = NULL;
|
|
// Unblock the thread/task waiting for the notification
|
|
BaseType_t xTaskWoken = pdFALSE;
|
|
// Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
|
|
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
|
|
return (xTaskWoken == pdTRUE);
|
|
}
|
|
|
|
static void _internal_pipe_event_wait(pipe_t *pipe)
|
|
{
|
|
// There must NOT be another thread/task already waiting for an internal event
|
|
assert(pipe->task_waiting_pipe_notif == NULL);
|
|
pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle();
|
|
/* We need to loop as task notifications can come from anywhere. If we this
|
|
was a pipe event notification, task_waiting_pipe_notif will have been cleared
|
|
by the notifier. */
|
|
while (pipe->task_waiting_pipe_notif != NULL) {
|
|
// Wait to be unblocked by notified
|
|
HCD_EXIT_CRITICAL();
|
|
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
|
|
HCD_ENTER_CRITICAL();
|
|
}
|
|
}
|
|
|
|
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr)
|
|
{
|
|
// There must be a thread/task waiting for an internal event
|
|
assert(pipe->task_waiting_pipe_notif != NULL);
|
|
TaskHandle_t task_to_unblock = pipe->task_waiting_pipe_notif;
|
|
// Clear task_waiting_pipe_notif to indicate to the waiter that the unblock was indeed an pipe event notification
|
|
pipe->task_waiting_pipe_notif = NULL;
|
|
bool ret;
|
|
if (from_isr) {
|
|
BaseType_t xTaskWoken = pdFALSE;
|
|
// Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
|
|
// Unblock the thread/task waiting for the pipe notification
|
|
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
|
|
ret = (xTaskWoken == pdTRUE);
|
|
} else {
|
|
HCD_EXIT_CRITICAL();
|
|
xTaskNotifyGive(task_to_unblock);
|
|
HCD_ENTER_CRITICAL();
|
|
ret = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// ----------------- HAL <-> USB helpers --------------------
|
|
|
|
static usb_speed_t get_usb_port_speed(usb_dwc_speed_t priv)
|
|
{
|
|
switch (priv) {
|
|
case USB_DWC_SPEED_LOW: return USB_SPEED_LOW;
|
|
case USB_DWC_SPEED_FULL: return USB_SPEED_FULL;
|
|
case USB_DWC_SPEED_HIGH: return USB_SPEED_HIGH;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static usb_hal_fifo_bias_t get_hal_fifo_bias(hcd_port_fifo_bias_t public)
|
|
{
|
|
switch (public) {
|
|
case HCD_PORT_FIFO_BIAS_BALANCED: return USB_HAL_FIFO_BIAS_DEFAULT;
|
|
case HCD_PORT_FIFO_BIAS_RX: return USB_HAL_FIFO_BIAS_RX;
|
|
case HCD_PORT_FIFO_BIAS_PTX: return USB_HAL_FIFO_BIAS_PTX;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
// ----------------- Interrupt Handlers --------------------
|
|
|
|
/**
|
|
* @brief Handle a HAL port interrupt and obtain the corresponding port event
|
|
*
|
|
* @param[in] port Port object
|
|
* @param[in] hal_port_event The HAL port event
|
|
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
|
|
* @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred
|
|
*/
|
|
static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usb_dwc_hal_port_event_t hal_port_event, bool *yield)
|
|
{
|
|
hcd_port_event_t port_event = HCD_PORT_EVENT_NONE;
|
|
switch (hal_port_event) {
|
|
case USB_DWC_HAL_PORT_EVENT_CONN: {
|
|
// Don't update state immediately, we still need to debounce.
|
|
port_event = HCD_PORT_EVENT_CONNECTION;
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_PORT_EVENT_DISCONN: {
|
|
port->state = HCD_PORT_STATE_RECOVERY;
|
|
port_event = HCD_PORT_EVENT_DISCONNECTION;
|
|
port->flags.conn_dev_ena = 0;
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_PORT_EVENT_ENABLED: {
|
|
usb_dwc_hal_port_enable(port->hal); // Initialize remaining host port registers
|
|
port->speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal));
|
|
port->state = HCD_PORT_STATE_ENABLED;
|
|
port->flags.conn_dev_ena = 1;
|
|
// This was triggered by a command, so no event needs to be propagated.
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_PORT_EVENT_DISABLED: {
|
|
port->flags.conn_dev_ena = 0;
|
|
// Disabled could be due to a disable request or reset request, or due to a port error
|
|
if (port->state != HCD_PORT_STATE_RESETTING) { // Ignore the disable event if it's due to a reset request
|
|
if (port->flags.disable_requested) {
|
|
// Disabled by request (i.e. by port command). Generate an internal event
|
|
port->state = HCD_PORT_STATE_DISABLED;
|
|
port->flags.disable_requested = 0;
|
|
*yield |= _internal_port_event_notify_from_isr(port);
|
|
} else {
|
|
// Disabled due to a port error
|
|
port->state = HCD_PORT_STATE_RECOVERY;
|
|
port_event = HCD_PORT_EVENT_ERROR;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_PORT_EVENT_OVRCUR:
|
|
case USB_DWC_HAL_PORT_EVENT_OVRCUR_CLR: { // Could occur if a quick overcurrent then clear happens
|
|
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
|
|
// We need to power OFF the port to protect it
|
|
usb_dwc_hal_port_toggle_power(port->hal, false);
|
|
port->state = HCD_PORT_STATE_RECOVERY;
|
|
port_event = HCD_PORT_EVENT_OVERCURRENT;
|
|
}
|
|
port->flags.conn_dev_ena = 0;
|
|
break;
|
|
}
|
|
default: {
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
return port_event;
|
|
}
|
|
|
|
/**
|
|
* @brief Handles a HAL channel interrupt
|
|
*
|
|
* This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to
|
|
* to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe
|
|
* event occurred, or return NULL otherwise.
|
|
*
|
|
* @param[in] chan_obj Pointer to HAL channel object with interrupt
|
|
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
|
|
* @return hcd_pipe_event_t The pipe event
|
|
*/
|
|
static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usb_dwc_hal_chan_t *chan_obj, bool *yield)
|
|
{
|
|
usb_dwc_hal_chan_event_t chan_event = usb_dwc_hal_chan_decode_intr(chan_obj);
|
|
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
|
|
|
|
switch (chan_event) {
|
|
case USB_DWC_HAL_CHAN_EVENT_CPLT: {
|
|
if (!_buffer_check_done(pipe)) {
|
|
_buffer_exec_cont(pipe);
|
|
break;
|
|
}
|
|
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
|
|
event = pipe->last_event;
|
|
// Mark the buffer as done
|
|
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
|
|
_buffer_done(pipe, stop_idx, pipe->last_event, false);
|
|
// First check if there is another buffer we can execute. But we only want to execute if there's still a valid device
|
|
if (_buffer_can_exec(pipe) && pipe->port->flags.conn_dev_ena) {
|
|
// If the next buffer is filled and ready to execute, execute it
|
|
_buffer_exec(pipe);
|
|
}
|
|
// Handle the previously done buffer
|
|
_buffer_parse(pipe);
|
|
// Check to see if we can fill another buffer. But we only want to fill if there is still a valid device
|
|
if (_buffer_can_fill(pipe) && pipe->port->flags.conn_dev_ena) {
|
|
// Now that we've parsed a buffer, see if another URB can be filled in its place
|
|
_buffer_fill(pipe);
|
|
}
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_CHAN_EVENT_ERROR: {
|
|
// Get and store the pipe error event
|
|
usb_dwc_hal_chan_error_t chan_error = usb_dwc_hal_chan_get_error(chan_obj);
|
|
pipe->last_event = pipe_decode_error_event(chan_error);
|
|
event = pipe->last_event;
|
|
pipe->state = HCD_PIPE_STATE_HALTED;
|
|
// Mark the buffer as done with an error
|
|
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
|
|
_buffer_done(pipe, stop_idx, pipe->last_event, false);
|
|
// Parse the buffer
|
|
_buffer_parse(pipe);
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_CHAN_EVENT_HALT_REQ: {
|
|
assert(pipe->cs_flags.waiting_halt);
|
|
// We've halted a transfer, so we need to trigger the pipe callback
|
|
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
|
|
event = pipe->last_event;
|
|
// Halt request event is triggered when packet is successful completed. But just treat all halted transfers as errors
|
|
pipe->state = HCD_PIPE_STATE_HALTED;
|
|
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
|
|
_buffer_done(pipe, stop_idx, HCD_PIPE_EVENT_NONE, true);
|
|
// Parse the buffer
|
|
_buffer_parse(pipe);
|
|
// Notify the task waiting for the pipe halt
|
|
*yield |= _internal_pipe_event_notify(pipe, true);
|
|
break;
|
|
}
|
|
case USB_DWC_HAL_CHAN_EVENT_NONE: {
|
|
break; // Nothing to do
|
|
}
|
|
default:
|
|
abort();
|
|
break;
|
|
}
|
|
return event;
|
|
}
|
|
|
|
/**
|
|
* @brief Main interrupt handler
|
|
*
|
|
* - Handle all HPRT (Host Port) related interrupts first as they may change the
|
|
* state of the driver (e.g., a disconnect event)
|
|
* - If any channels (pipes) have pending interrupts, handle them one by one
|
|
* - The HCD has not blocking functions, so the user's ISR callback is run to
|
|
* allow the users to send whatever OS primitives they need.
|
|
*
|
|
* @param arg Interrupt handler argument
|
|
*/
|
|
static void intr_hdlr_main(void *arg)
|
|
{
|
|
port_t *port = (port_t *) arg;
|
|
bool yield = false;
|
|
|
|
HCD_ENTER_CRITICAL_ISR();
|
|
usb_dwc_hal_port_event_t hal_port_evt = usb_dwc_hal_decode_intr(port->hal);
|
|
if (hal_port_evt == USB_DWC_HAL_PORT_EVENT_CHAN) {
|
|
// Channel event. Cycle through each pending channel
|
|
usb_dwc_hal_chan_t *chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal);
|
|
while (chan_obj != NULL) {
|
|
pipe_t *pipe = (pipe_t *)usb_dwc_hal_chan_get_context(chan_obj);
|
|
hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield);
|
|
// Run callback if a pipe event has occurred and the pipe also has a callback
|
|
if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) {
|
|
HCD_EXIT_CRITICAL_ISR();
|
|
yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true);
|
|
HCD_ENTER_CRITICAL_ISR();
|
|
}
|
|
// Check for more channels with pending interrupts. Returns NULL if there are no more
|
|
chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal);
|
|
}
|
|
} else if (hal_port_evt != USB_DWC_HAL_PORT_EVENT_NONE) { // Port event
|
|
hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield);
|
|
if (port_event != HCD_PORT_EVENT_NONE) {
|
|
port->last_event = port_event;
|
|
port->flags.event_pending = 1;
|
|
if (port->callback != NULL) {
|
|
HCD_EXIT_CRITICAL_ISR();
|
|
yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true);
|
|
HCD_ENTER_CRITICAL_ISR();
|
|
}
|
|
}
|
|
}
|
|
HCD_EXIT_CRITICAL_ISR();
|
|
|
|
if (yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------- Host Controller Driver ------------------------------------------------
|
|
|
|
static port_t *port_obj_alloc(void)
|
|
{
|
|
port_t *port = calloc(1, sizeof(port_t));
|
|
usb_dwc_hal_context_t *hal = malloc(sizeof(usb_dwc_hal_context_t));
|
|
void *frame_list = frame_list_alloc(FRAME_LIST_LEN);
|
|
SemaphoreHandle_t port_mux = xSemaphoreCreateMutex();
|
|
if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) {
|
|
free(port);
|
|
free(hal);
|
|
free(frame_list);
|
|
if (port_mux != NULL) {
|
|
vSemaphoreDelete(port_mux);
|
|
}
|
|
return NULL;
|
|
}
|
|
port->hal = hal;
|
|
port->frame_list = frame_list;
|
|
port->port_mux = port_mux;
|
|
return port;
|
|
}
|
|
|
|
static void port_obj_free(port_t *port)
|
|
{
|
|
if (port == NULL) {
|
|
return;
|
|
}
|
|
vSemaphoreDelete(port->port_mux);
|
|
free(port->frame_list);
|
|
free(port->hal);
|
|
free(port);
|
|
}
|
|
|
|
void *frame_list_alloc(size_t frame_list_len)
|
|
{
|
|
esp_err_t ret;
|
|
void *frame_list = NULL;
|
|
size_t actual_size = 0;
|
|
esp_dma_mem_info_t dma_mem_info = {
|
|
.dma_alignment_bytes = USB_DWC_FRAME_LIST_MEM_ALIGN,
|
|
};
|
|
ret = esp_dma_capable_calloc(frame_list_len, sizeof(uint32_t), &dma_mem_info, &frame_list, &actual_size);
|
|
assert(ret == ESP_OK);
|
|
|
|
// Both Frame List start address and size should be already cache aligned so this is only a sanity check
|
|
if (frame_list) {
|
|
if (!esp_dma_is_buffer_alignment_satisfied(frame_list, actual_size, dma_mem_info)) {
|
|
// This should never happen
|
|
heap_caps_free(frame_list);
|
|
frame_list = NULL;
|
|
}
|
|
}
|
|
return frame_list;
|
|
}
|
|
|
|
void *transfer_descriptor_list_alloc(size_t list_len, size_t *list_len_bytes_out)
|
|
{
|
|
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
// Required Transfer Descriptor List size (in bytes) might not be aligned to cache line size, align the size up
|
|
size_t data_cache_line_size = 0;
|
|
esp_cache_get_alignment(MALLOC_CAP_DMA, &data_cache_line_size);
|
|
const size_t required_list_len_bytes = list_len * sizeof(usb_dwc_ll_dma_qtd_t);
|
|
*list_len_bytes_out = ALIGN_UP_BY(required_list_len_bytes, data_cache_line_size);
|
|
#else
|
|
*list_len_bytes_out = list_len * sizeof(usb_dwc_ll_dma_qtd_t);
|
|
#endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
|
|
|
|
esp_err_t ret;
|
|
void *qtd_list = NULL;
|
|
size_t actual_size = 0;
|
|
esp_dma_mem_info_t dma_mem_info = {
|
|
.dma_alignment_bytes = USB_DWC_QTD_LIST_MEM_ALIGN,
|
|
};
|
|
ret = esp_dma_capable_calloc(*list_len_bytes_out, 1, &dma_mem_info, &qtd_list, &actual_size);
|
|
assert(ret == ESP_OK);
|
|
|
|
if (qtd_list) {
|
|
if (!esp_dma_is_buffer_alignment_satisfied(qtd_list, actual_size, dma_mem_info)) {
|
|
// This should never happen
|
|
heap_caps_free(qtd_list);
|
|
qtd_list = NULL;
|
|
}
|
|
}
|
|
return qtd_list;
|
|
}
|
|
|
|
// ----------------------- Public --------------------------
|
|
|
|
esp_err_t hcd_install(const hcd_config_t *config)
|
|
{
|
|
HCD_ENTER_CRITICAL();
|
|
HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE);
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
esp_err_t err_ret;
|
|
// Allocate memory for the driver object
|
|
hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t));
|
|
if (p_hcd_obj_dmy == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
// Allocate each port object (the hardware currently only has one port)
|
|
p_hcd_obj_dmy->port_obj = port_obj_alloc();
|
|
if (p_hcd_obj_dmy->port_obj == NULL) {
|
|
err_ret = ESP_ERR_NO_MEM;
|
|
goto port_alloc_err;
|
|
}
|
|
// Allocate interrupt
|
|
err_ret = esp_intr_alloc(USB_INTR,
|
|
config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, // The interrupt must be disabled until the port is initialized
|
|
intr_hdlr_main,
|
|
(void *)p_hcd_obj_dmy->port_obj,
|
|
&p_hcd_obj_dmy->isr_hdl);
|
|
if (err_ret != ESP_OK) {
|
|
goto intr_alloc_err;
|
|
}
|
|
HCD_ENTER_CRITICAL();
|
|
if (s_hcd_obj != NULL) {
|
|
HCD_EXIT_CRITICAL();
|
|
err_ret = ESP_ERR_INVALID_STATE;
|
|
goto assign_err;
|
|
}
|
|
s_hcd_obj = p_hcd_obj_dmy;
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
|
|
assign_err:
|
|
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
|
|
intr_alloc_err:
|
|
port_obj_free(p_hcd_obj_dmy->port_obj);
|
|
port_alloc_err:
|
|
free(p_hcd_obj_dmy);
|
|
return err_ret;
|
|
}
|
|
|
|
esp_err_t hcd_uninstall(void)
|
|
{
|
|
HCD_ENTER_CRITICAL();
|
|
// Check that all ports have been disabled (there's only one port)
|
|
if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) {
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj;
|
|
s_hcd_obj = NULL;
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
// Free resources
|
|
port_obj_free(p_hcd_obj_dmy->port_obj);
|
|
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
|
|
free(p_hcd_obj_dmy);
|
|
return ESP_OK;
|
|
}
|
|
|
|
// ------------------------------------------------------ Port ---------------------------------------------------------
|
|
|
|
// ----------------------- Helpers -------------------------
|
|
|
|
static bool _port_check_all_pipes_halted(port_t *port)
|
|
{
|
|
bool all_halted = true;
|
|
pipe_t *pipe;
|
|
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
|
|
if (pipe->state != HCD_PIPE_STATE_HALTED) {
|
|
all_halted = false;
|
|
break;
|
|
}
|
|
}
|
|
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
|
|
if (pipe->state != HCD_PIPE_STATE_HALTED) {
|
|
all_halted = false;
|
|
break;
|
|
}
|
|
}
|
|
return all_halted;
|
|
}
|
|
|
|
static bool _port_debounce(port_t *port)
|
|
{
|
|
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
|
|
// Disconnect event due to power off, no need to debounce or update port state.
|
|
return false;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS));
|
|
HCD_ENTER_CRITICAL();
|
|
// Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected)
|
|
bool is_connected = usb_dwc_hal_port_check_if_connected(port->hal);
|
|
if (is_connected) {
|
|
port->state = HCD_PORT_STATE_DISABLED;
|
|
} else {
|
|
port->state = HCD_PORT_STATE_DISCONNECTED;
|
|
}
|
|
// Disable debounce lock
|
|
usb_dwc_hal_disable_debounce_lock(port->hal);
|
|
return is_connected;
|
|
}
|
|
|
|
// ---------------------- Commands -------------------------
|
|
|
|
static esp_err_t _port_cmd_power_on(port_t *port)
|
|
{
|
|
esp_err_t ret;
|
|
// Port can only be powered on if it's currently unpowered
|
|
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
|
|
port->state = HCD_PORT_STATE_DISCONNECTED;
|
|
usb_dwc_hal_port_init(port->hal);
|
|
usb_dwc_hal_port_toggle_power(port->hal, true);
|
|
ret = ESP_OK;
|
|
} else {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _port_cmd_power_off(port_t *port)
|
|
{
|
|
esp_err_t ret;
|
|
// Port can only be unpowered if already powered
|
|
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
|
|
port->state = HCD_PORT_STATE_NOT_POWERED;
|
|
usb_dwc_hal_port_deinit(port->hal);
|
|
usb_dwc_hal_port_toggle_power(port->hal, false);
|
|
// If a device is currently connected, this should trigger a disconnect event
|
|
ret = ESP_OK;
|
|
} else {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _port_cmd_reset(port_t *port)
|
|
{
|
|
esp_err_t ret;
|
|
|
|
// Port can only a reset when it is in the enabled or disabled (in the case of a new connection)states.
|
|
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_DISABLED) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// Port can only be reset if all pipes are idle
|
|
if (port->num_pipes_queued > 0) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
/*
|
|
Proceed to resetting the bus
|
|
- Update the port's state variable
|
|
- Hold the bus in the reset state for RESET_HOLD_MS.
|
|
- Return the bus to the idle state for RESET_RECOVERY_MS
|
|
*/
|
|
port->state = HCD_PORT_STATE_RESETTING;
|
|
|
|
// Place the bus into the reset state. If the port was previously enabled, a disabled event will occur after this
|
|
usb_dwc_hal_port_toggle_reset(port->hal, true);
|
|
HCD_EXIT_CRITICAL();
|
|
vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS));
|
|
HCD_ENTER_CRITICAL();
|
|
if (port->state != HCD_PORT_STATE_RESETTING) {
|
|
// The port state has unexpectedly changed
|
|
ret = ESP_ERR_INVALID_RESPONSE;
|
|
goto bailout;
|
|
}
|
|
|
|
// Return the bus to the idle state. Port enabled event should occur
|
|
usb_dwc_hal_port_toggle_reset(port->hal, false);
|
|
HCD_EXIT_CRITICAL();
|
|
vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS));
|
|
HCD_ENTER_CRITICAL();
|
|
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_dev_ena) {
|
|
// The port state has unexpectedly changed
|
|
ret = ESP_ERR_INVALID_RESPONSE;
|
|
goto bailout;
|
|
}
|
|
|
|
// Reinitialize port registers.
|
|
usb_dwc_hal_set_fifo_bias(port->hal, port->fifo_bias); // Set FIFO biases
|
|
usb_dwc_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN); // Set periodic frame list
|
|
usb_dwc_hal_port_periodic_enable(port->hal); // Enable periodic scheduling
|
|
|
|
ret = ESP_OK;
|
|
bailout:
|
|
// Reinitialize channel registers
|
|
pipe_t *pipe;
|
|
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
|
|
usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
|
|
}
|
|
CACHE_SYNC_FRAME_LIST(port->frame_list);
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _port_cmd_bus_suspend(port_t *port)
|
|
{
|
|
esp_err_t ret;
|
|
// Port must have been previously enabled, and all pipes must already be halted
|
|
if (port->state == HCD_PORT_STATE_ENABLED && !_port_check_all_pipes_halted(port)) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// All pipes are guaranteed halted at this point. Proceed to suspend the port
|
|
usb_dwc_hal_port_suspend(port->hal);
|
|
port->state = HCD_PORT_STATE_SUSPENDED;
|
|
ret = ESP_OK;
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _port_cmd_bus_resume(port_t *port)
|
|
{
|
|
esp_err_t ret;
|
|
// Port can only be resumed if it was previously suspended
|
|
if (port->state != HCD_PORT_STATE_SUSPENDED) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// Put and hold the bus in the K state.
|
|
usb_dwc_hal_port_toggle_resume(port->hal, true);
|
|
port->state = HCD_PORT_STATE_RESUMING;
|
|
HCD_EXIT_CRITICAL();
|
|
vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS));
|
|
HCD_ENTER_CRITICAL();
|
|
// Return and hold the bus to the J state (as port of the LS EOP)
|
|
usb_dwc_hal_port_toggle_resume(port->hal, false);
|
|
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
|
|
// Port state unexpectedly changed
|
|
ret = ESP_ERR_INVALID_RESPONSE;
|
|
goto exit;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS));
|
|
HCD_ENTER_CRITICAL();
|
|
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
|
|
// Port state unexpectedly changed
|
|
ret = ESP_ERR_INVALID_RESPONSE;
|
|
goto exit;
|
|
}
|
|
port->state = HCD_PORT_STATE_ENABLED;
|
|
ret = ESP_OK;
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _port_cmd_disable(port_t *port)
|
|
{
|
|
esp_err_t ret;
|
|
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_SUSPENDED) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// All pipes must be halted before disabling the port
|
|
if (!_port_check_all_pipes_halted(port)) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// All pipes are guaranteed to be halted or freed at this point. Proceed to disable the port
|
|
port->flags.disable_requested = 1;
|
|
usb_dwc_hal_port_disable(port->hal);
|
|
_internal_port_event_wait(port);
|
|
if (port->state != HCD_PORT_STATE_DISABLED) {
|
|
// Port state unexpectedly changed
|
|
ret = ESP_ERR_INVALID_RESPONSE;
|
|
goto exit;
|
|
}
|
|
ret = ESP_OK;
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
// ----------------------- Public --------------------------
|
|
|
|
esp_err_t hcd_port_init(int port_number, const hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl)
|
|
{
|
|
HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG);
|
|
HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND);
|
|
|
|
HCD_ENTER_CRITICAL();
|
|
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE);
|
|
// Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only
|
|
port_t *port_obj = s_hcd_obj->port_obj;
|
|
TAILQ_INIT(&port_obj->pipes_idle_tailq);
|
|
TAILQ_INIT(&port_obj->pipes_active_tailq);
|
|
port_obj->state = HCD_PORT_STATE_NOT_POWERED;
|
|
port_obj->last_event = HCD_PORT_EVENT_NONE;
|
|
port_obj->fifo_bias = get_hal_fifo_bias(port_config->fifo_bias);
|
|
port_obj->callback = port_config->callback;
|
|
port_obj->callback_arg = port_config->callback_arg;
|
|
port_obj->context = port_config->context;
|
|
usb_dwc_hal_init(port_obj->hal);
|
|
port_obj->initialized = true;
|
|
// Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
|
|
memset(port_obj->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
|
|
esp_intr_enable(s_hcd_obj->isr_hdl);
|
|
*port_hdl = (hcd_port_handle_t)port_obj;
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); // Need a short delay before host mode takes effect
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl)
|
|
{
|
|
port_t *port = (port_t *)port_hdl;
|
|
|
|
HCD_ENTER_CRITICAL();
|
|
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized
|
|
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
|
|
&& (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY)
|
|
&& port->task_waiting_port_notif == NULL,
|
|
ESP_ERR_INVALID_STATE);
|
|
port->initialized = false;
|
|
esp_intr_disable(s_hcd_obj->isr_hdl);
|
|
usb_dwc_hal_deinit(port->hal);
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command)
|
|
{
|
|
esp_err_t ret = ESP_ERR_INVALID_STATE;
|
|
port_t *port = (port_t *)port_hdl;
|
|
xSemaphoreTake(port->port_mux, portMAX_DELAY);
|
|
HCD_ENTER_CRITICAL();
|
|
if (port->initialized && !port->flags.event_pending) { // Port events need to be handled first before issuing a command
|
|
port->flags.cmd_processing = 1;
|
|
switch (command) {
|
|
case HCD_PORT_CMD_POWER_ON: {
|
|
ret = _port_cmd_power_on(port);
|
|
break;
|
|
}
|
|
case HCD_PORT_CMD_POWER_OFF: {
|
|
ret = _port_cmd_power_off(port);
|
|
break;
|
|
}
|
|
case HCD_PORT_CMD_RESET: {
|
|
ret = _port_cmd_reset(port);
|
|
break;
|
|
}
|
|
case HCD_PORT_CMD_SUSPEND: {
|
|
ret = _port_cmd_bus_suspend(port);
|
|
break;
|
|
}
|
|
case HCD_PORT_CMD_RESUME: {
|
|
ret = _port_cmd_bus_resume(port);
|
|
break;
|
|
}
|
|
case HCD_PORT_CMD_DISABLE: {
|
|
ret = _port_cmd_disable(port);
|
|
break;
|
|
}
|
|
}
|
|
port->flags.cmd_processing = 0;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
xSemaphoreGive(port->port_mux);
|
|
return ret;
|
|
}
|
|
|
|
hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl)
|
|
{
|
|
port_t *port = (port_t *)port_hdl;
|
|
hcd_port_state_t ret;
|
|
HCD_ENTER_CRITICAL();
|
|
ret = port->state;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed)
|
|
{
|
|
port_t *port = (port_t *)port_hdl;
|
|
HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG);
|
|
HCD_ENTER_CRITICAL();
|
|
// Device speed is only valid if there is device connected to the port that has been reset
|
|
HCD_CHECK_FROM_CRIT(port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
|
|
*speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal));
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl)
|
|
{
|
|
port_t *port = (port_t *)port_hdl;
|
|
hcd_port_event_t ret = HCD_PORT_EVENT_NONE;
|
|
xSemaphoreTake(port->port_mux, portMAX_DELAY);
|
|
HCD_ENTER_CRITICAL();
|
|
if (port->initialized && port->flags.event_pending) {
|
|
port->flags.event_pending = 0;
|
|
port->flags.event_processing = 1;
|
|
ret = port->last_event;
|
|
switch (ret) {
|
|
case HCD_PORT_EVENT_CONNECTION: {
|
|
if (_port_debounce(port)) {
|
|
ret = HCD_PORT_EVENT_CONNECTION;
|
|
}
|
|
break;
|
|
}
|
|
case HCD_PORT_EVENT_DISCONNECTION:
|
|
case HCD_PORT_EVENT_ERROR:
|
|
case HCD_PORT_EVENT_OVERCURRENT: {
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
port->flags.event_processing = 0;
|
|
} else {
|
|
ret = HCD_PORT_EVENT_NONE;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
xSemaphoreGive(port->port_mux);
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl)
|
|
{
|
|
port_t *port = (port_t *)port_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY
|
|
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
|
|
&& port->flags.val == 0 && port->task_waiting_port_notif == NULL,
|
|
ESP_ERR_INVALID_STATE);
|
|
// We are about to do a soft reset on the peripheral. Disable the peripheral throughout
|
|
esp_intr_disable(s_hcd_obj->isr_hdl);
|
|
usb_dwc_hal_core_soft_reset(port->hal);
|
|
port->state = HCD_PORT_STATE_NOT_POWERED;
|
|
port->last_event = HCD_PORT_EVENT_NONE;
|
|
port->flags.val = 0;
|
|
// Soft reset wipes all registers so we need to reinitialize the HAL
|
|
usb_dwc_hal_init(port->hal);
|
|
// Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
|
|
memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
|
|
esp_intr_enable(s_hcd_obj->isr_hdl);
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
void *hcd_port_get_context(hcd_port_handle_t port_hdl)
|
|
{
|
|
port_t *port = (port_t *)port_hdl;
|
|
void *ret;
|
|
HCD_ENTER_CRITICAL();
|
|
ret = port->context;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias)
|
|
{
|
|
esp_err_t ret;
|
|
usb_hal_fifo_bias_t hal_bias = get_hal_fifo_bias(bias);
|
|
|
|
// Configure the new FIFO sizes and store the pointers
|
|
port_t *port = (port_t *)port_hdl;
|
|
xSemaphoreTake(port->port_mux, portMAX_DELAY);
|
|
HCD_ENTER_CRITICAL();
|
|
// Check that port is in the correct state to update FIFO sizes
|
|
if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) {
|
|
usb_dwc_hal_set_fifo_bias(port->hal, hal_bias);
|
|
port->fifo_bias = hal_bias;
|
|
ret = ESP_OK;
|
|
} else {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
xSemaphoreGive(port->port_mux);
|
|
return ret;
|
|
}
|
|
|
|
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
|
|
|
|
// ----------------------- Private -------------------------
|
|
|
|
static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error)
|
|
{
|
|
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
|
|
switch (chan_error) {
|
|
case USB_DWC_HAL_CHAN_ERROR_XCS_XACT:
|
|
event = HCD_PIPE_EVENT_ERROR_XFER;
|
|
break;
|
|
case USB_DWC_HAL_CHAN_ERROR_BNA:
|
|
event = HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL;
|
|
break;
|
|
case USB_DWC_HAL_CHAN_ERROR_PKT_BBL:
|
|
event = HCD_PIPE_EVENT_ERROR_OVERFLOW;
|
|
break;
|
|
case USB_DWC_HAL_CHAN_ERROR_STALL:
|
|
event = HCD_PIPE_EVENT_ERROR_STALL;
|
|
break;
|
|
}
|
|
return event;
|
|
}
|
|
|
|
static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type)
|
|
{
|
|
int desc_list_len;
|
|
switch (type) {
|
|
case USB_TRANSFER_TYPE_CTRL:
|
|
desc_list_len = XFER_LIST_LEN_CTRL;
|
|
break;
|
|
case USB_TRANSFER_TYPE_ISOCHRONOUS:
|
|
desc_list_len = XFER_LIST_LEN_ISOC;
|
|
break;
|
|
case USB_TRANSFER_TYPE_BULK:
|
|
desc_list_len = XFER_LIST_LEN_BULK;
|
|
break;
|
|
default: // USB_TRANSFER_TYPE_INTR:
|
|
desc_list_len = XFER_LIST_LEN_INTR;
|
|
break;
|
|
}
|
|
dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t));
|
|
size_t real_len = 0;
|
|
void *xfer_desc_list = transfer_descriptor_list_alloc(desc_list_len, &real_len);
|
|
if (buffer == NULL || xfer_desc_list == NULL) {
|
|
free(buffer);
|
|
heap_caps_free(xfer_desc_list);
|
|
return NULL;
|
|
}
|
|
buffer->xfer_desc_list = xfer_desc_list;
|
|
buffer->xfer_desc_list_len_bytes = real_len;
|
|
return buffer;
|
|
}
|
|
|
|
static void buffer_block_free(dma_buffer_block_t *buffer)
|
|
{
|
|
if (buffer == NULL) {
|
|
return;
|
|
}
|
|
heap_caps_free(buffer->xfer_desc_list);
|
|
free(buffer);
|
|
}
|
|
|
|
static bool pipe_args_usb_compliance_verification(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, usb_transfer_type_t type)
|
|
{
|
|
// Check if pipe can be supported
|
|
if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) {
|
|
ESP_LOGE(HCD_DWC_TAG, "Low speed port does not support full speed pipe");
|
|
return false;
|
|
}
|
|
|
|
if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) {
|
|
ESP_LOGE(HCD_DWC_TAG, "Low speed does not support Bulk or Isochronous pipes");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool pipe_alloc_hcd_support_verification(usb_dwc_hal_context_t *hal, const usb_ep_desc_t * ep_desc)
|
|
{
|
|
assert(hal != NULL);
|
|
assert(ep_desc != NULL);
|
|
|
|
usb_hal_fifo_mps_limits_t mps_limits = {0};
|
|
usb_dwc_hal_get_mps_limits(hal, &mps_limits);
|
|
const usb_transfer_type_t type = USB_EP_DESC_GET_XFERTYPE(ep_desc);
|
|
|
|
// Check the pipe's interval is not zero
|
|
if ((type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) &&
|
|
(ep_desc->bInterval == 0)) {
|
|
ESP_LOGE(HCD_DWC_TAG, "bInterval value (%d) invalid for pipe type INTR/ISOC",
|
|
ep_desc->bInterval);
|
|
return false;
|
|
}
|
|
|
|
// Check if pipe MPS exceeds HCD MPS limits (due to DWC FIFO sizing)
|
|
int limit;
|
|
if (USB_EP_DESC_GET_EP_DIR(ep_desc)) { // IN
|
|
limit = mps_limits.in_mps;
|
|
} else { // OUT
|
|
if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) {
|
|
limit = mps_limits.non_periodic_out_mps;
|
|
} else {
|
|
limit = mps_limits.periodic_out_mps;
|
|
}
|
|
}
|
|
|
|
if (USB_EP_DESC_GET_MPS(ep_desc) > limit) {
|
|
ESP_LOGE(HCD_DWC_TAG, "EP MPS (%d) exceeds supported limit (%d)",
|
|
USB_EP_DESC_GET_MPS(ep_desc),
|
|
limit);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usb_dwc_hal_ep_char_t *ep_char)
|
|
{
|
|
// Initialize EP characteristics
|
|
usb_dwc_xfer_type_t hal_xfer_type;
|
|
switch (type) {
|
|
case USB_TRANSFER_TYPE_CTRL:
|
|
hal_xfer_type = USB_DWC_XFER_TYPE_CTRL;
|
|
break;
|
|
case USB_TRANSFER_TYPE_ISOCHRONOUS:
|
|
hal_xfer_type = USB_DWC_XFER_TYPE_ISOCHRONOUS;
|
|
break;
|
|
case USB_TRANSFER_TYPE_BULK:
|
|
hal_xfer_type = USB_DWC_XFER_TYPE_BULK;
|
|
break;
|
|
default: // USB_TRANSFER_TYPE_INTR
|
|
hal_xfer_type = USB_DWC_XFER_TYPE_INTR;
|
|
break;
|
|
}
|
|
ep_char->type = hal_xfer_type;
|
|
if (is_default_pipe) {
|
|
ep_char->bEndpointAddress = 0;
|
|
// Set the default pipe's MPS to the worst case MPS for the device's speed
|
|
ep_char->mps = (pipe_config->dev_speed == USB_SPEED_LOW) ? CTRL_EP_MAX_MPS_LS : CTRL_EP_MAX_MPS_HSFS;
|
|
} else {
|
|
ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress;
|
|
ep_char->mps = USB_EP_DESC_GET_MPS(pipe_config->ep_desc);
|
|
}
|
|
ep_char->dev_addr = pipe_config->dev_addr;
|
|
ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW);
|
|
// Calculate the pipe's interval in terms of USB frames
|
|
// @see USB-OTG programming guide chapter 6.5 for more information
|
|
if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
|
|
// Convert bInterval field to real value
|
|
// @see USB 2.0 specs, Table 9-13
|
|
unsigned int interval_value;
|
|
if (type == USB_TRANSFER_TYPE_INTR && pipe_config->dev_speed != USB_SPEED_HIGH) {
|
|
interval_value = pipe_config->ep_desc->bInterval;
|
|
} else {
|
|
interval_value = (1 << (pipe_config->ep_desc->bInterval - 1));
|
|
}
|
|
ep_char->periodic.interval = interval_value;
|
|
// We are the Nth pipe to be allocated. Use N as a phase offset
|
|
unsigned int xfer_list_len = (type == USB_TRANSFER_TYPE_INTR) ? XFER_LIST_LEN_INTR : XFER_LIST_LEN_ISOC;
|
|
ep_char->periodic.offset = (pipe_idx % xfer_list_len) % interval_value;
|
|
ep_char->periodic.is_hs = (pipe_config->dev_speed == USB_SPEED_HIGH);
|
|
} else {
|
|
ep_char->periodic.interval = 0;
|
|
ep_char->periodic.offset = 0;
|
|
}
|
|
}
|
|
|
|
// ---------------------- Commands -------------------------
|
|
|
|
static esp_err_t _pipe_cmd_halt(pipe_t *pipe)
|
|
{
|
|
esp_err_t ret;
|
|
|
|
// If pipe is already halted, just return.
|
|
if (pipe->state == HCD_PIPE_STATE_HALTED) {
|
|
ret = ESP_OK;
|
|
goto exit;
|
|
}
|
|
// If the pipe's port is invalid, we just mark the pipe as halted without needing to halt the underlying channel
|
|
if (pipe->port->flags.conn_dev_ena // Skip halting the underlying channel if the port is invalid
|
|
&& !usb_dwc_hal_chan_request_halt(pipe->chan_obj)) { // Check if the channel is already halted
|
|
// Channel is not halted, we need to request and wait for a haltWe need to wait for channel to be halted.
|
|
pipe->cs_flags.waiting_halt = 1;
|
|
_internal_pipe_event_wait(pipe);
|
|
// State should have been updated in the ISR
|
|
assert(pipe->state == HCD_PIPE_STATE_HALTED);
|
|
} else {
|
|
// We are already halted, just need to update the state
|
|
usb_dwc_hal_chan_mark_halted(pipe->chan_obj);
|
|
pipe->state = HCD_PIPE_STATE_HALTED;
|
|
}
|
|
ret = ESP_OK;
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _pipe_cmd_flush(pipe_t *pipe)
|
|
{
|
|
esp_err_t ret;
|
|
// The pipe must be halted in order to be flushed
|
|
if (pipe->state != HCD_PIPE_STATE_HALTED) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// If the port is still valid, we are canceling transfers. Otherwise, we are flushing due to a port error
|
|
bool canceled = pipe->port->flags.conn_dev_ena;
|
|
bool call_pipe_cb;
|
|
// Flush any filled buffers
|
|
call_pipe_cb = _buffer_flush_all(pipe, canceled);
|
|
// Move all URBs from the pending tailq to the done tailq
|
|
if (pipe->num_urb_pending > 0) {
|
|
// Process all remaining pending URBs
|
|
urb_t *urb;
|
|
TAILQ_FOREACH(urb, &pipe->pending_urb_tailq, tailq_entry) {
|
|
// Update the URB's current state
|
|
urb->hcd_var = URB_HCD_STATE_DONE;
|
|
// URBs were never executed, Update the actual_num_bytes and status
|
|
urb->transfer.actual_num_bytes = 0;
|
|
urb->transfer.status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
|
|
if (pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) {
|
|
// Update the URB's isoc packet descriptors as well
|
|
for (int pkt_idx = 0; pkt_idx < urb->transfer.num_isoc_packets; pkt_idx++) {
|
|
urb->transfer.isoc_packet_desc[pkt_idx].actual_num_bytes = 0;
|
|
urb->transfer.isoc_packet_desc[pkt_idx].status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
|
|
}
|
|
}
|
|
}
|
|
// Concatenated pending tailq to the done tailq
|
|
TAILQ_CONCAT(&pipe->done_urb_tailq, &pipe->pending_urb_tailq, tailq_entry);
|
|
pipe->num_urb_done += pipe->num_urb_pending;
|
|
pipe->num_urb_pending = 0;
|
|
call_pipe_cb = true;
|
|
}
|
|
if (call_pipe_cb) {
|
|
// One or more URBs can be dequeued as a result of the flush. We need to call the callback
|
|
HCD_EXIT_CRITICAL();
|
|
pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_URB_DONE, pipe->callback_arg, false);
|
|
HCD_ENTER_CRITICAL();
|
|
}
|
|
ret = ESP_OK;
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t _pipe_cmd_clear(pipe_t *pipe)
|
|
{
|
|
esp_err_t ret;
|
|
// Pipe must be in the halted state in order to be made active, and there must be an enabled device on the port
|
|
if (pipe->state != HCD_PIPE_STATE_HALTED || !pipe->port->flags.conn_dev_ena) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto exit;
|
|
}
|
|
// Update the pipe's state
|
|
pipe->state = HCD_PIPE_STATE_ACTIVE;
|
|
if (pipe->num_urb_pending > 0) {
|
|
// Fill as many buffers as possible
|
|
while (_buffer_can_fill(pipe)) {
|
|
_buffer_fill(pipe);
|
|
}
|
|
}
|
|
// Execute any filled buffers
|
|
if (_buffer_can_exec(pipe)) {
|
|
_buffer_exec(pipe);
|
|
}
|
|
ret = ESP_OK;
|
|
exit:
|
|
return ret;
|
|
}
|
|
|
|
// ----------------------- Public --------------------------
|
|
|
|
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl)
|
|
{
|
|
HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG);
|
|
port_t *port = (port_t *)port_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
// Can only allocate a pipe if the target port is initialized and connected to an enabled device
|
|
HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
|
|
usb_speed_t port_speed = port->speed;
|
|
int pipe_idx = port->num_pipes_idle + port->num_pipes_queued;
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
usb_transfer_type_t type;
|
|
bool is_default;
|
|
if (pipe_config->ep_desc == NULL) {
|
|
// Default CTRL pipe allocation
|
|
type = USB_TRANSFER_TYPE_CTRL;
|
|
is_default = true;
|
|
} else {
|
|
type = USB_EP_DESC_GET_XFERTYPE(pipe_config->ep_desc);
|
|
is_default = false;
|
|
}
|
|
|
|
esp_err_t ret;
|
|
// Check if pipe configuration can be supported
|
|
if (!pipe_args_usb_compliance_verification(pipe_config, port_speed, type)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
// Default pipes have a NULL ep_desc thus should skip the HCD support verification
|
|
if (!is_default && !pipe_alloc_hcd_support_verification(port->hal, pipe_config->ep_desc)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
// Allocate the pipe resources
|
|
pipe_t *pipe = calloc(1, sizeof(pipe_t));
|
|
usb_dwc_hal_chan_t *chan_obj = calloc(1, sizeof(usb_dwc_hal_chan_t));
|
|
dma_buffer_block_t *buffers[NUM_BUFFERS] = {0};
|
|
if (pipe == NULL || chan_obj == NULL) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
for (int i = 0; i < NUM_BUFFERS; i++) {
|
|
buffers[i] = buffer_block_alloc(type);
|
|
if (buffers[i] == NULL) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
// Initialize pipe object
|
|
TAILQ_INIT(&pipe->pending_urb_tailq);
|
|
TAILQ_INIT(&pipe->done_urb_tailq);
|
|
for (int i = 0; i < NUM_BUFFERS; i++) {
|
|
pipe->buffers[i] = buffers[i];
|
|
}
|
|
pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS;
|
|
pipe->port = port;
|
|
pipe->chan_obj = chan_obj;
|
|
usb_dwc_hal_ep_char_t ep_char;
|
|
pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char);
|
|
memcpy(&pipe->ep_char, &ep_char, sizeof(usb_dwc_hal_ep_char_t));
|
|
pipe->state = HCD_PIPE_STATE_ACTIVE;
|
|
pipe->callback = pipe_config->callback;
|
|
pipe->callback_arg = pipe_config->callback_arg;
|
|
pipe->context = pipe_config->context;
|
|
|
|
// Allocate channel
|
|
HCD_ENTER_CRITICAL();
|
|
if (!port->initialized || !port->flags.conn_dev_ena) {
|
|
HCD_EXIT_CRITICAL();
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto err;
|
|
}
|
|
bool chan_allocated = usb_dwc_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe);
|
|
if (!chan_allocated) {
|
|
HCD_EXIT_CRITICAL();
|
|
ret = ESP_ERR_NOT_SUPPORTED;
|
|
goto err;
|
|
}
|
|
usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
|
|
CACHE_SYNC_FRAME_LIST(port->frame_list);
|
|
// Add the pipe to the list of idle pipes in the port object
|
|
TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry);
|
|
port->num_pipes_idle++;
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
*pipe_hdl = (hcd_pipe_handle_t)pipe;
|
|
return ESP_OK;
|
|
|
|
err:
|
|
for (int i = 0; i < NUM_BUFFERS; i++) {
|
|
buffer_block_free(buffers[i]);
|
|
}
|
|
free(chan_obj);
|
|
free(pipe);
|
|
return ret;
|
|
}
|
|
|
|
int hcd_pipe_get_mps(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
int mps;
|
|
HCD_ENTER_CRITICAL();
|
|
mps = pipe->ep_char.mps;
|
|
HCD_EXIT_CRITICAL();
|
|
return mps;
|
|
}
|
|
|
|
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
// Check that all URBs have been removed and pipe has no pending events
|
|
HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing
|
|
&& !pipe->cs_flags.has_urb,
|
|
ESP_ERR_INVALID_STATE);
|
|
// Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued URBs)
|
|
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
|
|
pipe->port->num_pipes_idle--;
|
|
usb_dwc_hal_chan_free(pipe->port->hal, pipe->chan_obj);
|
|
HCD_EXIT_CRITICAL();
|
|
|
|
// Free pipe resources
|
|
for (int i = 0; i < NUM_BUFFERS; i++) {
|
|
buffer_block_free(pipe->buffers[i]);
|
|
}
|
|
free(pipe->chan_obj);
|
|
free(pipe);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
// Check if pipe is in the correct state to be updated
|
|
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
|
|
!pipe->cs_flags.has_urb,
|
|
ESP_ERR_INVALID_STATE);
|
|
pipe->ep_char.mps = mps;
|
|
// Update the underlying channel's registers
|
|
usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
// Check if pipe is in the correct state to be updated
|
|
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
|
|
!pipe->cs_flags.has_urb,
|
|
ESP_ERR_INVALID_STATE);
|
|
pipe->ep_char.dev_addr = dev_addr;
|
|
// Update the underlying channel's registers
|
|
usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
void *ret;
|
|
HCD_ENTER_CRITICAL();
|
|
ret = pipe->context;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
hcd_pipe_state_t ret;
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
ret = pipe->state;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
unsigned int hcd_pipe_get_num_urbs(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
unsigned int ret;
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
HCD_ENTER_CRITICAL();
|
|
ret = pipe->num_urb_pending + pipe->num_urb_done;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
HCD_ENTER_CRITICAL();
|
|
pipe->cs_flags.pipe_cmd_processing = 1;
|
|
switch (command) {
|
|
case HCD_PIPE_CMD_HALT: {
|
|
ret = _pipe_cmd_halt(pipe);
|
|
break;
|
|
}
|
|
case HCD_PIPE_CMD_FLUSH: {
|
|
ret = _pipe_cmd_flush(pipe);
|
|
break;
|
|
}
|
|
case HCD_PIPE_CMD_CLEAR: {
|
|
ret = _pipe_cmd_clear(pipe);
|
|
break;
|
|
}
|
|
}
|
|
pipe->cs_flags.pipe_cmd_processing = 0;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
hcd_pipe_event_t ret;
|
|
HCD_ENTER_CRITICAL();
|
|
ret = pipe->last_event;
|
|
pipe->last_event = HCD_PIPE_EVENT_NONE;
|
|
HCD_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
// ------------------------------------------------- Buffer Control ----------------------------------------------------
|
|
|
|
static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_transfer_t *transfer)
|
|
{
|
|
// Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the URB's data)
|
|
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
|
|
bool data_stg_in = (setup_pkt->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN);
|
|
bool data_stg_skip = (setup_pkt->wLength == 0);
|
|
// Fill setup stage
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, sizeof(usb_setup_packet_t),
|
|
USB_DWC_HAL_XFER_DESC_FLAG_SETUP | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
// Fill data stage
|
|
if (data_stg_skip) {
|
|
// Not data stage. Fill with an empty descriptor
|
|
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, 1);
|
|
} else {
|
|
// Fill data stage. Note that we still fill with transfer->num_bytes instead of setup_pkt->wLength as it's possible to require more bytes than wLength
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, transfer->data_buffer + sizeof(usb_setup_packet_t), transfer->num_bytes - sizeof(usb_setup_packet_t),
|
|
((data_stg_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0) | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
}
|
|
// Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN.
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0,
|
|
((data_stg_in && !data_stg_skip) ? 0 : USB_DWC_HAL_XFER_DESC_FLAG_IN) | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
// Update buffer flags
|
|
buffer->flags.ctrl.data_stg_in = data_stg_in;
|
|
buffer->flags.ctrl.data_stg_skip = data_stg_skip;
|
|
buffer->flags.ctrl.cur_stg = 0;
|
|
}
|
|
|
|
static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
|
|
{
|
|
// Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
|
|
// Minor optimization: Do the mod operation last
|
|
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (transfer->num_bytes % mps == 0);
|
|
if (is_in) {
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes,
|
|
USB_DWC_HAL_XFER_DESC_FLAG_IN | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
} else { // OUT
|
|
if (zero_len_packet) {
|
|
// Adding a zero length packet, so two descriptors are used.
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, 0);
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
} else {
|
|
// Zero length packet not required. One descriptor is enough
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
}
|
|
}
|
|
// Update buffer flags
|
|
buffer->flags.bulk.zero_len_packet = zero_len_packet;
|
|
}
|
|
|
|
static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
|
|
{
|
|
int num_qtds;
|
|
int mod_mps = transfer->num_bytes % mps;
|
|
// Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
|
|
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (mod_mps == 0);
|
|
if (is_in) {
|
|
assert(mod_mps == 0); // IN transfers MUST be integer multiple of MPS
|
|
num_qtds = transfer->num_bytes / mps; // Can just floor divide as it's already multiple of MPS
|
|
} else {
|
|
num_qtds = transfer->num_bytes / mps; // Floor division to get the number of MPS sized packets
|
|
if (mod_mps > 0) {
|
|
num_qtds++; // Add a short packet for the remainder
|
|
}
|
|
}
|
|
assert((zero_len_packet) ? num_qtds + 1 : num_qtds <= XFER_LIST_LEN_INTR); // Check that the number of QTDs doesn't exceed the QTD list's length
|
|
|
|
uint32_t xfer_desc_flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0;
|
|
int bytes_filled = 0;
|
|
// Fill all but last QTD
|
|
for (int i = 0; i < num_qtds - 1; i++) {
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &transfer->data_buffer[bytes_filled], mps, xfer_desc_flags);
|
|
bytes_filled += mps;
|
|
}
|
|
// Fill last QTD and zero length packet
|
|
if (zero_len_packet) {
|
|
// Fill in last data packet without HOC flag
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
|
|
xfer_desc_flags);
|
|
// HOC flag goes to zero length packet instead
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
} else {
|
|
// Zero length packet not required. Fill in last QTD with HOC flag
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
|
|
xfer_desc_flags | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
|
|
}
|
|
|
|
// Update buffer members and flags
|
|
buffer->flags.intr.num_qtds = num_qtds;
|
|
buffer->flags.intr.zero_len_packet = zero_len_packet;
|
|
}
|
|
|
|
static inline void IRAM_ATTR _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps, int interval, int start_idx)
|
|
{
|
|
assert(interval > 0);
|
|
assert(__builtin_popcount(interval) == 1); // Isochronous interval must be power of 2 according to USB2.0 specification
|
|
int total_num_desc = transfer->num_isoc_packets * interval;
|
|
assert(total_num_desc <= XFER_LIST_LEN_ISOC);
|
|
int desc_idx = start_idx;
|
|
int bytes_filled = 0;
|
|
// Zeroize the whole QTD, so we can focus only on the active descriptors
|
|
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_ISOC * sizeof(usb_dwc_ll_dma_qtd_t));
|
|
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
|
|
int xfer_len = transfer->isoc_packet_desc[pkt_idx].num_bytes;
|
|
uint32_t flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0;
|
|
if (pkt_idx == transfer->num_isoc_packets - 1) {
|
|
// Last packet, set the the HOC flag
|
|
flags |= USB_DWC_HAL_XFER_DESC_FLAG_HOC;
|
|
}
|
|
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &transfer->data_buffer[bytes_filled], xfer_len, flags);
|
|
bytes_filled += xfer_len;
|
|
desc_idx += interval;
|
|
desc_idx %= XFER_LIST_LEN_ISOC;
|
|
}
|
|
// Update buffer members and flags
|
|
buffer->flags.isoc.num_qtds = total_num_desc;
|
|
buffer->flags.isoc.interval = interval;
|
|
buffer->flags.isoc.start_idx = start_idx;
|
|
buffer->flags.isoc.next_start_idx = desc_idx;
|
|
}
|
|
|
|
static void IRAM_ATTR _buffer_fill(pipe_t *pipe)
|
|
{
|
|
// Get an URB from the pending tailq
|
|
urb_t *urb = TAILQ_FIRST(&pipe->pending_urb_tailq);
|
|
assert(pipe->num_urb_pending > 0 && urb != NULL);
|
|
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
|
|
pipe->num_urb_pending--;
|
|
|
|
// Select the inactive buffer
|
|
assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS);
|
|
dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx];
|
|
buffer_to_fill->status_flags.val = 0; // Clear the buffer's status flags
|
|
assert(buffer_to_fill->urb == NULL);
|
|
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
|
|
int mps = pipe->ep_char.mps;
|
|
usb_transfer_t *transfer = &urb->transfer;
|
|
switch (pipe->ep_char.type) {
|
|
case USB_DWC_XFER_TYPE_CTRL: {
|
|
_buffer_fill_ctrl(buffer_to_fill, transfer);
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
|
|
uint16_t start_idx;
|
|
// Interval in frames (FS) or microframes (HS). But it does not matter here, as each QTD represents one transaction in a frame or microframe
|
|
unsigned int interval = pipe->ep_char.periodic.interval;
|
|
if (interval > XFER_LIST_LEN_ISOC) {
|
|
// Each QTD in the list corresponds to one frame/microframe. Interval > Descriptor_list does not make sense here.
|
|
interval = XFER_LIST_LEN_ISOC;
|
|
}
|
|
if (pipe->multi_buffer_control.buffer_num_to_exec == 0) {
|
|
// There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule
|
|
uint16_t cur_frame_num = usb_dwc_hal_port_get_cur_frame_num(pipe->port->hal);
|
|
start_idx = cur_frame_num + 1; // This is the next frame that the periodic scheduler will fetch
|
|
uint16_t rem_time = usb_dwc_ll_hfnum_get_frame_time_rem(pipe->port->hal->dev);
|
|
|
|
// If there is not enough time remaining in this frame, consider the next frame as start index
|
|
// The remaining time is in USB PHY clocks. The threshold value is time between buffer fill and execute (6-11us) = 180 + 5 x num_packets
|
|
if (rem_time < 195 + 5 * transfer->num_isoc_packets) {
|
|
if (rem_time > 165 + 5 * transfer->num_isoc_packets) {
|
|
// If the remaining time is +-15 PHY clocks around the threshold value we cannot be certain whether we will schedule it in time for this frame
|
|
// Busy wait 10us to be sure that we are at the beginning of next frame/microframe
|
|
esp_rom_delay_us(10);
|
|
}
|
|
start_idx++;
|
|
}
|
|
|
|
// Only every (interval + offset) transfer belongs to this channel
|
|
// Following calculation effectively rounds up to nearest (interval + offset)
|
|
if (interval > 1) {
|
|
uint32_t interval_offset = (start_idx - pipe->ep_char.periodic.offset) % interval; // Can be <0, interval)
|
|
if (interval_offset > 0) {
|
|
start_idx += interval - interval_offset;
|
|
}
|
|
}
|
|
start_idx %= XFER_LIST_LEN_ISOC;
|
|
} else {
|
|
// Start index is based on previously filled buffer
|
|
uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1);
|
|
dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx];
|
|
start_idx = prev_filled_buffer->flags.isoc.next_start_idx;
|
|
}
|
|
_buffer_fill_isoc(buffer_to_fill, transfer, is_in, mps, (int)interval, start_idx);
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_BULK: {
|
|
_buffer_fill_bulk(buffer_to_fill, transfer, is_in, mps);
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_INTR: {
|
|
_buffer_fill_intr(buffer_to_fill, transfer, is_in, mps);
|
|
break;
|
|
}
|
|
default: {
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
// Sync transfer descriptor list to memory
|
|
CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer_to_fill);
|
|
buffer_to_fill->urb = urb;
|
|
urb->hcd_var = URB_HCD_STATE_INFLIGHT;
|
|
// Update multi buffer flags
|
|
pipe->multi_buffer_control.wr_idx++;
|
|
pipe->multi_buffer_control.buffer_num_to_fill--;
|
|
pipe->multi_buffer_control.buffer_num_to_exec++;
|
|
}
|
|
|
|
static void IRAM_ATTR _buffer_exec(pipe_t *pipe)
|
|
{
|
|
assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0);
|
|
dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx];
|
|
assert(buffer_to_exec->urb != NULL);
|
|
|
|
uint32_t start_idx;
|
|
int desc_list_len;
|
|
switch (pipe->ep_char.type) {
|
|
case USB_DWC_XFER_TYPE_CTRL: {
|
|
start_idx = 0;
|
|
desc_list_len = XFER_LIST_LEN_CTRL;
|
|
// Set the channel's direction to OUT and PID to 0 respectively for the the setup stage
|
|
usb_dwc_hal_chan_set_dir(pipe->chan_obj, false); // Setup stage is always OUT
|
|
usb_dwc_hal_chan_set_pid(pipe->chan_obj, 0); // Setup stage always has a PID of DATA0
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
|
|
start_idx = buffer_to_exec->flags.isoc.start_idx;
|
|
desc_list_len = XFER_LIST_LEN_ISOC;
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_BULK: {
|
|
start_idx = 0;
|
|
desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1;
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_INTR: {
|
|
start_idx = 0;
|
|
desc_list_len = (buffer_to_exec->flags.intr.zero_len_packet) ? buffer_to_exec->flags.intr.num_qtds + 1 : buffer_to_exec->flags.intr.num_qtds;
|
|
break;
|
|
}
|
|
default: {
|
|
start_idx = 0;
|
|
desc_list_len = 0;
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
// Update buffer and multi buffer flags
|
|
buffer_to_exec->status_flags.executing = 1;
|
|
pipe->multi_buffer_control.buffer_is_executing = 1;
|
|
usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx);
|
|
}
|
|
|
|
static void _buffer_exec_cont(pipe_t *pipe)
|
|
{
|
|
// This should only ever be called on control transfers
|
|
assert(pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL);
|
|
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
|
|
bool next_dir_is_in;
|
|
int next_pid;
|
|
assert(buffer_inflight->flags.ctrl.cur_stg != 2);
|
|
if (buffer_inflight->flags.ctrl.cur_stg == 0) { // Just finished control stage
|
|
if (buffer_inflight->flags.ctrl.data_stg_skip) {
|
|
// Skipping data stage. Go straight to status stage
|
|
next_dir_is_in = true; // With no data stage, status stage must be IN
|
|
next_pid = 1; // Status stage always has a PID of DATA1
|
|
buffer_inflight->flags.ctrl.cur_stg = 2; // Skip over the null descriptor representing the skipped data stage
|
|
} else {
|
|
// Go to data stage
|
|
next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in;
|
|
next_pid = 1; // Data stage always starts with a PID of DATA1
|
|
buffer_inflight->flags.ctrl.cur_stg = 1;
|
|
}
|
|
} else { // cur_stg == 1. // Just finished data stage. Go to status stage
|
|
next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; // Status stage is always the opposite direction of data stage
|
|
next_pid = 1; // Status stage always has a PID of DATA1
|
|
buffer_inflight->flags.ctrl.cur_stg = 2;
|
|
}
|
|
// Continue the control transfer
|
|
usb_dwc_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in);
|
|
usb_dwc_hal_chan_set_pid(pipe->chan_obj, next_pid);
|
|
usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg);
|
|
}
|
|
|
|
static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer)
|
|
{
|
|
usb_transfer_t *transfer = &buffer->urb->transfer;
|
|
// Update URB's actual number of bytes
|
|
if (buffer->flags.ctrl.data_stg_skip) {
|
|
// There was no data stage. Just set the actual length to the size of the setup packet
|
|
transfer->actual_num_bytes = sizeof(usb_setup_packet_t);
|
|
} else {
|
|
// Parse the data stage for the remaining length
|
|
int rem_len;
|
|
int desc_status;
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status);
|
|
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
assert(rem_len <= (transfer->num_bytes - sizeof(usb_setup_packet_t)));
|
|
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
|
|
}
|
|
// Update URB status
|
|
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
|
|
// Clear the descriptor list
|
|
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_CTRL * sizeof(usb_dwc_ll_dma_qtd_t));
|
|
}
|
|
|
|
static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer)
|
|
{
|
|
usb_transfer_t *transfer = &buffer->urb->transfer;
|
|
// Update URB's actual number of bytes
|
|
int rem_len;
|
|
int desc_status;
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status);
|
|
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
assert(rem_len <= transfer->num_bytes);
|
|
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
|
|
// Update URB's status
|
|
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
|
|
// Clear the descriptor list
|
|
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_BULK * sizeof(usb_dwc_ll_dma_qtd_t));
|
|
}
|
|
|
|
static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps)
|
|
{
|
|
usb_transfer_t *transfer = &buffer->urb->transfer;
|
|
int intr_stop_idx = buffer->status_flags.stop_idx;
|
|
if (is_in) {
|
|
if (intr_stop_idx > 0) { // This is an early stop (short packet)
|
|
assert(intr_stop_idx <= buffer->flags.intr.num_qtds);
|
|
int rem_len;
|
|
int desc_status;
|
|
for (int i = 0; i < intr_stop_idx - 1; i++) { // Check all packets before the short
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
|
|
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
}
|
|
// Check the short packet
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status);
|
|
assert(rem_len > 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
// Update actual bytes
|
|
transfer->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len);
|
|
} else {
|
|
// Check that all but the last packet transmitted MPS
|
|
for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) {
|
|
int rem_len;
|
|
int desc_status;
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
|
|
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
}
|
|
// Check the last packet
|
|
int last_packet_rem_len;
|
|
int last_packet_desc_status;
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status);
|
|
assert(last_packet_desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
// All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes
|
|
transfer->actual_num_bytes = transfer->num_bytes - last_packet_rem_len;
|
|
}
|
|
} else {
|
|
// OUT INTR transfers can only complete successfully if all packets have been transmitted. Double check
|
|
for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) {
|
|
int rem_len;
|
|
int desc_status;
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
|
|
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
|
|
}
|
|
transfer->actual_num_bytes = transfer->num_bytes;
|
|
}
|
|
// Update URB's status
|
|
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
|
|
// Clear the descriptor list
|
|
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_INTR * sizeof(usb_dwc_ll_dma_qtd_t));
|
|
}
|
|
|
|
static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in)
|
|
{
|
|
usb_transfer_t *transfer = &buffer->urb->transfer;
|
|
int desc_idx = buffer->flags.isoc.start_idx; // Descriptor index tracks which descriptor in the QTD list
|
|
int total_actual_num_bytes = 0;
|
|
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
|
|
// Clear the filled descriptor
|
|
int rem_len;
|
|
int desc_status;
|
|
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status);
|
|
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
|
|
switch (desc_status) {
|
|
case USB_DWC_HAL_XFER_DESC_STS_SUCCESS:
|
|
transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_COMPLETED;
|
|
break;
|
|
case USB_DWC_HAL_XFER_DESC_STS_NOT_EXECUTED:
|
|
transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_SKIPPED;
|
|
break;
|
|
case USB_DWC_HAL_XFER_DESC_STS_PKTERR:
|
|
transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_ERROR;
|
|
break;
|
|
case USB_DWC_HAL_XFER_DESC_STS_BUFFER_ERR:
|
|
transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_ERROR;
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
|
|
assert(rem_len <= transfer->isoc_packet_desc[pkt_idx].num_bytes); // Check for DMA errata
|
|
// Update ISO packet actual length and status
|
|
transfer->isoc_packet_desc[pkt_idx].actual_num_bytes = transfer->isoc_packet_desc[pkt_idx].num_bytes - rem_len;
|
|
total_actual_num_bytes += transfer->isoc_packet_desc[pkt_idx].actual_num_bytes;
|
|
// A descriptor is also allocated for unscheduled frames. We need to skip over them
|
|
desc_idx += buffer->flags.isoc.interval;
|
|
if (desc_idx >= XFER_LIST_LEN_INTR) {
|
|
desc_idx -= XFER_LIST_LEN_INTR;
|
|
}
|
|
}
|
|
// Write back the actual_num_bytes and statue of entire transfer
|
|
assert(total_actual_num_bytes <= transfer->num_bytes);
|
|
transfer->actual_num_bytes = total_actual_num_bytes;
|
|
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
|
|
}
|
|
|
|
static inline void _buffer_parse_error(dma_buffer_block_t *buffer)
|
|
{
|
|
// The URB had an error in one of its packet, or a port error), so we the entire URB an error.
|
|
usb_transfer_t *transfer = &buffer->urb->transfer;
|
|
transfer->actual_num_bytes = 0;
|
|
// Update the overall status of URB. Status will depend on the pipe_event
|
|
switch (buffer->status_flags.pipe_event) {
|
|
case HCD_PIPE_EVENT_NONE:
|
|
transfer->status = (buffer->status_flags.was_canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
|
|
break;
|
|
case HCD_PIPE_EVENT_ERROR_XFER:
|
|
transfer->status = USB_TRANSFER_STATUS_ERROR;
|
|
break;
|
|
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
|
|
transfer->status = USB_TRANSFER_STATUS_OVERFLOW;
|
|
break;
|
|
case HCD_PIPE_EVENT_ERROR_STALL:
|
|
transfer->status = USB_TRANSFER_STATUS_STALL;
|
|
break;
|
|
default:
|
|
// HCD_PIPE_EVENT_URB_DONE and HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL should not occur here
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void _buffer_parse(pipe_t *pipe)
|
|
{
|
|
assert(pipe->multi_buffer_control.buffer_num_to_parse > 0);
|
|
dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx];
|
|
assert(buffer_to_parse->urb != NULL);
|
|
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
|
|
int mps = pipe->ep_char.mps;
|
|
|
|
// Sync transfer descriptor list to cache
|
|
CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer_to_parse);
|
|
|
|
// Parsing the buffer will update the buffer's corresponding URB
|
|
if (buffer_to_parse->status_flags.pipe_event == HCD_PIPE_EVENT_URB_DONE) {
|
|
// URB was successful
|
|
switch (pipe->ep_char.type) {
|
|
case USB_DWC_XFER_TYPE_CTRL: {
|
|
_buffer_parse_ctrl(buffer_to_parse);
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
|
|
_buffer_parse_isoc(buffer_to_parse, is_in);
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_BULK: {
|
|
_buffer_parse_bulk(buffer_to_parse);
|
|
break;
|
|
}
|
|
case USB_DWC_XFER_TYPE_INTR: {
|
|
_buffer_parse_intr(buffer_to_parse, is_in, mps);
|
|
break;
|
|
}
|
|
default: {
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// URB failed
|
|
_buffer_parse_error(buffer_to_parse);
|
|
}
|
|
urb_t *urb = buffer_to_parse->urb;
|
|
urb->hcd_var = URB_HCD_STATE_DONE;
|
|
buffer_to_parse->urb = NULL;
|
|
buffer_to_parse->flags.val = 0; // Clear flags
|
|
// Move the URB to the done tailq
|
|
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
|
|
pipe->num_urb_done++;
|
|
// Update multi buffer flags
|
|
pipe->multi_buffer_control.fr_idx++;
|
|
pipe->multi_buffer_control.buffer_num_to_parse--;
|
|
pipe->multi_buffer_control.buffer_num_to_fill++;
|
|
}
|
|
|
|
static bool _buffer_flush_all(pipe_t *pipe, bool canceled)
|
|
{
|
|
int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec;
|
|
for (int i = 0; i < cur_num_to_mark_done; i++) {
|
|
// Mark any filled buffers as done
|
|
_buffer_done(pipe, 0, HCD_PIPE_EVENT_NONE, canceled);
|
|
}
|
|
int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse;
|
|
for (int i = 0; i < cur_num_to_parse; i++) {
|
|
_buffer_parse(pipe);
|
|
}
|
|
// At this point, there should be no more filled buffers. Only URBs in the pending or done tailq
|
|
return (cur_num_to_parse > 0);
|
|
}
|
|
|
|
// ---------------------------------------------- HCD Transfer Descriptors ---------------------------------------------
|
|
|
|
// ----------------------- Public --------------------------
|
|
|
|
esp_err_t hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl, urb_t *urb)
|
|
{
|
|
// Check that URB has not already been enqueued
|
|
HCD_CHECK(urb->hcd_ptr == NULL && urb->hcd_var == URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
// Check if the ISOC pipe can handle all packets:
|
|
// In case the pipe's interval is too long and there are too many ISOC packets, they might not fit into the transfer descriptor list
|
|
HCD_CHECK(
|
|
!((pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) && (urb->transfer.num_isoc_packets * pipe->ep_char.periodic.interval > XFER_LIST_LEN_ISOC)),
|
|
ESP_ERR_INVALID_SIZE
|
|
);
|
|
|
|
// Sync user's data from cache to memory. For OUT and CTRL transfers
|
|
CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb);
|
|
|
|
HCD_ENTER_CRITICAL();
|
|
// Check that pipe and port are in the correct state to receive URBs
|
|
HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED // The pipe's port must be in the correct state
|
|
&& pipe->state == HCD_PIPE_STATE_ACTIVE // The pipe must be in the correct state
|
|
&& !pipe->cs_flags.pipe_cmd_processing, // Pipe cannot currently be processing a pipe command
|
|
ESP_ERR_INVALID_STATE);
|
|
// Use the URB's reserved_ptr to store the pipe's
|
|
urb->hcd_ptr = (void *)pipe;
|
|
// Add the URB to the pipe's pending tailq
|
|
urb->hcd_var = URB_HCD_STATE_PENDING;
|
|
TAILQ_INSERT_TAIL(&pipe->pending_urb_tailq, urb, tailq_entry);
|
|
pipe->num_urb_pending++;
|
|
// use the URB's reserved_flags to store the URB's current state
|
|
if (_buffer_can_fill(pipe)) {
|
|
_buffer_fill(pipe);
|
|
}
|
|
if (_buffer_can_exec(pipe)) {
|
|
_buffer_exec(pipe);
|
|
}
|
|
if (!pipe->cs_flags.has_urb) {
|
|
// This is the first URB to be enqueued into the pipe. Move the pipe to the list of active pipes
|
|
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
|
|
TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
|
|
pipe->port->num_pipes_idle--;
|
|
pipe->port->num_pipes_queued++;
|
|
pipe->cs_flags.has_urb = 1;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
urb_t *hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl)
|
|
{
|
|
pipe_t *pipe = (pipe_t *)pipe_hdl;
|
|
urb_t *urb;
|
|
|
|
HCD_ENTER_CRITICAL();
|
|
if (pipe->num_urb_done > 0) {
|
|
urb = TAILQ_FIRST(&pipe->done_urb_tailq);
|
|
TAILQ_REMOVE(&pipe->done_urb_tailq, urb, tailq_entry);
|
|
pipe->num_urb_done--;
|
|
// Check the URB's reserved fields then reset them
|
|
assert(urb->hcd_ptr == (void *)pipe && urb->hcd_var == URB_HCD_STATE_DONE); // The URB's reserved field should have been set to this pipe
|
|
urb->hcd_ptr = NULL;
|
|
urb->hcd_var = URB_HCD_STATE_IDLE;
|
|
if (pipe->cs_flags.has_urb
|
|
&& pipe->num_urb_pending == 0 && pipe->num_urb_done == 0
|
|
&& pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) {
|
|
// This pipe has no more enqueued URBs. Move the pipe to the list of idle pipes
|
|
TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
|
|
TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
|
|
pipe->port->num_pipes_idle++;
|
|
pipe->port->num_pipes_queued--;
|
|
pipe->cs_flags.has_urb = 0;
|
|
}
|
|
// Sync user's data in memory to cache. For IN and CTRL transfers
|
|
CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb);
|
|
} else {
|
|
// No more URBs to dequeue from this pipe
|
|
urb = NULL;
|
|
}
|
|
HCD_EXIT_CRITICAL();
|
|
return urb;
|
|
}
|
|
|
|
esp_err_t hcd_urb_abort(urb_t *urb)
|
|
{
|
|
HCD_ENTER_CRITICAL();
|
|
// Check that the URB was enqueued to begin with
|
|
HCD_CHECK_FROM_CRIT(urb->hcd_ptr != NULL && urb->hcd_var != URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
|
|
if (urb->hcd_var == URB_HCD_STATE_PENDING) {
|
|
// URB has not been executed so it can be aborted
|
|
pipe_t *pipe = (pipe_t *)urb->hcd_ptr;
|
|
// Remove it form the pending queue
|
|
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
|
|
pipe->num_urb_pending--;
|
|
// Add it to the done queue
|
|
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
|
|
pipe->num_urb_done++;
|
|
// Update the URB's current state, status, and actual length
|
|
urb->hcd_var = URB_HCD_STATE_DONE;
|
|
if (urb->transfer.num_isoc_packets == 0) {
|
|
urb->transfer.actual_num_bytes = 0;
|
|
urb->transfer.status = USB_TRANSFER_STATUS_CANCELED;
|
|
} else {
|
|
// If this is an ISOC URB, update the ISO packet descriptors instead
|
|
for (int i = 0; i < urb->transfer.num_isoc_packets; i++) {
|
|
urb->transfer.isoc_packet_desc[i].actual_num_bytes = 0;
|
|
urb->transfer.isoc_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED;
|
|
}
|
|
}
|
|
} // Otherwise, the URB is in-flight or already done thus cannot be aborted
|
|
HCD_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|