mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
bd9fed4400
DRAM.data: 506B --> 196B DRAM.bss : 26857B --> 2170B
286 lines
9.4 KiB
C
286 lines
9.4 KiB
C
/******************************************************************************
|
|
*
|
|
* Copyright (C) 2006-2015 Broadcom Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
******************************************************************************/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* This file contains simple pairing algorithms using Elliptic Curve Cryptography for private public key
|
|
*
|
|
******************************************************************************/
|
|
//#include <stdio.h>
|
|
//#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "p_256_ecc_pp.h"
|
|
#include "p_256_multprecision.h"
|
|
#include "common/bt_target.h"
|
|
|
|
#if SMP_DYNAMIC_MEMORY == FALSE
|
|
elliptic_curve_t curve;
|
|
elliptic_curve_t curve_p256;
|
|
#else
|
|
elliptic_curve_t *curve_ptr;
|
|
elliptic_curve_t *curve_p256_ptr;
|
|
#endif
|
|
|
|
static void p_256_init_point(Point *q)
|
|
{
|
|
memset(q, 0, sizeof(Point));
|
|
}
|
|
|
|
static void p_256_copy_point(Point *q, Point *p)
|
|
{
|
|
memcpy(q, p, sizeof(Point));
|
|
}
|
|
|
|
// q=2q
|
|
static void ECC_Double(Point *q, Point *p, uint32_t keyLength)
|
|
{
|
|
DWORD t1[KEY_LENGTH_DWORDS_P256];
|
|
DWORD t2[KEY_LENGTH_DWORDS_P256];
|
|
DWORD t3[KEY_LENGTH_DWORDS_P256];
|
|
DWORD *x1;
|
|
DWORD *x3;
|
|
DWORD *y1;
|
|
DWORD *y3;
|
|
DWORD *z1;
|
|
DWORD *z3;
|
|
|
|
if (multiprecision_iszero(p->z, keyLength)) {
|
|
multiprecision_init(q->z, keyLength);
|
|
return; // return infinity
|
|
}
|
|
|
|
x1 = p->x; y1 = p->y; z1 = p->z;
|
|
x3 = q->x; y3 = q->y; z3 = q->z;
|
|
|
|
multiprecision_mersenns_squa_mod(t1, z1, keyLength); // t1=z1^2
|
|
multiprecision_sub_mod(t2, x1, t1, keyLength); // t2=x1-t1
|
|
multiprecision_add_mod(t1, x1, t1, keyLength); // t1=x1+t1
|
|
multiprecision_mersenns_mult_mod(t2, t1, t2, keyLength); // t2=t2*t1
|
|
multiprecision_lshift_mod(t3, t2, keyLength);
|
|
multiprecision_add_mod(t2, t3, t2, keyLength); // t2=3t2
|
|
|
|
multiprecision_mersenns_mult_mod(z3, y1, z1, keyLength); // z3=y1*z1
|
|
multiprecision_lshift_mod(z3, z3, keyLength);
|
|
|
|
multiprecision_mersenns_squa_mod(y3, y1, keyLength); // y3=y1^2
|
|
multiprecision_lshift_mod(y3, y3, keyLength);
|
|
multiprecision_mersenns_mult_mod(t3, y3, x1, keyLength); // t3=y3*x1=x1*y1^2
|
|
multiprecision_lshift_mod(t3, t3, keyLength);
|
|
multiprecision_mersenns_squa_mod(y3, y3, keyLength); // y3=y3^2=y1^4
|
|
multiprecision_lshift_mod(y3, y3, keyLength);
|
|
|
|
multiprecision_mersenns_squa_mod(x3, t2, keyLength); // x3=t2^2
|
|
multiprecision_lshift_mod(t1, t3, keyLength); // t1=2t3
|
|
multiprecision_sub_mod(x3, x3, t1, keyLength); // x3=x3-t1
|
|
multiprecision_sub_mod(t1, t3, x3, keyLength); // t1=t3-x3
|
|
multiprecision_mersenns_mult_mod(t1, t1, t2, keyLength); // t1=t1*t2
|
|
multiprecision_sub_mod(y3, t1, y3, keyLength); // y3=t1-y3
|
|
}
|
|
|
|
// q=q+p, zp must be 1
|
|
static void ECC_Add(Point *r, Point *p, Point *q, uint32_t keyLength)
|
|
{
|
|
DWORD t1[KEY_LENGTH_DWORDS_P256];
|
|
DWORD t2[KEY_LENGTH_DWORDS_P256];
|
|
DWORD *x1;
|
|
DWORD *x2;
|
|
DWORD *x3;
|
|
DWORD *y1;
|
|
DWORD *y2;
|
|
DWORD *y3;
|
|
DWORD *z1;
|
|
DWORD *z2;
|
|
DWORD *z3;
|
|
|
|
x1 = p->x; y1 = p->y; z1 = p->z;
|
|
x2 = q->x; y2 = q->y; z2 = q->z;
|
|
x3 = r->x; y3 = r->y; z3 = r->z;
|
|
|
|
// if Q=infinity, return p
|
|
if (multiprecision_iszero(z2, keyLength)) {
|
|
p_256_copy_point(r, p);
|
|
return;
|
|
}
|
|
|
|
// if P=infinity, return q
|
|
if (multiprecision_iszero(z1, keyLength)) {
|
|
p_256_copy_point(r, q);
|
|
return;
|
|
}
|
|
|
|
multiprecision_mersenns_squa_mod(t1, z1, keyLength); // t1=z1^2
|
|
multiprecision_mersenns_mult_mod(t2, z1, t1, keyLength); // t2=t1*z1
|
|
multiprecision_mersenns_mult_mod(t1, x2, t1, keyLength); // t1=t1*x2
|
|
multiprecision_mersenns_mult_mod(t2, y2, t2, keyLength); // t2=t2*y2
|
|
|
|
multiprecision_sub_mod(t1, t1, x1, keyLength); // t1=t1-x1
|
|
multiprecision_sub_mod(t2, t2, y1, keyLength); // t2=t2-y1
|
|
|
|
if (multiprecision_iszero(t1, keyLength)) {
|
|
if (multiprecision_iszero(t2, keyLength)) {
|
|
ECC_Double(r, q, keyLength) ;
|
|
return;
|
|
} else {
|
|
multiprecision_init(z3, keyLength);
|
|
return; // return infinity
|
|
}
|
|
}
|
|
|
|
multiprecision_mersenns_mult_mod(z3, z1, t1, keyLength); // z3=z1*t1
|
|
multiprecision_mersenns_squa_mod(y3, t1, keyLength); // t3=t1^2
|
|
multiprecision_mersenns_mult_mod(z1, y3, t1, keyLength); // t4=t3*t1
|
|
multiprecision_mersenns_mult_mod(y3, y3, x1, keyLength); // t3=t3*x1
|
|
multiprecision_lshift_mod(t1, y3, keyLength); // t1=2*t3
|
|
multiprecision_mersenns_squa_mod(x3, t2, keyLength); // x3=t2^2
|
|
multiprecision_sub_mod(x3, x3, t1, keyLength); // x3=x3-t1
|
|
multiprecision_sub_mod(x3, x3, z1, keyLength); // x3=x3-t4
|
|
multiprecision_sub_mod(y3, y3, x3, keyLength); // t3=t3-x3
|
|
multiprecision_mersenns_mult_mod(y3, y3, t2, keyLength); // t3=t3*t2
|
|
multiprecision_mersenns_mult_mod(z1, z1, y1, keyLength); // t4=t4*t1
|
|
multiprecision_sub_mod(y3, y3, z1, keyLength);
|
|
}
|
|
|
|
// Computing the Non-Adjacent Form of a positive integer
|
|
static void ECC_NAF(uint8_t *naf, uint32_t *NumNAF, DWORD *k, uint32_t keyLength)
|
|
{
|
|
uint32_t sign;
|
|
int i = 0;
|
|
int j;
|
|
uint32_t var;
|
|
|
|
while ((var = multiprecision_most_signbits(k, keyLength)) >= 1) {
|
|
if (k[0] & 0x01) { // k is odd
|
|
sign = (k[0] & 0x03); // 1 or 3
|
|
|
|
// k = k-naf[i]
|
|
if (sign == 1) {
|
|
k[0] = k[0] & 0xFFFFFFFE;
|
|
} else {
|
|
k[0] = k[0] + 1;
|
|
if (k[0] == 0) { //overflow
|
|
j = 1;
|
|
do {
|
|
k[j]++;
|
|
} while (k[j++] == 0); //overflow
|
|
}
|
|
}
|
|
} else {
|
|
sign = 0;
|
|
}
|
|
|
|
multiprecision_rshift(k, k, keyLength);
|
|
naf[i / 4] |= (sign) << ((i % 4) * 2);
|
|
i++;
|
|
}
|
|
|
|
*NumNAF = i;
|
|
}
|
|
|
|
// Binary Non-Adjacent Form for point multiplication
|
|
void ECC_PointMult_Bin_NAF(Point *q, Point *p, DWORD *n, uint32_t keyLength)
|
|
{
|
|
uint32_t sign;
|
|
UINT8 naf[256 / 4 + 1];
|
|
uint32_t NumNaf;
|
|
Point minus_p;
|
|
Point r;
|
|
DWORD *modp;
|
|
|
|
if (keyLength == KEY_LENGTH_DWORDS_P256) {
|
|
modp = curve_p256.p;
|
|
} else {
|
|
modp = curve.p;
|
|
}
|
|
|
|
p_256_init_point(&r);
|
|
multiprecision_init(p->z, keyLength);
|
|
p->z[0] = 1;
|
|
|
|
// initialization
|
|
p_256_init_point(q);
|
|
|
|
// -p
|
|
multiprecision_copy(minus_p.x, p->x, keyLength);
|
|
multiprecision_sub(minus_p.y, modp, p->y, keyLength);
|
|
|
|
multiprecision_init(minus_p.z, keyLength);
|
|
minus_p.z[0] = 1;
|
|
|
|
// NAF
|
|
memset(naf, 0, sizeof(naf));
|
|
ECC_NAF(naf, &NumNaf, n, keyLength);
|
|
|
|
for (int i = NumNaf - 1; i >= 0; i--) {
|
|
p_256_copy_point(&r, q);
|
|
ECC_Double(q, &r, keyLength);
|
|
sign = (naf[i / 4] >> ((i % 4) * 2)) & 0x03;
|
|
|
|
if (sign == 1) {
|
|
p_256_copy_point(&r, q);
|
|
ECC_Add(q, &r, p, keyLength);
|
|
} else if (sign == 3) {
|
|
p_256_copy_point(&r, q);
|
|
ECC_Add(q, &r, &minus_p, keyLength);
|
|
}
|
|
}
|
|
|
|
multiprecision_inv_mod(minus_p.x, q->z, keyLength);
|
|
multiprecision_mersenns_squa_mod(q->z, minus_p.x, keyLength);
|
|
multiprecision_mersenns_mult_mod(q->x, q->x, q->z, keyLength);
|
|
multiprecision_mersenns_mult_mod(q->z, q->z, minus_p.x, keyLength);
|
|
multiprecision_mersenns_mult_mod(q->y, q->y, q->z, keyLength);
|
|
}
|
|
|
|
bool ECC_CheckPointIsInElliCur_P256(Point *p)
|
|
{
|
|
/* y^2 % q */
|
|
DWORD y_y_q[KEY_LENGTH_DWORDS_P256] = {0x0};
|
|
/* x^2 % q */
|
|
DWORD x_x_q[KEY_LENGTH_DWORDS_P256] = {0x0};
|
|
/* x % q */
|
|
DWORD x_q[KEY_LENGTH_DWORDS_P256] = {0x0};
|
|
/* x^2, To prevent overflow, the length of the x square here needs to
|
|
be expanded to two times the original one. */
|
|
DWORD x_x[2*KEY_LENGTH_DWORDS_P256] = {0x0};
|
|
/* y_y_q =(p->y)^2(mod q) */
|
|
multiprecision_mersenns_squa_mod(y_y_q, p->y, KEY_LENGTH_DWORDS_P256);
|
|
/* Calculate the value of p->x square, x_x = (p->x)^2 */
|
|
multiprecision_mult(x_x, p->x, p->x, KEY_LENGTH_DWORDS_P256);
|
|
/* The function of the elliptic curve is y^2 = x^3 - 3x + b (mod q) ==>
|
|
y^2 = (x^2 - 3)*x + b (mod q),
|
|
so we calculate the x^2 - 3 value here */
|
|
x_x[0] -= 3;
|
|
/* Using math relations. (a*b) % q = ((a%q)*(b%q)) % q ==>
|
|
(x^2 - 3)*x = (((x^2 - 3) % q) * x % q) % q */
|
|
multiprecision_fast_mod_P256(x_x_q, x_x);
|
|
/* x_x = x_x_q * x_q */
|
|
multiprecision_mult(x_x, x_x_q, p->x, KEY_LENGTH_DWORDS_P256);
|
|
/* x_q = x_x % q */
|
|
multiprecision_fast_mod_P256(x_q, x_x);
|
|
/* Save the result in x_x_q */
|
|
multiprecision_add_mod(x_x_q, x_q, curve_p256.b, KEY_LENGTH_DWORDS_P256);
|
|
/* compare the y_y_q and x_x_q, see if they are on a given elliptic curve. */
|
|
if (multiprecision_compare(y_y_q, x_x_q, KEY_LENGTH_DWORDS_P256)) {
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|