esp-idf/components/usb/hcd_dwc.c
Tomas Rezucha 39d57f1cfd refactor(usb/host): Move FIFO size configuration to HAL layer
The logic of calculating FIFO sizes is DWC OTG specific.
We move it to the HAL layer to provide better abstraction in the HDC layer.
2023-11-30 12:04:30 +08:00

2554 lines
98 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_heap_caps.h"
#include "esp_intr_alloc.h"
#include "soc/interrupts.h" // For interrupt index
#include "esp_err.h"
#include "esp_log.h"
#include "hal/usb_dwc_hal.h"
#include "hal/usb_dwc_types.h"
#include "hcd.h"
#include "usb_private.h"
#include "usb/usb_types_ch9.h"
// ----------------------------------------------------- Macros --------------------------------------------------------
// --------------------- Constants -------------------------
#define INIT_DELAY_MS 30 // A delay of at least 25ms to enter Host mode. Make it 30ms to be safe
#define DEBOUNCE_DELAY_MS CONFIG_USB_HOST_DEBOUNCE_DELAY_MS
#define RESET_HOLD_MS CONFIG_USB_HOST_RESET_HOLD_MS
#define RESET_RECOVERY_MS CONFIG_USB_HOST_RESET_RECOVERY_MS
#define RESUME_HOLD_MS 30 // Spec requires at least 20ms, Make it 30ms to be safe
#define RESUME_RECOVERY_MS 20 // Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP
#define CTRL_EP_MAX_MPS_LS 8 // Largest Maximum Packet Size for Low Speed control endpoints
#define CTRL_EP_MAX_MPS_HSFS 64 // Largest Maximum Packet Size for High & Full Speed control endpoints
#define NUM_PORTS 1 // The controller only has one port.
// ----------------------- Configs -------------------------
#define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32
#define NUM_BUFFERS 2
#define XFER_LIST_LEN_CTRL 3 // One descriptor for each stage
#define XFER_LIST_LEN_BULK 2 // One descriptor for transfer, one to support an extra zero length packet
#define XFER_LIST_LEN_INTR FRAME_LIST_LEN
#define XFER_LIST_LEN_ISOC FRAME_LIST_LEN // Same length as the frame list makes it easier to schedule. Must be power of 2
// ------------------------ Flags --------------------------
/**
* @brief Bit masks for the HCD to use in the URBs reserved_flags field
*
* The URB object has a reserved_flags member for host stack's internal use. The following flags will be set in
* reserved_flags in order to keep track of state of an URB within the HCD.
*/
#define URB_HCD_STATE_IDLE 0 // The URB is not enqueued in an HCD pipe
#define URB_HCD_STATE_PENDING 1 // The URB is enqueued and pending execution
#define URB_HCD_STATE_INFLIGHT 2 // The URB is currently in flight
#define URB_HCD_STATE_DONE 3 // The URB has completed execution or is retired, and is waiting to be dequeued
#define URB_HCD_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~URB_HCD_STATE_MASK) | state)
#define URB_HCD_STATE_GET(reserved_flags) (reserved_flags & URB_HCD_STATE_MASK)
// -------------------- Convenience ------------------------
const char *HCD_DWC_TAG = "HCD DWC";
#define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock)
#define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock)
#define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock)
#define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock)
#define HCD_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HCD_EXIT_CRITICAL(); \
return ret_val; \
} \
})
// ------------------------------------------------------ Types --------------------------------------------------------
typedef struct pipe_obj pipe_t;
typedef struct port_obj port_t;
/**
* @brief Object representing a single buffer of a pipe's multi buffer implementation
*/
typedef struct {
void *xfer_desc_list;
urb_t *urb;
union {
struct {
uint32_t data_stg_in: 1; // Data stage of the control transfer is IN
uint32_t data_stg_skip: 1; // Control transfer has no data stage
uint32_t cur_stg: 2; // Index of the current stage (e.g., 0 is setup stage, 2 is status stage)
uint32_t reserved28: 28;
} ctrl; // Control transfer related
struct {
uint32_t zero_len_packet: 1; // Added a zero length packet, so transfer consists of 2 QTDs
uint32_t reserved31: 31;
} bulk; // Bulk transfer related
struct {
uint32_t num_qtds: 8; // Number of transfer descriptors filled (excluding zero length packet)
uint32_t zero_len_packet: 1; // Added a zero length packet, so true number descriptors is num_qtds + 1
uint32_t reserved23: 23;
} intr; // Interrupt transfer related
struct {
uint32_t num_qtds: 8; // Number of transfer descriptors filled (including NULL descriptors)
uint32_t interval: 8; // Interval (in number of SOF i.e., ms)
uint32_t start_idx: 8; // Index of the first transfer descriptor in the list
uint32_t next_start_idx: 8; // Index for the first descriptor of the next buffer
} isoc;
uint32_t val;
} flags;
union {
struct {
uint32_t executing: 1; // The buffer is currently executing
uint32_t was_canceled: 1; // Buffer was done due to a cancellation (i.e., a halt request)
uint32_t reserved6: 6;
uint32_t stop_idx: 8; // The descriptor index when the channel was halted
hcd_pipe_event_t pipe_event: 8; // The pipe event when the buffer was done
uint32_t reserved8: 8;
};
uint32_t val;
} status_flags; // Status flags for the buffer
} dma_buffer_block_t;
/**
* @brief Object representing a pipe in the HCD layer
*/
struct pipe_obj {
// URB queuing related
TAILQ_HEAD(tailhead_urb_pending, urb_s) pending_urb_tailq;
TAILQ_HEAD(tailhead_urb_done, urb_s) done_urb_tailq;
int num_urb_pending;
int num_urb_done;
// Multi-buffer control
dma_buffer_block_t *buffers[NUM_BUFFERS]; // Double buffering scheme
union {
struct {
uint32_t buffer_num_to_fill: 2; // Number of buffers that can be filled
uint32_t buffer_num_to_exec: 2; // Number of buffers that are filled and need to be executed
uint32_t buffer_num_to_parse: 2;// Number of buffers completed execution and waiting to be parsed
uint32_t reserved2: 2;
uint32_t wr_idx: 1; // Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t rd_idx: 1; // Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t fr_idx: 1; // Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t buffer_is_executing: 1;// One of the buffers is in flight
uint32_t reserved20: 20;
};
uint32_t val;
} multi_buffer_control;
// HAL related
usb_dwc_hal_chan_t *chan_obj;
usb_dwc_hal_ep_char_t ep_char;
// Port related
port_t *port; // The port to which this pipe is routed through
TAILQ_ENTRY(pipe_obj) tailq_entry; // TailQ entry for port's list of pipes
// Pipe status/state/events related
hcd_pipe_state_t state;
hcd_pipe_event_t last_event;
volatile TaskHandle_t task_waiting_pipe_notif; // Task handle used for internal pipe events. Set by waiter, cleared by notifier
union {
struct {
uint32_t waiting_halt: 1;
uint32_t pipe_cmd_processing: 1;
uint32_t has_urb: 1; // Indicates there is at least one URB either pending, in-flight, or done
uint32_t persist: 1; // indicates that this pipe should persist through a run-time port reset
uint32_t reset_lock: 1; // Indicates that this pipe is undergoing a run-time reset
uint32_t reserved27: 27;
};
uint32_t val;
} cs_flags;
// Pipe callback and context
hcd_pipe_callback_t callback;
void *callback_arg;
void *context;
};
/**
* @brief Object representing a port in the HCD layer
*/
struct port_obj {
usb_dwc_hal_context_t *hal;
void *frame_list;
// Pipes routed through this port
TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq;
TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq;
int num_pipes_idle;
int num_pipes_queued;
// Port status, state, and events
hcd_port_state_t state;
usb_speed_t speed;
hcd_port_event_t last_event;
volatile TaskHandle_t task_waiting_port_notif; // Task handle used for internal port events. Set by waiter, cleared by notifier
union {
struct {
uint32_t event_pending: 1; // The port has an event that needs to be handled
uint32_t event_processing: 1; // The port is current processing (handling) an event
uint32_t cmd_processing: 1; // Used to indicate command handling is ongoing
uint32_t disable_requested: 1;
uint32_t conn_dev_ena: 1; // Used to indicate the port is connected to a device that has been reset
uint32_t periodic_scheduling_enabled: 1;
uint32_t reserved26: 26;
};
uint32_t val;
} flags;
bool initialized;
// FIFO biasing related
usb_hal_fifo_bias_t fifo_bias; // Bias is saved so it can be reconfigured upon reset
// Port callback and context
hcd_port_callback_t callback;
void *callback_arg;
SemaphoreHandle_t port_mux;
void *context;
};
/**
* @brief Object representing the HCD
*/
typedef struct {
// Ports (Hardware only has one)
port_t *port_obj;
intr_handle_t isr_hdl;
} hcd_obj_t;
static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED;
static hcd_obj_t *s_hcd_obj = NULL; // Note: "s_" is for the static pointer
// ------------------------------------------------- Forward Declare ---------------------------------------------------
// ------------------- Buffer Control ----------------------
/**
* @brief Check if an inactive buffer can be filled with a pending URB
*
* @param pipe Pipe object
* @return true There are one or more pending URBs, and the inactive buffer is yet to be filled
* @return false Otherwise
*/
static inline bool _buffer_can_fill(pipe_t *pipe)
{
// We can only fill if there are pending URBs and at least one unfilled buffer
if (pipe->num_urb_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Fill an empty buffer with
*
* This function will:
* - Remove an URB from the pending tailq
* - Fill that URB into the inactive buffer
*
* @note _buffer_can_fill() must return true before calling this function
*
* @param pipe Pipe object
*/
static void _buffer_fill(pipe_t *pipe);
/**
* @brief Check if there are more filled buffers than can be executed
*
* @param pipe Pipe object
* @return true There are more filled buffers to be executed
* @return false No more buffers to execute
*/
static inline bool _buffer_can_exec(pipe_t *pipe)
{
// We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution
if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Execute the next filled buffer
*
* - Must have called _buffer_can_exec() before calling this function
* - Will start the execution of the buffer
*
* @param pipe Pipe object
*/
static void _buffer_exec(pipe_t *pipe);
/**
* @brief Check if a buffer as completed execution
*
* This should only be called after receiving a USB_DWC_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually
* done.
*
* @param pipe Pipe object
* @return true Buffer complete
* @return false Buffer not complete
*/
static inline bool _buffer_check_done(pipe_t *pipe)
{
if (pipe->ep_char.type != USB_DWC_XFER_TYPE_CTRL) {
return true;
}
// Only control transfers need to be continued
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
return (buffer_inflight->flags.ctrl.cur_stg == 2);
}
/**
* @brief Continue execution of a buffer
*
* This should only be called after checking if a buffer has completed execution using _buffer_check_done()
*
* @param pipe Pipe object
*/
static void _buffer_exec_cont(pipe_t *pipe);
/**
* @brief Marks the last executed buffer as complete
*
* This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done()
*
* @param pipe Pipe object
* @param stop_idx Descriptor index when the buffer stopped execution
* @param pipe_event Pipe event that caused the buffer to be complete. Use HCD_PIPE_EVENT_NONE for halt request of disconnections
* @param canceled Whether the buffer was done due to a canceled (i.e., halt request). Must set pipe_event to HCD_PIPE_EVENT_NONE
*/
static inline void _buffer_done(pipe_t *pipe, int stop_idx, hcd_pipe_event_t pipe_event, bool canceled)
{
// Store the stop_idx and pipe_event for later parsing
dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
buffer_done->status_flags.executing = 0;
buffer_done->status_flags.was_canceled = canceled;
buffer_done->status_flags.stop_idx = stop_idx;
buffer_done->status_flags.pipe_event = pipe_event;
pipe->multi_buffer_control.rd_idx++;
pipe->multi_buffer_control.buffer_num_to_exec--;
pipe->multi_buffer_control.buffer_num_to_parse++;
pipe->multi_buffer_control.buffer_is_executing = 0;
}
/**
* @brief Checks if a pipe has one or more completed buffers to parse
*
* @param pipe Pipe object
* @return true There are one or more buffers to parse
* @return false There are no more buffers to parse
*/
static inline bool _buffer_can_parse(pipe_t *pipe)
{
if (pipe->multi_buffer_control.buffer_num_to_parse > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Parse a completed buffer
*
* This function will:
* - Parse the results of an URB from a completed buffer
* - Put the URB into the done tailq
*
* @note This function should only be called on the completion of a buffer
*
* @param pipe Pipe object
* @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the URB. Set to 0 otherwise
*/
static void _buffer_parse(pipe_t *pipe);
/**
* @brief Marks all buffers pending execution as completed, then parses those buffers
*
* @note This should only be called on pipes do not have any currently executing buffers.
*
* @param pipe Pipe object
* @param canceled Whether this flush is due to cancellation
* @return true One or more buffers were flushed
* @return false There were no buffers that needed to be flushed
*/
static bool _buffer_flush_all(pipe_t *pipe, bool canceled);
// ------------------------ Pipe ---------------------------
/**
* @brief Decode a HAL channel error to the corresponding pipe event
*
* @param chan_error The HAL channel error
* @return hcd_pipe_event_t The corresponding pipe error event
*/
static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error);
/**
* @brief Halt a pipe
*
* - Attempts to halt a pipe. Pipe must be active in order to be halted
* - If the underlying channel has an ongoing transfer, a halt will be requested, then the function will block until the
* channel indicates it is halted
* - If the channel is no on-going transfer, the pipe will simply be marked has halted (thus preventing any further URBs
* from being enqueued)
*
* @note This function can block
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_halt(pipe_t *pipe);
/**
* @brief Flush a pipe
*
* - Flushing a pipe causes all of its pending URBs to be become done, thus allowing them to be dequeued
* - The pipe must be halted in order to be flushed
* - The pipe callback will be run if one or more URBs become done
*
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_flush(pipe_t *pipe);
/**
* @brief Clear a pipe from its halt
*
* - Pipe must be halted in order to be cleared
* - Clearing a pipe makes it active again
* - If there are any enqueued URBs, they will executed
*
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_clear(pipe_t *pipe);
// ------------------------ Port ---------------------------
/**
* @brief Prepare persistent pipes for reset
*
* This function checks if all pipes are reset persistent and proceeds to free their underlying HAL channels for the
* persistent pipes. This should be called before a run time reset
*
* @param port Port object
* @return true All pipes are persistent and their channels are freed
* @return false Not all pipes are persistent
*/
static bool _port_persist_all_pipes(port_t *port);
/**
* @brief Recovers all persistent pipes after a reset
*
* This function will recover all persistent pipes after a reset and reallocate their underlying HAl channels. This
* function should be called after a reset.
*
* @param port Port object
*/
static void _port_recover_all_pipes(port_t *port);
/**
* @brief Checks if all pipes are in the halted state
*
* @param port Port object
* @return true All pipes are halted
* @return false Not all pipes are halted
*/
static bool _port_check_all_pipes_halted(port_t *port);
/**
* @brief Debounce port after a connection or disconnection event
*
* This function should be called after a port connection or disconnect event. This function will execute a debounce
* delay then check the actual connection/disconnections state.
*
* @note This function can block
* @param port Port object
* @return true A device is connected
* @return false No device connected
*/
static bool _port_debounce(port_t *port);
/**
* @brief Power ON the port
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_power_on(port_t *port);
/**
* @brief Power OFF the port
*
* - If a device is currently connected, this function will cause a disconnect event
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_power_off(port_t *port);
/**
* @brief Reset the port
*
* - This function issues a reset signal using the timings specified by the USB2.0 spec
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_reset(port_t *port);
/**
* @brief Suspend the port
*
* - Port must be enabled in order to to be suspended
* - All pipes must be halted for the port to be suspended
* - Suspending the port stops Keep Alive/SOF from being sent to the connected device
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_bus_suspend(port_t *port);
/**
* @brief Resume the port
*
* - Port must be suspended in order to be resumed
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_bus_resume(port_t *port);
/**
* @brief Disable the port
*
* - All pipes must be halted for the port to be disabled
* - The port must be enabled or suspended in order to be disabled
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_disable(port_t *port);
// ----------------------- Events --------------------------
/**
* @brief Wait for an internal event from a port
*
* @note For each port, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
*/
static void _internal_port_event_wait(port_t *port);
/**
* @brief Notify (from an ISR context) the thread/task waiting for the internal port event
*
* @param port Port object
* @return true A yield is required
* @return false Whether a yield is required or not
*/
static bool _internal_port_event_notify_from_isr(port_t *port);
/**
* @brief Wait for an internal event from a particular pipe
*
* @note For each pipe, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param pipe Pipe object
*/
static void _internal_pipe_event_wait(pipe_t *pipe);
/**
* @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event
*
* @param pipe Pipe object
* @param from_isr Whether this is called from an ISR or not
* @return true A yield is required
* @return false Whether a yield is required or not. Always false when from_isr is also false
*/
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr);
// ----------------------------------------------- Interrupt Handling --------------------------------------------------
// ------------------- Internal Event ----------------------
static void _internal_port_event_wait(port_t *port)
{
// There must NOT be another thread/task already waiting for an internal event
assert(port->task_waiting_port_notif == NULL);
port->task_waiting_port_notif = xTaskGetCurrentTaskHandle();
/* We need to loop as task notifications can come from anywhere. If we this
was a port event notification, task_waiting_port_notif will have been cleared
by the notifier. */
while (port->task_waiting_port_notif != NULL) {
HCD_EXIT_CRITICAL();
// Wait to be notified from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
}
}
static bool _internal_port_event_notify_from_isr(port_t *port)
{
// There must be a thread/task waiting for an internal event
assert(port->task_waiting_port_notif != NULL);
TaskHandle_t task_to_unblock = port->task_waiting_port_notif;
// Clear task_waiting_port_notif to indicate to the waiter that the unblock was indeed an port event notification
port->task_waiting_port_notif = NULL;
// Unblock the thread/task waiting for the notification
BaseType_t xTaskWoken = pdFALSE;
// Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
return (xTaskWoken == pdTRUE);
}
static void _internal_pipe_event_wait(pipe_t *pipe)
{
// There must NOT be another thread/task already waiting for an internal event
assert(pipe->task_waiting_pipe_notif == NULL);
pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle();
/* We need to loop as task notifications can come from anywhere. If we this
was a pipe event notification, task_waiting_pipe_notif will have been cleared
by the notifier. */
while (pipe->task_waiting_pipe_notif != NULL) {
// Wait to be unblocked by notified
HCD_EXIT_CRITICAL();
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
}
}
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr)
{
// There must be a thread/task waiting for an internal event
assert(pipe->task_waiting_pipe_notif != NULL);
TaskHandle_t task_to_unblock = pipe->task_waiting_pipe_notif;
// Clear task_waiting_pipe_notif to indicate to the waiter that the unblock was indeed an pipe event notification
pipe->task_waiting_pipe_notif = NULL;
bool ret;
if (from_isr) {
BaseType_t xTaskWoken = pdFALSE;
// Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
// Unblock the thread/task waiting for the pipe notification
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
ret = (xTaskWoken == pdTRUE);
} else {
HCD_EXIT_CRITICAL();
xTaskNotifyGive(task_to_unblock);
HCD_ENTER_CRITICAL();
ret = false;
}
return ret;
}
// ----------------- HAL <-> USB helpers --------------------
static usb_speed_t get_usb_port_speed(usb_dwc_speed_t priv)
{
switch (priv) {
case USB_DWC_SPEED_LOW: return USB_SPEED_LOW;
case USB_DWC_SPEED_FULL: return USB_SPEED_FULL;
case USB_DWC_SPEED_HIGH: return USB_SPEED_HIGH;
default: abort();
}
}
static usb_hal_fifo_bias_t get_hal_fifo_bias(hcd_port_fifo_bias_t public)
{
switch (public) {
case HCD_PORT_FIFO_BIAS_BALANCED: return USB_HAL_FIFO_BIAS_DEFAULT;
case HCD_PORT_FIFO_BIAS_RX: return USB_HAL_FIFO_BIAS_RX;
case HCD_PORT_FIFO_BIAS_PTX: return USB_HAL_FIFO_BIAS_PTX;
default: abort();
}
}
// ----------------- Interrupt Handlers --------------------
/**
* @brief Handle a HAL port interrupt and obtain the corresponding port event
*
* @param[in] port Port object
* @param[in] hal_port_event The HAL port event
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred
*/
static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usb_dwc_hal_port_event_t hal_port_event, bool *yield)
{
hcd_port_event_t port_event = HCD_PORT_EVENT_NONE;
switch (hal_port_event) {
case USB_DWC_HAL_PORT_EVENT_CONN: {
// Don't update state immediately, we still need to debounce.
port_event = HCD_PORT_EVENT_CONNECTION;
break;
}
case USB_DWC_HAL_PORT_EVENT_DISCONN: {
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_DISCONNECTION;
port->flags.conn_dev_ena = 0;
break;
}
case USB_DWC_HAL_PORT_EVENT_ENABLED: {
usb_dwc_hal_port_enable(port->hal); // Initialize remaining host port registers
port->speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal));
port->state = HCD_PORT_STATE_ENABLED;
port->flags.conn_dev_ena = 1;
// This was triggered by a command, so no event needs to be propagated.
break;
}
case USB_DWC_HAL_PORT_EVENT_DISABLED: {
port->flags.conn_dev_ena = 0;
// Disabled could be due to a disable request or reset request, or due to a port error
if (port->state != HCD_PORT_STATE_RESETTING) { // Ignore the disable event if it's due to a reset request
if (port->flags.disable_requested) {
// Disabled by request (i.e. by port command). Generate an internal event
port->state = HCD_PORT_STATE_DISABLED;
port->flags.disable_requested = 0;
*yield |= _internal_port_event_notify_from_isr(port);
} else {
// Disabled due to a port error
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_ERROR;
}
}
break;
}
case USB_DWC_HAL_PORT_EVENT_OVRCUR:
case USB_DWC_HAL_PORT_EVENT_OVRCUR_CLR: { // Could occur if a quick overcurrent then clear happens
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
// We need to power OFF the port to protect it
usb_dwc_hal_port_toggle_power(port->hal, false);
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_OVERCURRENT;
}
port->flags.conn_dev_ena = 0;
break;
}
default: {
abort();
break;
}
}
return port_event;
}
/**
* @brief Handles a HAL channel interrupt
*
* This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to
* to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe
* event occurred, or return NULL otherwise.
*
* @param[in] chan_obj Pointer to HAL channel object with interrupt
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_pipe_event_t The pipe event
*/
static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usb_dwc_hal_chan_t *chan_obj, bool *yield)
{
usb_dwc_hal_chan_event_t chan_event = usb_dwc_hal_chan_decode_intr(chan_obj);
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_event) {
case USB_DWC_HAL_CHAN_EVENT_CPLT: {
if (!_buffer_check_done(pipe)) {
_buffer_exec_cont(pipe);
break;
}
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
event = pipe->last_event;
// Mark the buffer as done
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, pipe->last_event, false);
// First check if there is another buffer we can execute. But we only want to execute if there's still a valid device
if (_buffer_can_exec(pipe) && pipe->port->flags.conn_dev_ena) {
// If the next buffer is filled and ready to execute, execute it
_buffer_exec(pipe);
}
// Handle the previously done buffer
_buffer_parse(pipe);
// Check to see if we can fill another buffer. But we only want to fill if there is still a valid device
if (_buffer_can_fill(pipe) && pipe->port->flags.conn_dev_ena) {
// Now that we've parsed a buffer, see if another URB can be filled in its place
_buffer_fill(pipe);
}
break;
}
case USB_DWC_HAL_CHAN_EVENT_ERROR: {
// Get and store the pipe error event
usb_dwc_hal_chan_error_t chan_error = usb_dwc_hal_chan_get_error(chan_obj);
pipe->last_event = pipe_decode_error_event(chan_error);
event = pipe->last_event;
pipe->state = HCD_PIPE_STATE_HALTED;
// Mark the buffer as done with an error
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, pipe->last_event, false);
// Parse the buffer
_buffer_parse(pipe);
break;
}
case USB_DWC_HAL_CHAN_EVENT_HALT_REQ: {
assert(pipe->cs_flags.waiting_halt);
// We've halted a transfer, so we need to trigger the pipe callback
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
event = pipe->last_event;
// Halt request event is triggered when packet is successful completed. But just treat all halted transfers as errors
pipe->state = HCD_PIPE_STATE_HALTED;
int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, HCD_PIPE_EVENT_NONE, true);
// Parse the buffer
_buffer_parse(pipe);
// Notify the task waiting for the pipe halt
*yield |= _internal_pipe_event_notify(pipe, true);
break;
}
case USB_DWC_HAL_CHAN_EVENT_NONE: {
break; // Nothing to do
}
default:
abort();
break;
}
return event;
}
/**
* @brief Main interrupt handler
*
* - Handle all HPRT (Host Port) related interrupts first as they may change the
* state of the driver (e.g., a disconnect event)
* - If any channels (pipes) have pending interrupts, handle them one by one
* - The HCD has not blocking functions, so the user's ISR callback is run to
* allow the users to send whatever OS primitives they need.
*
* @param arg Interrupt handler argument
*/
static void intr_hdlr_main(void *arg)
{
port_t *port = (port_t *) arg;
bool yield = false;
HCD_ENTER_CRITICAL_ISR();
usb_dwc_hal_port_event_t hal_port_evt = usb_dwc_hal_decode_intr(port->hal);
if (hal_port_evt == USB_DWC_HAL_PORT_EVENT_CHAN) {
// Channel event. Cycle through each pending channel
usb_dwc_hal_chan_t *chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal);
while (chan_obj != NULL) {
pipe_t *pipe = (pipe_t *)usb_dwc_hal_chan_get_context(chan_obj);
hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield);
// Run callback if a pipe event has occurred and the pipe also has a callback
if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
// Check for more channels with pending interrupts. Returns NULL if there are no more
chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal);
}
} else if (hal_port_evt != USB_DWC_HAL_PORT_EVENT_NONE) { // Port event
hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield);
if (port_event != HCD_PORT_EVENT_NONE) {
port->last_event = port_event;
port->flags.event_pending = 1;
if (port->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
}
}
HCD_EXIT_CRITICAL_ISR();
if (yield) {
portYIELD_FROM_ISR();
}
}
// --------------------------------------------- Host Controller Driver ------------------------------------------------
static port_t *port_obj_alloc(void)
{
port_t *port = calloc(1, sizeof(port_t));
usb_dwc_hal_context_t *hal = malloc(sizeof(usb_dwc_hal_context_t));
void *frame_list = heap_caps_aligned_calloc(USB_DWC_FRAME_LIST_MEM_ALIGN, FRAME_LIST_LEN, sizeof(uint32_t), MALLOC_CAP_DMA);
SemaphoreHandle_t port_mux = xSemaphoreCreateMutex();
if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) {
free(port);
free(hal);
free(frame_list);
if (port_mux != NULL) {
vSemaphoreDelete(port_mux);
}
return NULL;
}
port->hal = hal;
port->frame_list = frame_list;
port->port_mux = port_mux;
return port;
}
static void port_obj_free(port_t *port)
{
if (port == NULL) {
return;
}
vSemaphoreDelete(port->port_mux);
free(port->frame_list);
free(port->hal);
free(port);
}
// ----------------------- Public --------------------------
esp_err_t hcd_install(const hcd_config_t *config)
{
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE);
HCD_EXIT_CRITICAL();
esp_err_t err_ret;
// Allocate memory for the driver object
hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t));
if (p_hcd_obj_dmy == NULL) {
return ESP_ERR_NO_MEM;
}
// Allocate each port object (the hardware currently only has one port)
p_hcd_obj_dmy->port_obj = port_obj_alloc();
if (p_hcd_obj_dmy->port_obj == NULL) {
err_ret = ESP_ERR_NO_MEM;
goto port_alloc_err;
}
// Allocate interrupt
err_ret = esp_intr_alloc(ETS_USB_INTR_SOURCE,
config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, // The interrupt must be disabled until the port is initialized
intr_hdlr_main,
(void *)p_hcd_obj_dmy->port_obj,
&p_hcd_obj_dmy->isr_hdl);
if (err_ret != ESP_OK) {
goto intr_alloc_err;
}
// Assign the
HCD_ENTER_CRITICAL();
if (s_hcd_obj != NULL) {
HCD_EXIT_CRITICAL();
err_ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
s_hcd_obj = p_hcd_obj_dmy;
HCD_EXIT_CRITICAL();
return ESP_OK;
assign_err:
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
intr_alloc_err:
port_obj_free(p_hcd_obj_dmy->port_obj);
port_alloc_err:
free(p_hcd_obj_dmy);
return err_ret;
}
esp_err_t hcd_uninstall(void)
{
HCD_ENTER_CRITICAL();
// Check that all ports have been disabled (there's only one port)
if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) {
HCD_EXIT_CRITICAL();
return ESP_ERR_INVALID_STATE;
}
hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj;
s_hcd_obj = NULL;
HCD_EXIT_CRITICAL();
// Free resources
port_obj_free(p_hcd_obj_dmy->port_obj);
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
free(p_hcd_obj_dmy);
return ESP_OK;
}
// ------------------------------------------------------ Port ---------------------------------------------------------
// ----------------------- Helpers -------------------------
static bool _port_persist_all_pipes(port_t *port)
{
if (port->num_pipes_queued > 0) {
// All pipes must be idle before we run-time reset
return false;
}
bool all_persist = true;
pipe_t *pipe;
// Check that each pipe is persistent
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
if (!pipe->cs_flags.persist) {
all_persist = false;
break;
}
}
if (!all_persist) {
// At least one pipe is not persistent. All pipes must be freed or made persistent before we can reset
return false;
}
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
pipe->cs_flags.reset_lock = 1;
usb_dwc_hal_chan_free(port->hal, pipe->chan_obj);
}
return true;
}
static void _port_recover_all_pipes(port_t *port)
{
pipe_t *pipe;
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
pipe->cs_flags.persist = 0;
pipe->cs_flags.reset_lock = 0;
usb_dwc_hal_chan_alloc(port->hal, pipe->chan_obj, (void *)pipe);
usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
}
}
static bool _port_check_all_pipes_halted(port_t *port)
{
bool all_halted = true;
pipe_t *pipe;
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
if (pipe->state != HCD_PIPE_STATE_HALTED) {
all_halted = false;
break;
}
}
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
if (pipe->state != HCD_PIPE_STATE_HALTED) {
all_halted = false;
break;
}
}
return all_halted;
}
static bool _port_debounce(port_t *port)
{
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
// Disconnect event due to power off, no need to debounce or update port state.
return false;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS));
HCD_ENTER_CRITICAL();
// Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected)
bool is_connected = usb_dwc_hal_port_check_if_connected(port->hal);
if (is_connected) {
port->state = HCD_PORT_STATE_DISABLED;
} else {
port->state = HCD_PORT_STATE_DISCONNECTED;
}
// Disable debounce lock
usb_dwc_hal_disable_debounce_lock(port->hal);
return is_connected;
}
// ---------------------- Commands -------------------------
static esp_err_t _port_cmd_power_on(port_t *port)
{
esp_err_t ret;
// Port can only be powered on if it's currently unpowered
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_DISCONNECTED;
usb_dwc_hal_port_init(port->hal);
usb_dwc_hal_port_toggle_power(port->hal, true);
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
static esp_err_t _port_cmd_power_off(port_t *port)
{
esp_err_t ret;
// Port can only be unpowered if already powered
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_NOT_POWERED;
usb_dwc_hal_port_deinit(port->hal);
usb_dwc_hal_port_toggle_power(port->hal, false);
// If a device is currently connected, this should trigger a disconnect event
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
static esp_err_t _port_cmd_reset(port_t *port)
{
esp_err_t ret;
// Port can only a reset when it is in the enabled or disabled states (in case of new connection)
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_DISABLED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
bool is_runtime_reset = (port->state == HCD_PORT_STATE_ENABLED) ? true : false;
if (is_runtime_reset && !_port_persist_all_pipes(port)) {
// If this is a run time reset, check all pipes that are still allocated can persist the reset
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes (if any_) are guaranteed to be persistent at this point. Proceed to resetting the bus
port->state = HCD_PORT_STATE_RESETTING;
// Put and hold the bus in the reset state. If the port was previously enabled, a disabled event will occur after this
usb_dwc_hal_port_toggle_reset(port->hal, true);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESETTING) {
// The port state has unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto bailout;
}
// Return the bus to the idle state and hold it for the required reset recovery time. Port enabled event should occur
usb_dwc_hal_port_toggle_reset(port->hal, false);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_dev_ena) {
// The port state has unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto bailout;
}
// Set FIFO sizes based on the selected biasing
usb_dwc_hal_set_fifo_bias(port->hal, port->fifo_bias);
// We start periodic scheduling only after a RESET command since SOFs only start after a reset
usb_dwc_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN);
usb_dwc_hal_port_periodic_enable(port->hal);
ret = ESP_OK;
bailout:
if (is_runtime_reset) {
_port_recover_all_pipes(port);
}
exit:
return ret;
}
static esp_err_t _port_cmd_bus_suspend(port_t *port)
{
esp_err_t ret;
// Port must have been previously enabled, and all pipes must already be halted
if (port->state == HCD_PORT_STATE_ENABLED && !_port_check_all_pipes_halted(port)) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes are guaranteed halted at this point. Proceed to suspend the port
usb_dwc_hal_port_suspend(port->hal);
port->state = HCD_PORT_STATE_SUSPENDED;
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _port_cmd_bus_resume(port_t *port)
{
esp_err_t ret;
// Port can only be resumed if it was previously suspended
if (port->state != HCD_PORT_STATE_SUSPENDED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Put and hold the bus in the K state.
usb_dwc_hal_port_toggle_resume(port->hal, true);
port->state = HCD_PORT_STATE_RESUMING;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS));
HCD_ENTER_CRITICAL();
// Return and hold the bus to the J state (as port of the LS EOP)
usb_dwc_hal_port_toggle_resume(port->hal, false);
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
// Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
// Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
port->state = HCD_PORT_STATE_ENABLED;
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _port_cmd_disable(port_t *port)
{
esp_err_t ret;
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_SUSPENDED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes must be halted before disabling the port
if (!_port_check_all_pipes_halted(port)) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// All pipes are guaranteed to be halted or freed at this point. Proceed to disable the port
port->flags.disable_requested = 1;
usb_dwc_hal_port_disable(port->hal);
_internal_port_event_wait(port);
if (port->state != HCD_PORT_STATE_DISABLED) {
// Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t hcd_port_init(int port_number, const hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl)
{
HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG);
HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND);
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE);
// Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only
port_t *port_obj = s_hcd_obj->port_obj;
TAILQ_INIT(&port_obj->pipes_idle_tailq);
TAILQ_INIT(&port_obj->pipes_active_tailq);
port_obj->state = HCD_PORT_STATE_NOT_POWERED;
port_obj->last_event = HCD_PORT_EVENT_NONE;
port_obj->fifo_bias = get_hal_fifo_bias(port_config->fifo_bias);
port_obj->callback = port_config->callback;
port_obj->callback_arg = port_config->callback_arg;
port_obj->context = port_config->context;
usb_dwc_hal_init(port_obj->hal);
port_obj->initialized = true;
// Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
memset(port_obj->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
esp_intr_enable(s_hcd_obj->isr_hdl);
*port_hdl = (hcd_port_handle_t)port_obj;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); // Need a short delay before host mode takes effect
return ESP_OK;
}
esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY)
&& port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
port->initialized = false;
esp_intr_disable(s_hcd_obj->isr_hdl);
usb_dwc_hal_deinit(port->hal);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command)
{
esp_err_t ret = ESP_ERR_INVALID_STATE;
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && !port->flags.event_pending) { // Port events need to be handled first before issuing a command
port->flags.cmd_processing = 1;
switch (command) {
case HCD_PORT_CMD_POWER_ON: {
ret = _port_cmd_power_on(port);
break;
}
case HCD_PORT_CMD_POWER_OFF: {
ret = _port_cmd_power_off(port);
break;
}
case HCD_PORT_CMD_RESET: {
ret = _port_cmd_reset(port);
break;
}
case HCD_PORT_CMD_SUSPEND: {
ret = _port_cmd_bus_suspend(port);
break;
}
case HCD_PORT_CMD_RESUME: {
ret = _port_cmd_bus_resume(port);
break;
}
case HCD_PORT_CMD_DISABLE: {
ret = _port_cmd_disable(port);
break;
}
}
port->flags.cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_state_t ret;
HCD_ENTER_CRITICAL();
ret = port->state;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed)
{
port_t *port = (port_t *)port_hdl;
HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG);
HCD_ENTER_CRITICAL();
// Device speed is only valid if there is device connected to the port that has been reset
HCD_CHECK_FROM_CRIT(port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
*speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal));
HCD_EXIT_CRITICAL();
return ESP_OK;
}
hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_event_t ret = HCD_PORT_EVENT_NONE;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && port->flags.event_pending) {
port->flags.event_pending = 0;
port->flags.event_processing = 1;
ret = port->last_event;
switch (ret) {
case HCD_PORT_EVENT_CONNECTION: {
if (_port_debounce(port)) {
ret = HCD_PORT_EVENT_CONNECTION;
}
break;
}
case HCD_PORT_EVENT_DISCONNECTION:
case HCD_PORT_EVENT_ERROR:
case HCD_PORT_EVENT_OVERCURRENT: {
break;
}
default: {
break;
}
}
port->flags.event_processing = 0;
} else {
ret = HCD_PORT_EVENT_NONE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& port->flags.val == 0 && port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
// We are about to do a soft reset on the peripheral. Disable the peripheral throughout
esp_intr_disable(s_hcd_obj->isr_hdl);
usb_dwc_hal_core_soft_reset(port->hal);
port->state = HCD_PORT_STATE_NOT_POWERED;
port->last_event = HCD_PORT_EVENT_NONE;
port->flags.val = 0;
// Soft reset wipes all registers so we need to reinitialize the HAL
usb_dwc_hal_init(port->hal);
// Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
esp_intr_enable(s_hcd_obj->isr_hdl);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_port_get_context(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = port->context;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias)
{
esp_err_t ret;
usb_hal_fifo_bias_t hal_bias = get_hal_fifo_bias(bias);
// Configure the new FIFO sizes and store the pointers
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
// Check that port is in the correct state to update FIFO sizes
if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) {
usb_dwc_hal_set_fifo_bias(port->hal, hal_bias);
port->fifo_bias = hal_bias;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
// ----------------------- Private -------------------------
static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error)
{
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_error) {
case USB_DWC_HAL_CHAN_ERROR_XCS_XACT:
event = HCD_PIPE_EVENT_ERROR_XFER;
break;
case USB_DWC_HAL_CHAN_ERROR_BNA:
event = HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL;
break;
case USB_DWC_HAL_CHAN_ERROR_PKT_BBL:
event = HCD_PIPE_EVENT_ERROR_OVERFLOW;
break;
case USB_DWC_HAL_CHAN_ERROR_STALL:
event = HCD_PIPE_EVENT_ERROR_STALL;
break;
}
return event;
}
static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type)
{
int desc_list_len;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
desc_list_len = XFER_LIST_LEN_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
desc_list_len = XFER_LIST_LEN_ISOC;
break;
case USB_TRANSFER_TYPE_BULK:
desc_list_len = XFER_LIST_LEN_BULK;
break;
default: // USB_TRANSFER_TYPE_INTR:
desc_list_len = XFER_LIST_LEN_INTR;
break;
}
dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t));
void *xfer_desc_list = heap_caps_aligned_calloc(USB_DWC_QTD_LIST_MEM_ALIGN, desc_list_len, sizeof(usb_dwc_ll_dma_qtd_t), MALLOC_CAP_DMA);
if (buffer == NULL || xfer_desc_list == NULL) {
free(buffer);
heap_caps_free(xfer_desc_list);
return NULL;
}
buffer->xfer_desc_list = xfer_desc_list;
return buffer;
}
static void buffer_block_free(dma_buffer_block_t *buffer)
{
if (buffer == NULL) {
return;
}
heap_caps_free(buffer->xfer_desc_list);
free(buffer);
}
static bool pipe_args_usb_compliance_verification(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, usb_transfer_type_t type)
{
// Check if pipe can be supported
if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) {
ESP_LOGE(HCD_DWC_TAG, "Low speed port does not support full speed pipe");
return false;
}
if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) {
ESP_LOGE(HCD_DWC_TAG, "Low speed does not support Bulk or Isochronous pipes");
return false;
}
return true;
}
static bool pipe_alloc_hcd_support_verification(usb_dwc_hal_context_t *hal, const usb_ep_desc_t * ep_desc)
{
assert(hal != NULL);
assert(ep_desc != NULL);
usb_hal_fifo_mps_limits_t mps_limits = {0};
usb_dwc_hal_get_mps_limits(hal, &mps_limits);
const usb_transfer_type_t type = USB_EP_DESC_GET_XFERTYPE(ep_desc);
// Check the pipe's interval is not zero
if ((type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) &&
(ep_desc->bInterval == 0)) {
ESP_LOGE(HCD_DWC_TAG, "bInterval value (%d) invalid for pipe type INTR/ISOC",
ep_desc->bInterval);
return false;
}
// Check if pipe MPS exceeds HCD MPS limits (due to DWC FIFO sizing)
int limit;
if (USB_EP_DESC_GET_EP_DIR(ep_desc)) { // IN
limit = mps_limits.in_mps;
} else { // OUT
if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) {
limit = mps_limits.non_periodic_out_mps;
} else {
limit = mps_limits.periodic_out_mps;
}
}
if (ep_desc->wMaxPacketSize > limit) {
ESP_LOGE(HCD_DWC_TAG, "EP MPS (%d) exceeds supported limit (%d)",
ep_desc->wMaxPacketSize,
limit);
return false;
}
return true;
}
static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usb_dwc_hal_ep_char_t *ep_char)
{
// Initialize EP characteristics
usb_dwc_xfer_type_t hal_xfer_type;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
hal_xfer_type = USB_DWC_XFER_TYPE_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
hal_xfer_type = USB_DWC_XFER_TYPE_ISOCHRONOUS;
break;
case USB_TRANSFER_TYPE_BULK:
hal_xfer_type = USB_DWC_XFER_TYPE_BULK;
break;
default: // USB_TRANSFER_TYPE_INTR
hal_xfer_type = USB_DWC_XFER_TYPE_INTR;
break;
}
ep_char->type = hal_xfer_type;
if (is_default_pipe) {
ep_char->bEndpointAddress = 0;
// Set the default pipe's MPS to the worst case MPS for the device's speed
ep_char->mps = (pipe_config->dev_speed == USB_SPEED_LOW) ? CTRL_EP_MAX_MPS_LS : CTRL_EP_MAX_MPS_HSFS;
} else {
ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress;
ep_char->mps = pipe_config->ep_desc->wMaxPacketSize;
}
ep_char->dev_addr = pipe_config->dev_addr;
ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW);
// Calculate the pipe's interval in terms of USB frames
// @see USB-OTG programming guide chapter 6.5 for more information
if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
unsigned int interval_frames;
unsigned int xfer_list_len;
if (type == USB_TRANSFER_TYPE_INTR) {
interval_frames = pipe_config->ep_desc->bInterval;
xfer_list_len = XFER_LIST_LEN_INTR;
} else {
interval_frames = (1 << (pipe_config->ep_desc->bInterval - 1));
xfer_list_len = XFER_LIST_LEN_ISOC;
}
// Round down interval to nearest power of 2
if (interval_frames >= 32) {
interval_frames = 32;
} else if (interval_frames >= 16) {
interval_frames = 16;
} else if (interval_frames >= 8) {
interval_frames = 8;
} else if (interval_frames >= 4) {
interval_frames = 4;
} else if (interval_frames >= 2) {
interval_frames = 2;
} else if (interval_frames >= 1) {
interval_frames = 1;
}
ep_char->periodic.interval = interval_frames;
// We are the Nth pipe to be allocated. Use N as a phase offset
ep_char->periodic.phase_offset_frames = pipe_idx & (xfer_list_len - 1);
} else {
ep_char->periodic.interval = 0;
ep_char->periodic.phase_offset_frames = 0;
}
}
// ---------------------- Commands -------------------------
static esp_err_t _pipe_cmd_halt(pipe_t *pipe)
{
esp_err_t ret;
// If pipe is already halted, just return.
if (pipe->state == HCD_PIPE_STATE_HALTED) {
ret = ESP_OK;
goto exit;
}
// If the pipe's port is invalid, we just mark the pipe as halted without needing to halt the underlying channel
if (pipe->port->flags.conn_dev_ena // Skip halting the underlying channel if the port is invalid
&& !usb_dwc_hal_chan_request_halt(pipe->chan_obj)) { // Check if the channel is already halted
// Channel is not halted, we need to request and wait for a haltWe need to wait for channel to be halted.
pipe->cs_flags.waiting_halt = 1;
_internal_pipe_event_wait(pipe);
// State should have been updated in the ISR
assert(pipe->state == HCD_PIPE_STATE_HALTED);
} else {
// We are already halted, just need to update the state
usb_dwc_hal_chan_mark_halted(pipe->chan_obj);
pipe->state = HCD_PIPE_STATE_HALTED;
}
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _pipe_cmd_flush(pipe_t *pipe)
{
esp_err_t ret;
// The pipe must be halted in order to be flushed
if (pipe->state != HCD_PIPE_STATE_HALTED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// If the port is still valid, we are canceling transfers. Otherwise, we are flushing due to a port error
bool canceled = pipe->port->flags.conn_dev_ena;
bool call_pipe_cb;
// Flush any filled buffers
call_pipe_cb = _buffer_flush_all(pipe, canceled);
// Move all URBs from the pending tailq to the done tailq
if (pipe->num_urb_pending > 0) {
// Process all remaining pending URBs
urb_t *urb;
TAILQ_FOREACH(urb, &pipe->pending_urb_tailq, tailq_entry) {
// Update the URB's current state
urb->hcd_var = URB_HCD_STATE_DONE;
// URBs were never executed, Update the actual_num_bytes and status
urb->transfer.actual_num_bytes = 0;
urb->transfer.status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
if (pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) {
// Update the URB's isoc packet descriptors as well
for (int pkt_idx = 0; pkt_idx < urb->transfer.num_isoc_packets; pkt_idx++) {
urb->transfer.isoc_packet_desc[pkt_idx].actual_num_bytes = 0;
urb->transfer.isoc_packet_desc[pkt_idx].status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
}
}
}
// Concatenated pending tailq to the done tailq
TAILQ_CONCAT(&pipe->done_urb_tailq, &pipe->pending_urb_tailq, tailq_entry);
pipe->num_urb_done += pipe->num_urb_pending;
pipe->num_urb_pending = 0;
call_pipe_cb = true;
}
if (call_pipe_cb) {
// One or more URBs can be dequeued as a result of the flush. We need to call the callback
HCD_EXIT_CRITICAL();
pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_URB_DONE, pipe->callback_arg, false);
HCD_ENTER_CRITICAL();
}
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _pipe_cmd_clear(pipe_t *pipe)
{
esp_err_t ret;
// Pipe must be in the halted state in order to be made active, and there must be an enabled device on the port
if (pipe->state != HCD_PIPE_STATE_HALTED || !pipe->port->flags.conn_dev_ena) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Update the pipe's state
pipe->state = HCD_PIPE_STATE_ACTIVE;
if (pipe->num_urb_pending > 0) {
// Fill as many buffers as possible
while (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
}
// Execute any filled buffers
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl)
{
HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG);
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
// Can only allocate a pipe if the target port is initialized and connected to an enabled device
HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
usb_speed_t port_speed = port->speed;
int pipe_idx = port->num_pipes_idle + port->num_pipes_queued;
HCD_EXIT_CRITICAL();
usb_transfer_type_t type;
bool is_default;
if (pipe_config->ep_desc == NULL) {
// Default CTRL pipe allocation
type = USB_TRANSFER_TYPE_CTRL;
is_default = true;
} else {
type = USB_EP_DESC_GET_XFERTYPE(pipe_config->ep_desc);
is_default = false;
}
esp_err_t ret;
// Check if pipe configuration can be supported
if (!pipe_args_usb_compliance_verification(pipe_config, port_speed, type)) {
return ESP_ERR_NOT_SUPPORTED;
}
// Default pipes have a NULL ep_desc thus should skip the HCD support verification
if (!is_default && !pipe_alloc_hcd_support_verification(port->hal, pipe_config->ep_desc)) {
return ESP_ERR_NOT_SUPPORTED;
}
// Allocate the pipe resources
pipe_t *pipe = calloc(1, sizeof(pipe_t));
usb_dwc_hal_chan_t *chan_obj = calloc(1, sizeof(usb_dwc_hal_chan_t));
dma_buffer_block_t *buffers[NUM_BUFFERS] = {0};
if (pipe == NULL || chan_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
for (int i = 0; i < NUM_BUFFERS; i++) {
buffers[i] = buffer_block_alloc(type);
if (buffers[i] == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
}
// Initialize pipe object
TAILQ_INIT(&pipe->pending_urb_tailq);
TAILQ_INIT(&pipe->done_urb_tailq);
for (int i = 0; i < NUM_BUFFERS; i++) {
pipe->buffers[i] = buffers[i];
}
pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS;
pipe->port = port;
pipe->chan_obj = chan_obj;
usb_dwc_hal_ep_char_t ep_char;
pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char);
memcpy(&pipe->ep_char, &ep_char, sizeof(usb_dwc_hal_ep_char_t));
pipe->state = HCD_PIPE_STATE_ACTIVE;
pipe->callback = pipe_config->callback;
pipe->callback_arg = pipe_config->callback_arg;
pipe->context = pipe_config->context;
// Allocate channel
HCD_ENTER_CRITICAL();
if (!port->initialized || !port->flags.conn_dev_ena) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto err;
}
bool chan_allocated = usb_dwc_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe);
if (!chan_allocated) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_NOT_SUPPORTED;
goto err;
}
usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
// Add the pipe to the list of idle pipes in the port object
TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry);
port->num_pipes_idle++;
HCD_EXIT_CRITICAL();
*pipe_hdl = (hcd_pipe_handle_t)pipe;
return ESP_OK;
err:
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(buffers[i]);
}
free(chan_obj);
free(pipe);
return ret;
}
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check that all URBs have been removed and pipe has no pending events
HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing
&& !pipe->cs_flags.has_urb
&& !pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
// Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued URBs)
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
usb_dwc_hal_chan_free(pipe->port->hal, pipe->chan_obj);
HCD_EXIT_CRITICAL();
// Free pipe resources
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(pipe->buffers[i]);
}
free(pipe->chan_obj);
free(pipe);
return ESP_OK;
}
esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->ep_char.mps = mps;
// Update the underlying channel's registers
usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->ep_char.dev_addr = dev_addr;
// Update the underlying channel's registers
usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_update_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_callback_t callback, void *user_arg)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->callback = callback;
pipe->callback_arg = user_arg;
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_set_persist_reset(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->cs_flags.persist = 1;
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = pipe->context;
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)
{
hcd_pipe_state_t ret;
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
ret = pipe->state;
HCD_EXIT_CRITICAL();
return ret;
}
unsigned int hcd_pipe_get_num_urbs(hcd_pipe_handle_t pipe_hdl)
{
unsigned int ret;
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
ret = pipe->num_urb_pending + pipe->num_urb_done;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
esp_err_t ret = ESP_OK;
HCD_ENTER_CRITICAL();
// Cannot execute pipe commands the pipe is already executing a command, or if the pipe or its port are no longer valid
if (pipe->cs_flags.reset_lock) {
ret = ESP_ERR_INVALID_STATE;
} else {
pipe->cs_flags.pipe_cmd_processing = 1;
switch (command) {
case HCD_PIPE_CMD_HALT: {
ret = _pipe_cmd_halt(pipe);
break;
}
case HCD_PIPE_CMD_FLUSH: {
ret = _pipe_cmd_flush(pipe);
break;
}
case HCD_PIPE_CMD_CLEAR: {
ret = _pipe_cmd_clear(pipe);
break;
}
}
pipe->cs_flags.pipe_cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
hcd_pipe_event_t ret;
HCD_ENTER_CRITICAL();
ret = pipe->last_event;
pipe->last_event = HCD_PIPE_EVENT_NONE;
HCD_EXIT_CRITICAL();
return ret;
}
// ------------------------------------------------- Buffer Control ----------------------------------------------------
static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_transfer_t *transfer)
{
// Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the URB's data)
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
bool data_stg_in = (setup_pkt->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN);
bool data_stg_skip = (setup_pkt->wLength == 0);
// Fill setup stage
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, sizeof(usb_setup_packet_t),
USB_DWC_HAL_XFER_DESC_FLAG_SETUP | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
// Fill data stage
if (data_stg_skip) {
// Not data stage. Fill with an empty descriptor
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, 1);
} else {
// Fill data stage. Note that we still fill with transfer->num_bytes instead of setup_pkt->wLength as it's possible to require more bytes than wLength
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, transfer->data_buffer + sizeof(usb_setup_packet_t), transfer->num_bytes - sizeof(usb_setup_packet_t),
((data_stg_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0) | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
}
// Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN.
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0,
((data_stg_in && !data_stg_skip) ? 0 : USB_DWC_HAL_XFER_DESC_FLAG_IN) | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
// Update buffer flags
buffer->flags.ctrl.data_stg_in = data_stg_in;
buffer->flags.ctrl.data_stg_skip = data_stg_skip;
buffer->flags.ctrl.cur_stg = 0;
}
static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
{
// Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
// Minor optimization: Do the mod operation last
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (transfer->num_bytes % mps == 0);
if (is_in) {
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes,
USB_DWC_HAL_XFER_DESC_FLAG_IN | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
} else { // OUT
if (zero_len_packet) {
// Adding a zero length packet, so two descriptors are used.
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, 0);
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
} else {
// Zero length packet not required. One descriptor is enough
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
}
}
// Update buffer flags
buffer->flags.bulk.zero_len_packet = zero_len_packet;
}
static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
{
int num_qtds;
int mod_mps = transfer->num_bytes % mps;
// Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (mod_mps == 0);
if (is_in) {
assert(mod_mps == 0); // IN transfers MUST be integer multiple of MPS
num_qtds = transfer->num_bytes / mps; // Can just floor divide as it's already multiple of MPS
} else {
num_qtds = transfer->num_bytes / mps; // Floor division to get the number of MPS sized packets
if (mod_mps > 0) {
num_qtds++; // Add a short packet for the remainder
}
}
assert((zero_len_packet) ? num_qtds + 1 : num_qtds <= XFER_LIST_LEN_INTR); // Check that the number of QTDs doesn't exceed the QTD list's length
uint32_t xfer_desc_flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0;
int bytes_filled = 0;
// Fill all but last QTD
for (int i = 0; i < num_qtds - 1; i++) {
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &transfer->data_buffer[bytes_filled], mps, xfer_desc_flags);
bytes_filled += mps;
}
// Fill last QTD and zero length packet
if (zero_len_packet) {
// Fill in last data packet without HOC flag
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
xfer_desc_flags);
// HOC flag goes to zero length packet instead
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC);
} else {
// Zero length packet not required. Fill in last QTD with HOC flag
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
xfer_desc_flags | USB_DWC_HAL_XFER_DESC_FLAG_HOC);
}
// Update buffer members and flags
buffer->flags.intr.num_qtds = num_qtds;
buffer->flags.intr.zero_len_packet = zero_len_packet;
}
static inline void _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps, int interval, int start_idx)
{
assert(interval > 0);
int total_num_desc = transfer->num_isoc_packets * interval;
assert(total_num_desc <= XFER_LIST_LEN_ISOC);
int desc_idx = start_idx;
int bytes_filled = 0;
// For each packet, fill in a descriptor and a interval-1 blank descriptor after it
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
int xfer_len = transfer->isoc_packet_desc[pkt_idx].num_bytes;
uint32_t flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0;
if (pkt_idx == transfer->num_isoc_packets - 1) {
// Last packet, set the the HOC flag
flags |= USB_DWC_HAL_XFER_DESC_FLAG_HOC;
}
usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &transfer->data_buffer[bytes_filled], xfer_len, flags);
bytes_filled += xfer_len;
if (++desc_idx >= XFER_LIST_LEN_ISOC) {
desc_idx = 0;
}
// Clear descriptors for unscheduled frames
for (int i = 0; i < interval - 1; i++) {
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
if (++desc_idx >= XFER_LIST_LEN_ISOC) {
desc_idx = 0;
}
}
}
// Update buffer members and flags
buffer->flags.isoc.num_qtds = total_num_desc;
buffer->flags.isoc.interval = interval;
buffer->flags.isoc.start_idx = start_idx;
buffer->flags.isoc.next_start_idx = desc_idx;
}
static void _buffer_fill(pipe_t *pipe)
{
// Get an URB from the pending tailq
urb_t *urb = TAILQ_FIRST(&pipe->pending_urb_tailq);
assert(pipe->num_urb_pending > 0 && urb != NULL);
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending--;
// Select the inactive buffer
assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS);
dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx];
buffer_to_fill->status_flags.val = 0; // Clear the buffer's status flags
assert(buffer_to_fill->urb == NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
usb_transfer_t *transfer = &urb->transfer;
switch (pipe->ep_char.type) {
case USB_DWC_XFER_TYPE_CTRL: {
_buffer_fill_ctrl(buffer_to_fill, transfer);
break;
}
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
uint32_t start_idx;
if (pipe->multi_buffer_control.buffer_num_to_exec == 0) {
// There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule
uint32_t cur_frame_num = usb_dwc_hal_port_get_cur_frame_num(pipe->port->hal);
uint32_t cur_mod_idx_no_offset = (cur_frame_num - pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1); // Get the modulated index (i.e., the Nth desc in the descriptor list)
// This is the non-offset modulated QTD index of the last scheduled interval
uint32_t last_interval_mod_idx_no_offset = (cur_mod_idx_no_offset / pipe->ep_char.periodic.interval) * pipe->ep_char.periodic.interval; // Floor divide and the multiply again
uint32_t next_interval_idx_no_offset = (last_interval_mod_idx_no_offset + pipe->ep_char.periodic.interval);
// We want at least a half interval or 2 frames of buffer space
if (next_interval_idx_no_offset - cur_mod_idx_no_offset > (pipe->ep_char.periodic.interval / 2)
&& next_interval_idx_no_offset - cur_mod_idx_no_offset >= 2) {
start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
} else {
// Not enough time until the next schedule, add another interval to it.
start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.interval + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
}
} else {
// Start index is based on previously filled buffer
uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1);
dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx];
start_idx = prev_filled_buffer->flags.isoc.next_start_idx;
}
_buffer_fill_isoc(buffer_to_fill, transfer, is_in, mps, (int)pipe->ep_char.periodic.interval, start_idx);
break;
}
case USB_DWC_XFER_TYPE_BULK: {
_buffer_fill_bulk(buffer_to_fill, transfer, is_in, mps);
break;
}
case USB_DWC_XFER_TYPE_INTR: {
_buffer_fill_intr(buffer_to_fill, transfer, is_in, mps);
break;
}
default: {
abort();
break;
}
}
buffer_to_fill->urb = urb;
urb->hcd_var = URB_HCD_STATE_INFLIGHT;
// Update multi buffer flags
pipe->multi_buffer_control.wr_idx++;
pipe->multi_buffer_control.buffer_num_to_fill--;
pipe->multi_buffer_control.buffer_num_to_exec++;
}
static void _buffer_exec(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0);
dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx];
assert(buffer_to_exec->urb != NULL);
uint32_t start_idx;
int desc_list_len;
switch (pipe->ep_char.type) {
case USB_DWC_XFER_TYPE_CTRL: {
start_idx = 0;
desc_list_len = XFER_LIST_LEN_CTRL;
// Set the channel's direction to OUT and PID to 0 respectively for the the setup stage
usb_dwc_hal_chan_set_dir(pipe->chan_obj, false); // Setup stage is always OUT
usb_dwc_hal_chan_set_pid(pipe->chan_obj, 0); // Setup stage always has a PID of DATA0
break;
}
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
start_idx = buffer_to_exec->flags.isoc.start_idx;
desc_list_len = XFER_LIST_LEN_ISOC;
break;
}
case USB_DWC_XFER_TYPE_BULK: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1;
break;
}
case USB_DWC_XFER_TYPE_INTR: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.intr.zero_len_packet) ? buffer_to_exec->flags.intr.num_qtds + 1 : buffer_to_exec->flags.intr.num_qtds;
break;
}
default: {
start_idx = 0;
desc_list_len = 0;
abort();
break;
}
}
// Update buffer and multi buffer flags
buffer_to_exec->status_flags.executing = 1;
pipe->multi_buffer_control.buffer_is_executing = 1;
usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx);
}
static void _buffer_exec_cont(pipe_t *pipe)
{
// This should only ever be called on control transfers
assert(pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL);
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
bool next_dir_is_in;
int next_pid;
assert(buffer_inflight->flags.ctrl.cur_stg != 2);
if (buffer_inflight->flags.ctrl.cur_stg == 0) { // Just finished control stage
if (buffer_inflight->flags.ctrl.data_stg_skip) {
// Skipping data stage. Go straight to status stage
next_dir_is_in = true; // With no data stage, status stage must be IN
next_pid = 1; // Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2; // Skip over the null descriptor representing the skipped data stage
} else {
// Go to data stage
next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in;
next_pid = 1; // Data stage always starts with a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 1;
}
} else { // cur_stg == 1. // Just finished data stage. Go to status stage
next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; // Status stage is always the opposite direction of data stage
next_pid = 1; // Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2;
}
// Continue the control transfer
usb_dwc_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in);
usb_dwc_hal_chan_set_pid(pipe->chan_obj, next_pid);
usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg);
}
static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
// Update URB's actual number of bytes
if (buffer->flags.ctrl.data_stg_skip) {
// There was no data stage. Just set the actual length to the size of the setup packet
transfer->actual_num_bytes = sizeof(usb_setup_packet_t);
} else {
// Parse the data stage for the remaining length
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status);
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= (transfer->num_bytes - sizeof(usb_setup_packet_t)));
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
}
// Update URB status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
// Clear the descriptor list
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_CTRL * sizeof(usb_dwc_ll_dma_qtd_t));
}
static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
// Update URB's actual number of bytes
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status);
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= transfer->num_bytes);
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
// Update URB's status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
// Clear the descriptor list
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_BULK * sizeof(usb_dwc_ll_dma_qtd_t));
}
static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
int intr_stop_idx = buffer->status_flags.stop_idx;
if (is_in) {
if (intr_stop_idx > 0) { // This is an early stop (short packet)
assert(intr_stop_idx <= buffer->flags.intr.num_qtds);
int rem_len;
int desc_status;
for (int i = 0; i < intr_stop_idx - 1; i++) { // Check all packets before the short
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
}
// Check the short packet
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status);
assert(rem_len > 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
// Update actual bytes
transfer->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len);
} else {
// Check that all but the last packet transmitted MPS
for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) {
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
}
// Check the last packet
int last_packet_rem_len;
int last_packet_desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status);
assert(last_packet_desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
// All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes
transfer->actual_num_bytes = transfer->num_bytes - last_packet_rem_len;
}
} else {
// OUT INTR transfers can only complete successfully if all packets have been transmitted. Double check
for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) {
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS);
}
transfer->actual_num_bytes = transfer->num_bytes;
}
// Update URB's status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
// Clear the descriptor list
memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_INTR * sizeof(usb_dwc_ll_dma_qtd_t));
}
static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
int desc_idx = buffer->flags.isoc.start_idx; // Descriptor index tracks which descriptor in the QTD list
int total_actual_num_bytes = 0;
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
// Clear the filled descriptor
int rem_len;
int desc_status;
usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status);
usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
assert(rem_len == 0 || is_in);
assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS || desc_status == USB_DWC_HAL_XFER_DESC_STS_NOT_EXECUTED);
assert(rem_len <= transfer->isoc_packet_desc[pkt_idx].num_bytes); // Check for DMA errata
// Update ISO packet actual length and status
transfer->isoc_packet_desc[pkt_idx].actual_num_bytes = transfer->isoc_packet_desc[pkt_idx].num_bytes - rem_len;
total_actual_num_bytes += transfer->isoc_packet_desc[pkt_idx].actual_num_bytes;
transfer->isoc_packet_desc[pkt_idx].status = (desc_status == USB_DWC_HAL_XFER_DESC_STS_NOT_EXECUTED) ? USB_TRANSFER_STATUS_SKIPPED : USB_TRANSFER_STATUS_COMPLETED;
// A descriptor is also allocated for unscheduled frames. We need to skip over them
desc_idx += buffer->flags.isoc.interval;
if (desc_idx >= XFER_LIST_LEN_INTR) {
desc_idx -= XFER_LIST_LEN_INTR;
}
}
// Write back the actual_num_bytes and statue of entire transfer
assert(total_actual_num_bytes <= transfer->num_bytes);
transfer->actual_num_bytes = total_actual_num_bytes;
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
}
static inline void _buffer_parse_error(dma_buffer_block_t *buffer)
{
// The URB had an error in one of its packet, or a port error), so we the entire URB an error.
usb_transfer_t *transfer = &buffer->urb->transfer;
transfer->actual_num_bytes = 0;
// Update the overall status of URB. Status will depend on the pipe_event
switch (buffer->status_flags.pipe_event) {
case HCD_PIPE_EVENT_NONE:
transfer->status = (buffer->status_flags.was_canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
break;
case HCD_PIPE_EVENT_ERROR_XFER:
transfer->status = USB_TRANSFER_STATUS_ERROR;
break;
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
transfer->status = USB_TRANSFER_STATUS_OVERFLOW;
break;
case HCD_PIPE_EVENT_ERROR_STALL:
transfer->status = USB_TRANSFER_STATUS_STALL;
break;
default:
// HCD_PIPE_EVENT_URB_DONE and HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL should not occur here
abort();
break;
}
}
static void _buffer_parse(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.buffer_num_to_parse > 0);
dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx];
assert(buffer_to_parse->urb != NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
// Parsing the buffer will update the buffer's corresponding URB
if (buffer_to_parse->status_flags.pipe_event == HCD_PIPE_EVENT_URB_DONE) {
// URB was successful
switch (pipe->ep_char.type) {
case USB_DWC_XFER_TYPE_CTRL: {
_buffer_parse_ctrl(buffer_to_parse);
break;
}
case USB_DWC_XFER_TYPE_ISOCHRONOUS: {
_buffer_parse_isoc(buffer_to_parse, is_in);
break;
}
case USB_DWC_XFER_TYPE_BULK: {
_buffer_parse_bulk(buffer_to_parse);
break;
}
case USB_DWC_XFER_TYPE_INTR: {
_buffer_parse_intr(buffer_to_parse, is_in, mps);
break;
}
default: {
abort();
break;
}
}
} else {
// URB failed
_buffer_parse_error(buffer_to_parse);
}
urb_t *urb = buffer_to_parse->urb;
urb->hcd_var = URB_HCD_STATE_DONE;
buffer_to_parse->urb = NULL;
buffer_to_parse->flags.val = 0; // Clear flags
// Move the URB to the done tailq
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done++;
// Update multi buffer flags
pipe->multi_buffer_control.fr_idx++;
pipe->multi_buffer_control.buffer_num_to_parse--;
pipe->multi_buffer_control.buffer_num_to_fill++;
}
static bool _buffer_flush_all(pipe_t *pipe, bool canceled)
{
int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec;
for (int i = 0; i < cur_num_to_mark_done; i++) {
// Mark any filled buffers as done
_buffer_done(pipe, 0, HCD_PIPE_EVENT_NONE, canceled);
}
int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse;
for (int i = 0; i < cur_num_to_parse; i++) {
_buffer_parse(pipe);
}
// At this point, there should be no more filled buffers. Only URBs in the pending or done tailq
return (cur_num_to_parse > 0);
}
// ---------------------------------------------- HCD Transfer Descriptors ---------------------------------------------
// ----------------------- Public --------------------------
esp_err_t hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl, urb_t *urb)
{
// Check that URB has not already been enqueued
HCD_CHECK(urb->hcd_ptr == NULL && urb->hcd_var == URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
// Check that pipe and port are in the correct state to receive URBs
HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED // The pipe's port must be in the correct state
&& pipe->state == HCD_PIPE_STATE_ACTIVE // The pipe must be in the correct state
&& !pipe->cs_flags.pipe_cmd_processing // Pipe cannot currently be processing a pipe command
&& !pipe->cs_flags.reset_lock, // Pipe cannot be persisting through a port reset
ESP_ERR_INVALID_STATE);
// Use the URB's reserved_ptr to store the pipe's
urb->hcd_ptr = (void *)pipe;
// Add the URB to the pipe's pending tailq
urb->hcd_var = URB_HCD_STATE_PENDING;
TAILQ_INSERT_TAIL(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending++;
// use the URB's reserved_flags to store the URB's current state
if (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
if (!pipe->cs_flags.has_urb) {
// This is the first URB to be enqueued into the pipe. Move the pipe to the list of active pipes
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
pipe->port->num_pipes_queued++;
pipe->cs_flags.has_urb = 1;
}
HCD_EXIT_CRITICAL();
return ESP_OK;
}
urb_t *hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
urb_t *urb;
HCD_ENTER_CRITICAL();
if (pipe->num_urb_done > 0) {
urb = TAILQ_FIRST(&pipe->done_urb_tailq);
TAILQ_REMOVE(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done--;
// Check the URB's reserved fields then reset them
assert(urb->hcd_ptr == (void *)pipe && urb->hcd_var == URB_HCD_STATE_DONE); // The URB's reserved field should have been set to this pipe
urb->hcd_ptr = NULL;
urb->hcd_var = URB_HCD_STATE_IDLE;
if (pipe->cs_flags.has_urb
&& pipe->num_urb_pending == 0 && pipe->num_urb_done == 0
&& pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) {
// This pipe has no more enqueued URBs. Move the pipe to the list of idle pipes
TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle++;
pipe->port->num_pipes_queued--;
pipe->cs_flags.has_urb = 0;
}
} else {
// No more URBs to dequeue from this pipe
urb = NULL;
}
HCD_EXIT_CRITICAL();
return urb;
}
esp_err_t hcd_urb_abort(urb_t *urb)
{
HCD_ENTER_CRITICAL();
// Check that the URB was enqueued to begin with
HCD_CHECK_FROM_CRIT(urb->hcd_ptr != NULL && urb->hcd_var != URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
if (urb->hcd_var == URB_HCD_STATE_PENDING) {
// URB has not been executed so it can be aborted
pipe_t *pipe = (pipe_t *)urb->hcd_ptr;
// Remove it form the pending queue
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending--;
// Add it to the done queue
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done++;
// Update the URB's current state, status, and actual length
urb->hcd_var = URB_HCD_STATE_DONE;
if (urb->transfer.num_isoc_packets == 0) {
urb->transfer.actual_num_bytes = 0;
urb->transfer.status = USB_TRANSFER_STATUS_CANCELED;
} else {
// If this is an ISOC URB, update the ISO packet descriptors instead
for (int i = 0; i < urb->transfer.num_isoc_packets; i++) {
urb->transfer.isoc_packet_desc[i].actual_num_bytes = 0;
urb->transfer.isoc_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED;
}
}
} // Otherwise, the URB is in-flight or already done thus cannot be aborted
HCD_EXIT_CRITICAL();
return ESP_OK;
}