esp-idf/components/esp_system/port/cpu_start.c
Lou Tian Hao 7c2ac1feb6 Merge branch 'bringup/esp32h2_light_sleep_for_rebase' into 'master'
esp32h2: support light_sleep

Closes IDF-6266 and IDF-7359

See merge request espressif/esp-idf!23567
2023-06-28 10:37:18 +08:00

691 lines
24 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_chip_info.h"
#include "esp_efuse.h"
#include "esp_private/cache_err_int.h"
#include "esp_clk_internal.h"
#include "esp_rom_efuse.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
#include "esp_rom_caps.h"
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include "soc/dport_reg.h"
#include "esp32/rtc.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/secure_boot.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rtc.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/secure_boot.h"
#include "esp32s2/memprot.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rtc.h"
#include "esp32s3/rom/cache.h"
#include "esp32s3/rom/secure_boot.h"
#include "esp_memprot.h"
#include "soc/assist_debug_reg.h"
#include "soc/system_reg.h"
#include "esp32s3/rom/opi_flash.h"
#include "hal/cache_hal.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rtc.h"
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/secure_boot.h"
#include "esp_memprot.h"
#elif CONFIG_IDF_TARGET_ESP32C6
#include "esp32c6/rtc.h"
#include "esp32c6/rom/cache.h"
#include "esp_memprot.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rtc.h"
#include "esp32h2/rom/cache.h"
#include "esp_memprot.h"
#elif CONFIG_IDF_TARGET_ESP32C2
#include "esp32c2/rtc.h"
#include "esp32c2/rom/cache.h"
#include "esp32c2/rom/rtc.h"
#include "esp32c2/rom/secure_boot.h"
#endif
#include "esp_private/esp_mmu_map_private.h"
#if CONFIG_SPIRAM
#include "esp_psram.h"
#include "esp_private/mmu_psram_flash.h"
#include "esp_private/esp_psram_extram.h"
#endif
#include "esp_private/spi_flash_os.h"
#include "esp_private/mspi_timing_tuning.h"
#include "bootloader_flash_config.h"
#include "bootloader_flash.h"
#include "esp_private/crosscore_int.h"
#include "esp_flash_encrypt.h"
#include "esp_private/sleep_gpio.h"
#include "hal/wdt_hal.h"
#include "soc/rtc.h"
#include "hal/cache_ll.h"
#include "hal/efuse_ll.h"
#include "soc/periph_defs.h"
#include "esp_cpu.h"
#include "esp_private/esp_clk.h"
#include "spi_flash_mmap.h"
#if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX
#include "esp_private/trax.h"
#endif
#include "bootloader_mem.h"
#if CONFIG_APP_BUILD_TYPE_RAM
#include "esp_rom_spiflash.h"
#include "bootloader_init.h"
#endif // CONFIG_APP_BUILD_TYPE_RAM
//This dependency will be removed in the future
#include "soc/ext_mem_defs.h"
#include "esp_private/startup_internal.h"
#include "esp_private/system_internal.h"
extern int _bss_start;
extern int _bss_end;
extern int _rtc_bss_start;
extern int _rtc_bss_end;
extern int _instruction_reserved_start;
extern int _instruction_reserved_end;
extern int _rodata_reserved_start;
extern int _rodata_reserved_end;
extern int _vector_table;
static const char *TAG = "cpu_start";
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
extern int _ext_ram_bss_start;
extern int _ext_ram_bss_end;
#endif
#ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY
extern int _iram_bss_start;
extern int _iram_bss_end;
#endif
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
static volatile bool s_cpu_up[SOC_CPU_CORES_NUM] = { false };
static volatile bool s_cpu_inited[SOC_CPU_CORES_NUM] = { false };
static volatile bool s_resume_cores;
#endif
static void core_intr_matrix_clear(void)
{
uint32_t core_id = esp_cpu_get_core_id();
for (int i = 0; i < ETS_MAX_INTR_SOURCE; i++) {
esp_rom_route_intr_matrix(core_id, i, ETS_INVALID_INUM);
}
}
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
void startup_resume_other_cores(void)
{
s_resume_cores = true;
}
void IRAM_ATTR call_start_cpu1(void)
{
esp_cpu_intr_set_ivt_addr(&_vector_table);
ets_set_appcpu_boot_addr(0);
bootloader_init_mem();
#if CONFIG_ESP_CONSOLE_NONE
esp_rom_install_channel_putc(1, NULL);
esp_rom_install_channel_putc(2, NULL);
#else // CONFIG_ESP_CONSOLE_NONE
esp_rom_install_uart_printf();
esp_rom_uart_set_as_console(CONFIG_ESP_CONSOLE_UART_NUM);
#endif
#if CONFIG_IDF_TARGET_ESP32
DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE);
DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE);
#else
REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_PDEBUGENABLE_REG, 1);
REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_RECORDING_REG, 1);
#endif
s_cpu_up[1] = true;
ESP_EARLY_LOGI(TAG, "App cpu up.");
// Clear interrupt matrix for APP CPU core
core_intr_matrix_clear();
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
//Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler
//has started, but it isn't active *on this CPU* yet.
esp_cache_err_int_init();
#endif
#if (CONFIG_IDF_TARGET_ESP32 && CONFIG_ESP32_TRAX_TWOBANKS) || \
(CONFIG_IDF_TARGET_ESP32S3 && CONFIG_ESP32S3_TRAX_TWOBANKS)
trax_start_trace(TRAX_DOWNCOUNT_WORDS);
#endif
s_cpu_inited[1] = true;
while (!s_resume_cores) {
esp_rom_delay_us(100);
}
SYS_STARTUP_FN();
}
static void start_other_core(void)
{
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
// If not the single core variant of a target - check this since there is
// no separate soc_caps.h for the single core variant.
if (!(chip_info.cores > 1)) {
ESP_EARLY_LOGE(TAG, "Running on single core variant of a chip, but app is built with multi-core support.");
ESP_EARLY_LOGE(TAG, "Check that CONFIG_FREERTOS_UNICORE is enabled in menuconfig");
abort();
}
ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_start_cpu1);
#if CONFIG_IDF_TARGET_ESP32 && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
Cache_Flush(1);
Cache_Read_Enable(1);
#endif // #if CONFIG_IDF_TARGET_ESP32 && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
esp_cpu_unstall(1);
// Enable clock and reset APP CPU. Note that OpenOCD may have already
// enabled clock and taken APP CPU out of reset. In this case don't reset
// APP CPU again, as that will clear the breakpoints which may have already
// been set.
#if CONFIG_IDF_TARGET_ESP32
if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) {
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
}
#elif CONFIG_IDF_TARGET_ESP32S3
if (!REG_GET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN)) {
REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN);
REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL);
REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING);
REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING);
}
#endif
ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1);
bool cpus_up = false;
while (!cpus_up) {
cpus_up = true;
for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
cpus_up &= s_cpu_up[i];
}
esp_rom_delay_us(100);
}
}
// This function is needed to make the multicore app runnable on a unicore bootloader (built with FREERTOS UNICORE).
// It does some cache settings for other CPUs.
void IRAM_ATTR do_multicore_settings(void)
{
// We intentionally do not check the cache settings before changing them,
// because it helps to get the application to run on older bootloaders.
#ifdef CONFIG_IDF_TARGET_ESP32
if (!efuse_ll_get_disable_app_cpu()) {
Cache_Read_Disable(1);
Cache_Flush(1);
DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
// We do not enable cache for CPU1 now because it will be done later in start_other_core().
}
#endif
cache_bus_mask_t cache_bus_mask_core0 = cache_ll_l1_get_enabled_bus(0);
#ifndef CONFIG_IDF_TARGET_ESP32
// 1. disable the cache before changing its settings.
cache_hal_disable(CACHE_TYPE_ALL);
#endif
for (unsigned core = 1; core < SOC_CPU_CORES_NUM; core++) {
// 2. change cache settings. All cores must have the same settings.
cache_ll_l1_enable_bus(core, cache_bus_mask_core0);
}
#ifndef CONFIG_IDF_TARGET_ESP32
// 3. enable the cache after changing its settings.
cache_hal_enable(CACHE_TYPE_ALL);
#endif
}
#endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
/*
* We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
* and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
*/
void IRAM_ATTR call_start_cpu0(void)
{
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
soc_reset_reason_t rst_reas[SOC_CPU_CORES_NUM];
#else
soc_reset_reason_t __attribute__((unused)) rst_reas[1];
#endif
#ifdef __riscv
if (esp_cpu_dbgr_is_attached()) {
/* Let debugger some time to detect that target started, halt it, enable ebreaks and resume.
500ms should be enough. */
for (uint32_t ms_num = 0; ms_num < 2; ms_num++) {
esp_rom_delay_us(100000);
}
}
// Configure the global pointer register
// (This should be the first thing IDF app does, as any other piece of code could be
// relaxed by the linker to access something relative to __global_pointer$)
__asm__ __volatile__ (
".option push\n"
".option norelax\n"
"la gp, __global_pointer$\n"
".option pop"
);
#endif
// Move exception vectors to IRAM
esp_cpu_intr_set_ivt_addr(&_vector_table);
rst_reas[0] = esp_rom_get_reset_reason(0);
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
rst_reas[1] = esp_rom_get_reset_reason(1);
#endif
//Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this.
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
#if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY)
// Clear IRAM BSS
memset(&_iram_bss_start, 0, (&_iram_bss_end - &_iram_bss_start) * sizeof(_iram_bss_start));
#endif
#if SOC_RTC_FAST_MEM_SUPPORTED || SOC_RTC_SLOW_MEM_SUPPORTED
/* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
if (rst_reas[0] != RESET_REASON_CORE_DEEP_SLEEP) {
memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
}
#endif
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
ESP_EARLY_LOGI(TAG, "Unicore app");
#else
ESP_EARLY_LOGI(TAG, "Multicore app");
// It helps to fix missed cache settings for other cores. It happens when bootloader is unicore.
do_multicore_settings();
#endif
#endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
// When the APP is loaded into ram for execution, some hardware initialization behaviors
// in the bootloader are still necessary
#if CONFIG_APP_BUILD_TYPE_RAM
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if SOC_SPI_MEM_SUPPORT_CONFIG_GPIO_BY_EFUSE
esp_rom_spiflash_attach(esp_rom_efuse_get_flash_gpio_info(), false);
#else
esp_rom_spiflash_attach(0, false);
#endif
#endif //#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
bootloader_init();
#endif //#if CONFIG_APP_BUILD_TYPE_RAM
#ifndef CONFIG_BOOTLOADER_WDT_ENABLE
// from panic handler we can be reset by RWDT or TG0WDT
if (rst_reas[0] == RESET_REASON_CORE_RTC_WDT || rst_reas[0] == RESET_REASON_CORE_MWDT0
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|| rst_reas[1] == RESET_REASON_CORE_RTC_WDT || rst_reas[1] == RESET_REASON_CORE_MWDT0
#endif
) {
wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_disable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
}
#endif
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if CONFIG_IDF_TARGET_ESP32S2
/* Configure the mode of instruction cache : cache size, cache associated ways, cache line size. */
extern void esp_config_instruction_cache_mode(void);
esp_config_instruction_cache_mode();
/* If we need use SPIRAM, we should use data cache, or if we want to access rodata, we also should use data cache.
Configure the mode of data : cache size, cache associated ways, cache line size.
Enable data cache, so if we don't use SPIRAM, it just works. */
extern void esp_config_data_cache_mode(void);
esp_config_data_cache_mode();
Cache_Enable_DCache(0);
#endif
#if CONFIG_IDF_TARGET_ESP32S3
/* Configure the mode of instruction cache : cache size, cache line size. */
extern void rom_config_instruction_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size);
rom_config_instruction_cache_mode(CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE, CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE);
/* If we need use SPIRAM, we should use data cache.
Configure the mode of data : cache size, cache line size.*/
Cache_Suspend_DCache();
extern void rom_config_data_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size);
rom_config_data_cache_mode(CONFIG_ESP32S3_DATA_CACHE_SIZE, CONFIG_ESP32S3_DCACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_DATA_CACHE_LINE_SIZE);
Cache_Resume_DCache(0);
#endif // CONFIG_IDF_TARGET_ESP32S3
if (esp_efuse_check_errors() != ESP_OK) {
esp_restart();
}
#if CONFIG_ESP_ROM_NEEDS_SET_CACHE_MMU_SIZE
#if CONFIG_APP_BUILD_TYPE_ELF_RAM
// For RAM loadable ELF case, we don't need to reserve IROM/DROM as instructions and data
// are all in internal RAM. If the RAM loadable ELF has any requirement to memory map the
// external flash then it should use flash or partition mmap APIs.
uint32_t cache_mmu_irom_size = 0;
__attribute__((unused)) uint32_t cache_mmu_drom_size = 0;
#else // CONFIG_APP_BUILD_TYPE_ELF_RAM
uint32_t _instruction_size = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start;
uint32_t cache_mmu_irom_size = ((_instruction_size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE) * sizeof(uint32_t);
uint32_t _rodata_size = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start;
__attribute__((unused)) uint32_t cache_mmu_drom_size = ((_rodata_size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE) * sizeof(uint32_t);
#endif // !CONFIG_APP_BUILD_TYPE_ELF_RAM
/* Configure the Cache MMU size for instruction and rodata in flash. */
Cache_Set_IDROM_MMU_Size(cache_mmu_irom_size, CACHE_DROM_MMU_MAX_END - cache_mmu_irom_size);
#endif // CONFIG_ESP_ROM_NEEDS_SET_CACHE_MMU_SIZE
#if CONFIG_ESPTOOLPY_OCT_FLASH && !CONFIG_ESPTOOLPY_FLASH_MODE_AUTO_DETECT
bool efuse_opflash_en = efuse_ll_get_flash_type();
if (!efuse_opflash_en) {
ESP_EARLY_LOGE(TAG, "Octal Flash option selected, but EFUSE not configured!");
abort();
}
#endif
esp_mspi_pin_init();
// For Octal flash, it's hard to implement a read_id function in OPI mode for all vendors.
// So we have to read it here in SPI mode, before entering the OPI mode.
bootloader_flash_update_id();
/**
* This function initialise the Flash chip to the user-defined settings.
*
* In bootloader, we only init Flash (and MSPI) to a preliminary state, for being flexible to
* different chips.
* In this stage, we re-configure the Flash (and MSPI) to required configuration
*/
spi_flash_init_chip_state();
#if SOC_MEMSPI_SRC_FREQ_120M
mspi_timing_flash_tuning();
#endif
esp_mmu_map_init();
#if CONFIG_SPIRAM_BOOT_INIT
if (esp_psram_init() != ESP_OK) {
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
ESP_EARLY_LOGE(TAG, "Failed to init external RAM, needed for external .bss segment");
abort();
#endif
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it.");
#else
ESP_EARLY_LOGE(TAG, "Failed to init external RAM!");
abort();
#endif
}
#endif
#endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
bootloader_init_mem();
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
s_cpu_up[0] = true;
#endif
ESP_EARLY_LOGI(TAG, "Pro cpu up.");
#if SOC_CPU_CORES_NUM > 1 // there is no 'single-core mode' for natively single-core processors
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
start_other_core();
#else
ESP_EARLY_LOGI(TAG, "Single core mode");
#if CONFIG_IDF_TARGET_ESP32
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN); // stop the other core
#elif CONFIG_IDF_TARGET_ESP32S3
REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN);
#if SOC_APPCPU_HAS_CLOCK_GATING_BUG
/* The clock gating signal of the App core is invalid. We use RUNSTALL and RESETING
signals to ensure that the App core stops running in single-core mode. */
REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL);
REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING);
#endif
#endif // CONFIG_IDF_TARGET_ESP32
#endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
#endif // SOC_CPU_CORES_NUM > 1
#if CONFIG_SPIRAM_MEMTEST
if (esp_psram_is_initialized()) {
bool ext_ram_ok = esp_psram_extram_test();
if (!ext_ram_ok) {
ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
abort();
}
}
#endif //CONFIG_SPIRAM_MEMTEST
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
//TODO: IDF-5023, replace with MMU driver
#if CONFIG_IDF_TARGET_ESP32S3
int s_instr_flash2spiram_off = 0;
int s_rodata_flash2spiram_off = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
s_instr_flash2spiram_off = instruction_flash2spiram_offset();
#endif
#if CONFIG_SPIRAM_RODATA
s_rodata_flash2spiram_off = rodata_flash2spiram_offset();
#endif
Cache_Set_IDROM_MMU_Info(cache_mmu_irom_size / sizeof(uint32_t), \
cache_mmu_drom_size / sizeof(uint32_t), \
(uint32_t)&_rodata_reserved_start, \
(uint32_t)&_rodata_reserved_end, \
s_instr_flash2spiram_off, \
s_rodata_flash2spiram_off);
#endif // CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S2_DATA_CACHE_WRAP || \
CONFIG_ESP32S3_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S3_DATA_CACHE_WRAP
uint32_t icache_wrap_enable = 0, dcache_wrap_enable = 0;
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S3_INSTRUCTION_CACHE_WRAP
icache_wrap_enable = 1;
#endif
#if CONFIG_ESP32S2_DATA_CACHE_WRAP || CONFIG_ESP32S3_DATA_CACHE_WRAP
dcache_wrap_enable = 1;
#endif
extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable);
esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable);
#endif
#if CONFIG_ESP32S3_DATA_CACHE_16KB
Cache_Invalidate_DCache_All();
Cache_Occupy_Addr(SOC_DROM_LOW, 0x4000);
#endif
#if CONFIG_IDF_TARGET_ESP32C2
// TODO : IDF-5020
#if CONFIG_ESP32C2_INSTRUCTION_CACHE_WRAP
extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable);
esp_enable_cache_wrap(1);
#endif
#endif
#endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start));
#endif
//Enable trace memory and immediately start trace.
#if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_ESP32_TRAX_TWOBANKS || CONFIG_ESP32S3_TRAX_TWOBANKS
trax_enable(TRAX_ENA_PRO_APP);
#else
trax_enable(TRAX_ENA_PRO);
#endif
#elif CONFIG_IDF_TARGET_ESP32S2
trax_enable(TRAX_ENA_PRO);
#endif
trax_start_trace(TRAX_DOWNCOUNT_WORDS);
#endif // CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX
esp_clk_init();
esp_perip_clk_init();
// Now that the clocks have been set-up, set the startup time from RTC
// and default RTC-backed system time provider.
g_startup_time = esp_rtc_get_time_us();
// Clear interrupt matrix for PRO CPU core
core_intr_matrix_clear();
#ifndef CONFIG_IDF_ENV_FPGA // TODO: on FPGA it should be possible to configure this, not currently working with APB_CLK_FREQ changed
#ifdef CONFIG_ESP_CONSOLE_UART
uint32_t clock_hz = esp_clk_apb_freq();
#if ESP_ROM_UART_CLK_IS_XTAL
clock_hz = esp_clk_xtal_freq(); // From esp32-s3 on, UART clock source is selected to XTAL in ROM
#endif
esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
esp_rom_uart_set_clock_baudrate(CONFIG_ESP_CONSOLE_UART_NUM, clock_hz, CONFIG_ESP_CONSOLE_UART_BAUDRATE);
#endif
#endif
// Need to unhold the IOs that were hold right before entering deep sleep, which are used as wakeup pins
if (rst_reas[0] == RESET_REASON_CORE_DEEP_SLEEP) {
esp_deep_sleep_wakeup_io_reset();
}
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
esp_cache_err_int_init();
#endif
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && !CONFIG_ESP_SYSTEM_MEMPROT_TEST
// Memprot cannot be locked during OS startup as the lock-on prevents any PMS changes until a next reboot
// If such a situation appears, it is likely an malicious attempt to bypass the system safety setup -> print error & reset
#if CONFIG_IDF_TARGET_ESP32S2
if (esp_memprot_is_locked_any()) {
#else
bool is_locked = false;
if (esp_mprot_is_conf_locked_any(&is_locked) != ESP_OK || is_locked) {
#endif
ESP_EARLY_LOGE(TAG, "Memprot feature locked after the system reset! Potential safety corruption, rebooting.");
esp_restart_noos();
}
//default configuration of PMS Memprot
esp_err_t memp_err = ESP_OK;
#if CONFIG_IDF_TARGET_ESP32S2 //specific for ESP32S2 unless IDF-3024 is merged
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
memp_err = esp_memprot_set_prot(PANIC_HNDL_ON, MEMPROT_LOCK, NULL);
#else
memp_err = esp_memprot_set_prot(PANIC_HNDL_ON, MEMPROT_UNLOCK, NULL);
#endif
#else //CONFIG_IDF_TARGET_ESP32S2 specific end
esp_memp_config_t memp_cfg = ESP_MEMPROT_DEFAULT_CONFIG();
#if !CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
memp_cfg.lock_feature = false;
#endif
memp_err = esp_mprot_set_prot(&memp_cfg);
#endif //other IDF_TARGETS end
if (memp_err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Failed to set Memprot feature (0x%08X: %s), rebooting.", memp_err, esp_err_to_name(memp_err));
esp_restart_noos();
}
#endif //CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && !CONFIG_ESP_SYSTEM_MEMPROT_TEST
// Read the application binary image header. This will also decrypt the header if the image is encrypted.
__attribute__((unused)) esp_image_header_t fhdr = {0};
#if CONFIG_APP_BUILD_TYPE_RAM && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
fhdr.spi_mode = ESP_IMAGE_SPI_MODE_DIO;
fhdr.spi_speed = ESP_IMAGE_SPI_SPEED_DIV_2;
fhdr.spi_size = ESP_IMAGE_FLASH_SIZE_4MB;
bootloader_flash_unlock();
#else
// This assumes that DROM is the first segment in the application binary, i.e. that we can read
// the binary header through cache by accessing SOC_DROM_LOW address.
hal_memcpy(&fhdr, (void *) SOC_DROM_LOW, sizeof(fhdr));
#endif // CONFIG_APP_BUILD_TYPE_RAM && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if CONFIG_IDF_TARGET_ESP32
#if !CONFIG_SPIRAM_BOOT_INIT
// If psram is uninitialized, we need to improve some flash configuration.
bootloader_flash_clock_config(&fhdr);
bootloader_flash_gpio_config(&fhdr);
bootloader_flash_dummy_config(&fhdr);
bootloader_flash_cs_timing_config();
#endif //!CONFIG_SPIRAM_BOOT_INIT
#endif //CONFIG_IDF_TARGET_ESP32
#if CONFIG_SPI_FLASH_SIZE_OVERRIDE
int app_flash_size = esp_image_get_flash_size(fhdr.spi_size);
if (app_flash_size < 1 * 1024 * 1024) {
ESP_EARLY_LOGE(TAG, "Invalid flash size in app image header.");
abort();
}
bootloader_flash_update_size(app_flash_size);
#endif //CONFIG_SPI_FLASH_SIZE_OVERRIDE
#endif //!CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
s_cpu_inited[0] = true;
volatile bool cpus_inited = false;
while (!cpus_inited) {
cpus_inited = true;
for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
cpus_inited &= s_cpu_inited[i];
}
esp_rom_delay_us(100);
}
#endif
SYS_STARTUP_FN();
}