Marius Vikhammer 6fb996b1ac newlib: revert back from spinlocks to using newlib locks for time.h
Spinlocks from spinlock.h do not disable the scheduler and thus cannot safely
be directly used as a locking mechanism. A task holding the lock can get
pre-empted, and at that point the new running task will also be allowed to
take the spinlock and access whatever it was protecting.

Another issue is that the task holding a spinlock could migrate to a different
core which in turn would cause the application to fail asserts. The current
implementation assumes the core that takes the lock is also the core that
releases it.

Closes https://github.com/espressif/esp-idf/issues/5762
2020-09-03 09:56:02 +08:00

303 lines
8.7 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <reent.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/reent.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/lock.h>
#include "esp_system.h"
#include "esp_attr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_private/system_internal.h"
#include "soc/rtc.h"
#include "esp_time_impl.h"
#include "sdkconfig.h"
#ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
_Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide 64-bits");
#else
_Static_assert(sizeof(time_t) == 4, "The toolchain supports time_t wide 64-bits. Please enable CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS.");
#endif
#if !CONFIG_ESP32_TIME_SYSCALL_USE_NONE && !CONFIG_ESP32S2_TIME_SYSCALL_USE_NONE
#define IMPL_NEWLIB_TIME_FUNCS 1
#endif
#if IMPL_NEWLIB_TIME_FUNCS
// stores the start time of the slew
static uint64_t s_adjtime_start_us;
// is how many microseconds total to slew
static int64_t s_adjtime_total_correction_us;
static _lock_t s_time_lock;
// This function gradually changes boot_time to the correction value and immediately updates it.
static uint64_t adjust_boot_time(void)
{
#define ADJTIME_CORRECTION_FACTOR 6
uint64_t boot_time = esp_time_impl_get_boot_time();
if ((boot_time == 0) || (esp_time_impl_get_time_since_boot() < s_adjtime_start_us)) {
s_adjtime_start_us = 0;
}
if (s_adjtime_start_us > 0) {
uint64_t since_boot = esp_time_impl_get_time_since_boot();
// If to call this function once per second, then (since_boot - s_adjtime_start_us) will be 1_000_000 (1 second),
// and the correction will be equal to (1_000_000us >> 6) = 15_625 us.
// The minimum possible correction step can be (64us >> 6) = 1us.
// Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds.
int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (s_adjtime_start_us >> ADJTIME_CORRECTION_FACTOR);
if (correction > 0) {
s_adjtime_start_us = since_boot;
if (s_adjtime_total_correction_us < 0) {
if ((s_adjtime_total_correction_us + correction) >= 0) {
boot_time = boot_time + s_adjtime_total_correction_us;
s_adjtime_start_us = 0;
} else {
s_adjtime_total_correction_us += correction;
boot_time -= correction;
}
} else {
if ((s_adjtime_total_correction_us - correction) <= 0) {
boot_time = boot_time + s_adjtime_total_correction_us;
s_adjtime_start_us = 0;
} else {
s_adjtime_total_correction_us -= correction;
boot_time += correction;
}
}
esp_time_impl_set_boot_time(boot_time);
}
}
return boot_time;
}
// Get the adjusted boot time.
static uint64_t get_adjusted_boot_time(void)
{
_lock_acquire(&s_time_lock);
uint64_t adjust_time = adjust_boot_time();
_lock_release(&s_time_lock);
return adjust_time;
}
// Applying the accumulated correction to base_time and stopping the smooth time adjustment.
static void adjtime_corr_stop (void)
{
_lock_acquire(&s_time_lock);
if (s_adjtime_start_us != 0){
adjust_boot_time();
s_adjtime_start_us = 0;
}
_lock_release(&s_time_lock);
}
#endif
int adjtime(const struct timeval *delta, struct timeval *outdelta)
{
#if IMPL_NEWLIB_TIME_FUNCS
if(outdelta != NULL){
_lock_acquire(&s_time_lock);
adjust_boot_time();
if (s_adjtime_start_us != 0) {
outdelta->tv_sec = s_adjtime_total_correction_us / 1000000L;
outdelta->tv_usec = s_adjtime_total_correction_us % 1000000L;
} else {
outdelta->tv_sec = 0;
outdelta->tv_usec = 0;
}
_lock_release(&s_time_lock);
}
if(delta != NULL){
int64_t sec = delta->tv_sec;
int64_t usec = delta->tv_usec;
if(llabs(sec) > ((INT_MAX / 1000000L) - 1L)) {
return -1;
}
/*
* If adjusting the system clock by adjtime () is already done during the second call adjtime (),
* and the delta of the second call is not NULL, the earlier tuning is stopped,
* but the already completed part of the adjustment is not canceled.
*/
_lock_acquire(&s_time_lock);
// If correction is already in progress (s_adjtime_start_time_us != 0), then apply accumulated corrections.
adjust_boot_time();
s_adjtime_start_us = esp_time_impl_get_time_since_boot();
s_adjtime_total_correction_us = sec * 1000000L + usec;
_lock_release(&s_time_lock);
}
return 0;
#else
return -1;
#endif
}
clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
{
clock_t t = xTaskGetTickCount() * (portTICK_PERIOD_MS * CLK_TCK / 1000);
ptms->tms_cstime = 0;
ptms->tms_cutime = 0;
ptms->tms_stime = t;
ptms->tms_utime = 0;
struct timeval tv = {0, 0};
_gettimeofday_r(r, &tv, NULL);
return (clock_t) tv.tv_sec;
}
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
{
(void) tz;
#if IMPL_NEWLIB_TIME_FUNCS
if (tv) {
uint64_t microseconds = get_adjusted_boot_time() + esp_time_impl_get_time_since_boot();
tv->tv_sec = microseconds / 1000000;
tv->tv_usec = microseconds % 1000000;
}
return 0;
#else
__errno_r(r) = ENOSYS;
return -1;
#endif
}
int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
(void) tz;
#if IMPL_NEWLIB_TIME_FUNCS
if (tv) {
adjtime_corr_stop();
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
uint64_t since_boot = esp_time_impl_get_time_since_boot();
esp_time_impl_set_boot_time(now - since_boot);
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
int usleep(useconds_t us)
{
const int us_per_tick = portTICK_PERIOD_MS * 1000;
if (us < us_per_tick) {
esp_rom_delay_us((uint32_t) us);
} else {
/* since vTaskDelay(1) blocks for anywhere between 0 and portTICK_PERIOD_MS,
* round up to compensate.
*/
vTaskDelay((us + us_per_tick - 1) / us_per_tick);
}
return 0;
}
unsigned int sleep(unsigned int seconds)
{
usleep(seconds*1000000UL);
return 0;
}
int clock_settime(clockid_t clock_id, const struct timespec *tp)
{
#if IMPL_NEWLIB_TIME_FUNCS
if (tp == NULL) {
errno = EINVAL;
return -1;
}
struct timeval tv;
switch (clock_id) {
case CLOCK_REALTIME:
tv.tv_sec = tp->tv_sec;
tv.tv_usec = tp->tv_nsec / 1000L;
settimeofday(&tv, NULL);
break;
default:
errno = EINVAL;
return -1;
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
int clock_gettime (clockid_t clock_id, struct timespec *tp)
{
#if IMPL_NEWLIB_TIME_FUNCS
if (tp == NULL) {
errno = EINVAL;
return -1;
}
struct timeval tv;
uint64_t monotonic_time_us = 0;
switch (clock_id) {
case CLOCK_REALTIME:
_gettimeofday_r(NULL, &tv, NULL);
tp->tv_sec = tv.tv_sec;
tp->tv_nsec = tv.tv_usec * 1000L;
break;
case CLOCK_MONOTONIC:
monotonic_time_us = esp_time_impl_get_time();
tp->tv_sec = monotonic_time_us / 1000000LL;
tp->tv_nsec = (monotonic_time_us % 1000000LL) * 1000L;
break;
default:
errno = EINVAL;
return -1;
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
int clock_getres (clockid_t clock_id, struct timespec *res)
{
#if IMPL_NEWLIB_TIME_FUNCS
if (res == NULL) {
errno = EINVAL;
return -1;
}
res->tv_sec = 0;
res->tv_nsec = esp_system_get_time_resolution() * 1000;
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
void esp_newlib_time_init(void)
{
esp_time_impl_init();
}